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Chapter 1

Prologue

Figure 1.1: Cloud in Trousers

I type this Prologue, respecting my teachers
of English, and also those of the Russian Lit-
erature. They think, that every scribbling,
since W.Shakespeare, should begin with some
Prologue1, and should finish with some Epi-
logue. In addition, the Soviet teachers had promoted the sovietism2 and
the socialistic realism, that implies, that even a cloud should wear some
trousers3 as it is shown in Fig.1.1.

This prologue appears as a kind of trousers, a wrap, to cover the inside;
where, my results are presented in a naked and provocative form.

This Book is about holomorphic (analytic) solutions F of equation

F (z+1) = T (F (z)) [prologeq] (1.1)

where T is some given holomorphic (analytic) function. Also, this Book
is about applications of the solution F , its inverse function G=F−1 and
interesting properties of function T n(z)=F (n+G(z)). The given func-
tion T is called “transfer function”; the solution F is its “superfunction”.
The inverse function G is called the “Abelfunction”.

The Prologue describes not functions F and G above, but this Book:
what is it, why is it, how to use it, what is in it, and what is not. I follow
the classical example4 and explain, why this Book is so important.

Readers, who are interested namely in solutions of the equation above
and their physical meaning, may scroll from here directly to Introduc-
tion, Chapter 2 at page 20.

1 W. Shakespear. Romeo and Juliet. Prologue. 932/Sh12, Kenkyusba English Classics, 1926.
2http://mizugadro.mydns.jp/t/index.php/Sovietism
3http://www.unlikelystories.org/old/archives/cloudintrousers.html A Cloud in

Trousers by Vladimir Mayakovsky, translated from the Russian by Andrey Kneller. Prologue.

Cited by the state for 2014.09.10.
4 François Rabelais. Gargantua [1] : .. Most noble and illustrious drinkers, and you thrice

precious pockified blades (for to you, and none else, do I dedicate my writings),
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1 For whom is this Prologue

I type this Prologue not for the Readers. I type this Prologue for those,
who will not read this Book:

For Editors, managers, sellers, who deal with thousands books, and
who have need to understand, within a minute, why namely this Book
should be placed at the top in the list of recommended literature.

For the experienced critics, who read only two or three pages, in
order to write the review:What oddity is this: Superfunctions? What

sort of Superfunctions have we here? And thrust into the world by a

laserist! As if we are not satisfied with superconductivity, supersymme-

try, superfluidity, supermen and supermarkets! As though threes enough

had not been cut for paper, and not enough files have been loaded into

internet! As though folks enough of all classes had not tired their fingers

with keyboards! The whim must take a laserist to follow their example!

Really there is such a lot of paper nowadays that it takes time to think

what to wrap in it! 5

For librarians, who need to find for this Book a suitable place, in order
to make it visible at the background of tons of books about supercon-
ductivity, supermen, supermarkets and superinflation.

For colleagues, who may wonder, why the laserist, instead of to pro-
mote the optical ceramics (for which the big Grants are assigned) deals
with superfunctions (which are yet very far from to get the financial
support), and behaves as a simpleton, who does not know, How to Win

Friends and Influence People.

For relatives and friends, who teach me to live and to promote my
results. They seem to know very well, how to influence people. This book
could be a kind of medicine against this kind of influenza. However, more
detailed analysis of relations between friends is published separately [23].

For the categories of non-readers mentioned above, I should specify the
genre and topic of this book. The next two sections are dedicated to
this. With such a specification, one may form his/her/its own opinion
about the book, without to read it.

5N.Gogol. Evenings at a Farmhouse near Dikanka. MARCH 27, 2013. [4] : “What oddity is

this: Evenings on a Farm near Dikanka? What sort of Evenings have we here? And thrust into

the world by a beekeeper! God protect us! As though geese enough had not been plucked for pens

and rags turned into paper! As though folks enough of all classes had not covered their fingers

with inkstains! The whim must take a beekeeper to follow their example! Really there is such a

lot of paper nowadays that it takes time to think what to wrap in it.”
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2 Russian version and copyleft

Figure 1.2: Translation cause confusion

This book had been planned as the

English version of the Russian book

“Суперфункции” 6. I did great ef-

forts translating the Russian expres-

sions into English; figures 1.1,1.2

prove this.

I provide references to the English translations of the classical books

cited in the Russian version. However, in many cases, the translation is

not possible. Often, it is difficult to find the English equivalents of the

references cited. So, I give up trying to translate the Book; I re-write it

in English.

I reuse some formulas and figures, that are available at the free sites; in

particular, at Mizugadro and Citizendium. The links are mentioned

in the Supplement 4, at page 301 . I load the gallery of the im-

ages at http://mizugadro.mydns.jp/t/index.php/Category:Book ;

I hope, this server will last longer, than the previous holder of TORI at

http://tori.ils.uec.ac.jp/TORI, that had been attacked 2013.02.27; then,

the access had been disabled. It took certain efforts to arrange the clone

at http://mizugadro.mydns.jp/t. The reason of the aggression could

be the critical article prepared for “Physics Today” 7. Unfortunately,

namely this way the politicians answer the critics, while they cannot

build any logical argumentation. I hope, those politicians pay to admin-

istration of our university some significant amount per each day, while

TORI is not available at its original URL. I have no other explanation of

the attitude or our administration, who had post-factum approved that

barbarian attack. I try to make Science, not the criminal investigation,

so, I mention only the scientific point of view on the events. However, I

hope, one day, the professional criminalists carefully investigate the case,

as well as the origins of other attacks happened 2013.02.27, 2014.02.27,

2015.02.27, 2016.02.27, 2017.02.27, 2017.03.04 (lated few days since the

expected date 2018.02.27). 8

6http://mizugadro.mydns.jp/t/index.php/Superfunctions_in_Russian

http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf

http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic

Press, 2014. (In Russian)
7http://mizugadro.mydns.jp/PAPERS/2013physToday.pdf D.Kouznetsov. Corruption in

Russian science. 2013, preprint
8http://mizugadro.mydns.jp/t/index.php/Tori_attacked

http://budclub.ru/k/kuznecow_d_j/toriattacked.shtml D.Kouznetsov. TORI attacked, 2013
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I allow the free use of my results, and I try to simplify the use. In

particular, I provide generators of images, used in the Book. I would

not specify this in details, but one recent observation indicates that the

problem is very serious. Since year 2014, the strange phenomenon is

observed in the resources of wikimedia: the administrators claim, that

publication of my results violate my authors rights. The same, and even

worse, happen with results by other authors from the USSR and, es-

pecially, texts of the Soviet dissidents. The administrators ignore the

permissions provided by the copyright owners, and remove the texts

and the images, claiming, that the loading or the texts and images are

“Copyright violation”. The similar phenomenon could take place in the

Nazi Germany. The nazi used to arrest, to kill the opponents, and with-

drawn their books from shops and libraries with pretext of defence of

the intellectual property. They killed many authors, and, if the author

is already dead, the fascists claim, that now the State becomes owner

of the copyright property. However, the State, after to kill the authors,

prohibit the distribution of their works. May be, the professional histo-

rian corrects me, that the German nazi acted in a little bit different way.

But everyone may look at wikisource, and, especially, to its Russian ver-

sion and see, that namely this happens at wikimedia, and, especially,

since year 2014. Perhaps, the Russian Soviet veterans decided, that the

invasion into Ukraine and plundering of Crimea is not sufficient, and

begun to plunder also the wiki resources. I mention this in the special

statement 9.

I type the paragraph above in order to stress, that I had issued the per-

mission to distribute my results under the free GNU license; the only

attribution is required. The attempt to “defend” my author’s right in

the way described above, is a fraud: several years ago I had allowed

the free distribution, and I provide the links, that confirm this. In par-

ticular, the permission refers to the plots, used in this book and their

generators. I specify the URL of the image at each picture. If some

administrator claims, that use of this image under the "free" license vi-

olates my copyright, let me know. I think, such an administrator should

be qualified as liar, impostor, knave, thrive; and his/her/its attempts to

defend my author’s right in such a way should be qualified as a fraud.

In other words, use the images from this Book, as well as from Russian

version, for free, but do not forget to attribute the source.

9 http://mizugadro.mydns.jp/t/index.php/Kouznetsov,_permission Open letter by

Dmitrii Kouznetsov about massive removal of texts and images from Wikimedia projects with

pretext of defence to the copyright of the authors. Wed, Mar 18, 2015 at 11:23
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3 Physical mathematics

While writing this Book, I was asked about its genre. I searched the

answer in various databases, and it seems, the closest qualification is

“Physical mathematics” [78, 59, 60].

Term “physical mathematics” should not be confused with “mathemat-

ical physics”. The order of words is important. Similar examples exist

in the Quantum Mechanics. Let P be momentum of a particle, and Q

be its coordinate; then PQ−QP =−i�.
One student could not catch the sense of non-communing operators. She

tried to understand, why operator of creation does not commute with

operator of annihilation. The Professor tried different explanations, then

he found the strong example for female students; he asked:

Could you explain me, please, why operation TO CLEAN-UP does

not commute with operation TO DIRT-DOWN ?

The student was content, she said:

Thank you, Professor! This is very good example! Now I understand

all the Quantum Mechanics!

Professor also got a good lesson; he realised, how to teach Quantum

Mechanics, keeping women and female logic in mind 10.

Term “mathematical physics” denotes the mathematical exercises with

equations that come from Physics.

Term “physical mathematics” means, that the common scientific tools

are used to check mathematical conjectures; the rigorous mathematical

deduction appears as a possible scientific method, but not an imperative.

4 TORI axioms

In this Book, I use the TORI Axioms. This section retells some results

from publications in “Uspekhi” [67] and J. of Modern Physics [83]. These

results refer to definition of term “Science”. TORI Axioms appear as

parts of the definetion of this term.

10http://pda.anekdot.ru/id/658766 Bogorad Victor. Мысли, Мысли. (2013, In Russian)

http://mizugadro.mydns.jp/t/index.php/Female_logic D.Beklemishev. Female logic. (2013)

http://www.ams.org/notices/201309/rnoti-p1156.pdf J.M.Deshler, E.A.Burroughs. Teach-

ing Mathematics with Women in Mind. Notices of the AMS, V.60, No.9, p.1156-1163.
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Science is kind of knowledge, activity and research, based on

concepts, that have all the six properties below:

1. Applicability: Each concept has the limited range of validity, dis-

tinguishable from the empty set.

2. Verifiability: In the terms of the already accepted concepts, some

specific experiment with some specific result, that confirms the concept,

can be described.

3. Refutability: In the terms of the concept, some specific experiment

with some specific result, that negates the concept, can be described.

4. Self-consistency: No internal contradictions of the concept are

known.

5. Principle of correspondence: It the range of validity of a new

concept intersects the range of validity of another already accepted con-

cept, then, the new concept either reproduces the results of the old

concept, or indicates the way to refute it. (For example, the estimate of

the range of validity of the old concept may be wrong.)

6. Pluralism: Mutually-contradictive concepts may coexist; if two

concepts, satisfying requirements 1-5 above have some common range of

validity, then, in this range, the simplest of them has priority.

The 6 properties, requirements above are TORI axioms. They are

specified also at http://mizugadro.mydns.jp/t.

The main results, that had been presented at TORI and related to this

Book, are published in Scientific Journals [83, 85, 88, 91]. In order

to simplify the referencing, the axioms above needed a special name.

Having poor phantasy, I just keep the initial abbreviation, TORI, that

means Tools for Outstanding Research and Investigation. The Russian

transliteration “ТОРИ” has similar meaning (“Теоретические Основы

Революционных Исследований”). Many results, reported at the con-

ferences and in the scientific journal, look so similar, that it is difficult

to find, what namely new and interesting does each of them suggest.

They barely satisfy the TORI axioms, if at all. The non-trivial results

appear to be “outstanding”, “revolutionary”, in the sense, that they stay

a little bit out of the main trend of scientific research.
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Articles of site http://mizugadro.mydins.jp/t collect tools: con-

cepts, formulas, algorithms, pictures, that I consider to be “outstanding”

and useful in the scientific research. I assume, that the “instanding” re-

searches are already well represented in Citizendium, Wikipedia and

scientific journals, and there is no need to repeat them again. In partic-

ular, I load to TORI generators of figures, used in this book. The idea is,

that each code can be downloaded by the Reader, compiled, executed,

and, if necessary, modified for the new (and, perhaps, unexpected for

me) applications.

Figure 1.3: Server felt down

I load the generators also to other sites,

in order not to make an impression, that

the politicians may completely block the

access to my results attacking another

server. In this sense, Manuscripts don’t

burn [8].

In the Supplement, I suggest the links

to other internet recourses for the case if

some server is not reachable. The same,

for the case, if it suddenly falls down, as it is shown in Figure 1.3.

With links, suppled to figures, the Reader can use and develop the for-

malism of superfunctions just from the place, until I have advanced.

Just pick-up the figure you like and load its generator.

5 What for this book is

Since publication in 2009 of the article about holomoprhic tetration [54],

I expected, the mathematicians can do the rest of the job by themselves.

That publication refers to the special case of equation (1.1), with T =

exp; and the natural tetration as solution is considered, F =tet.

Seven years passed by since [54], but superfunctions did not appear in

descriptions of the algorithmic languages. Neither tetration, nor super-

factorial [65], nor other superfunctions I had reported appear as built-in

functions. Until now, the function Nest [97] in language “Mathematica”

requires, that the number of iterate is integer. If one approximates some

bell-like function, then, usually, the phantasy of colleagues does not go

farther than the Gaussian exponential, hyperbolic secant or Lorentian.
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One could use also, for example, the half-iterate of the exponential [10],

id est, such function f , that f(f(z))= exp(z), instead of the exponent

in 2/(ex+e−x), as well as other non-integer iterates of vatious functions,

but one needs the formalism of superfunctions for the evaluation. This

Book describes such a formalism.

Most of the Mathematical Analysis in schools and universities is built-up

on the first three ackermanns: addition, multiplication, exponentiation

and their inverse functions in various combinations. This arsenal could

be greatly extended, including, for example, the 4th ackermann, which is

tetration, or the 5th ackermann, that is pentation. However, one needs

formalism of superfunctions to evaluate tetration and pentaiton [64, 89]

When physicists analyse the nonlinear response of a medium, they try

to make the sample optically-thin; otherwise, the re-absorption and sat-

uration lead to mistakes [42, 43, 44, 45, 46, 47]. For the thin sample,

the precision of measurements is low. Superfunctions allow to work

with thick samples, and still reconstruct behaviour of intensity inside

the sample [84, 85].

Many researchers believe that namely their work is especially impor-

tant. I am not an exception. From my point of view, tetration and

arctetration, as well as other superfunctions and abelfunctions, will be

import for science since century 22; so important, as the exponential

and logarithm are important since century 19. This Book explains, how

to calculate superfunctions and what can one do with them.

When the fundaments of superfunstions had been formulated, one of my

coauthors, Akira Shirakava [38] had declared, that it is not possible, to

recover distribution of intensity of light in the amplifier from its transfer

function. [74]. Then, the algorithm for this recovery had been presented

[61, 84, 85], and Shirakava said, that the formalism of superfunctions is

too complicated [75]. Through all the mutual misunderstandings, I con-

sider Shirakawa as specialist in fibre lasers, and I take into account his

complains. I try to make this book popular. So, I cite not only scientific

articles. Also I try to avoid complicated mathematics, at least in some

figures. However, I still suppose, that the Reader can distinguish an In-

tegral from a logarithm, and has some idea, what is square root of minus

unity. If the Reader in addition, had seen some Cauchy intergal(s), this

is also a good advantage.
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In order to simplify the reading, I try to avoid long sentences and di-

gressions, although not always it is possible. In order to explain this, I

suggest the example:

Happy is the traveller who, after a long and heavy journey, with its cold
and humidity of air-conditioners, with long waiting-lines at the passport
control, curious to under ware the special control officers, delayed flights,
lost luggage, going to the opposite direction taxi drivers, sees at last the
familiar roof with its lights approaching to meet him. And there rise
before his mind the familiar rooms, the delighted outcry of the servants
running out to meet him, the noise and racing footsteps of his children,
and the soothing gentle words interspersed with passionate kisses that
are able to efface everything gloomy from the memory. Happy the man
with a family and nook of his own, but woe to the bachelor!
Happy is the researcher who, passing by the strange results, paradoxes
and their wrong, inconsistent interpretations, attaches himself to phe-
nomena that display the loftiest virtues of scientific achievements, who,
from the great whirlpool of figures flitting by him daily, has selected
only the few exceptions, for which the answers are already known; who
has never tuned his research to a less exalted key, has never stooped
from his pinnacle to really new and unexpected phenomena. His fair
portion is doubly worthy of envy; he lives in the midst of them as in the
midst of his own family and, at the same time, his fame resounds far
and wide. He clouds men’s vision with enchanting incense; he flatters
them marvellously, covering up the gloomy side of science and life, and
exhibiting to them the noble man. All run after him, clapping their
hands and eagerly following his triumphal chariot.
They call him a great world-famed scientist, soaring high above every
other genius as the eagle soars above the other birds of the air. Young
ardent hearts are thrilled at his very name; responsive tears gleam in
every eye. . . . No one is his equal in power — he is a God! But quite
other is the portion, and very different is the destiny of the writer who
sees and reveal the phenomena strange, that are out of the commonly ac-
cepted theories and contradict to the obvious commonly-accepted com-
mon sense, calling for the revision or at least some critical analysis of the
widely recognised results, that already have assigned the highly presti-
gious awards and huge grants and foundations.. En fin, he’ll not escape
from the scientific council, who keep the old paradigms and any doubt
consider as a sin, as a kind of heresy.. Without compassion, such a re-
searcher is left by the roadside like the traveller without a family. Hard
is his lot and bitterly he feels his loneliness. [5]

I promise, that the above is longest digression in this Book. Trying to

keep the Book thin, the philosophic exercises about the place of Science

in the Human knowledge [67, 68] are published separately. It is not

possible to cover Everything (id est, the Full Set). Since the beginning,

I try to specify, what is in the book, and what is absent in the Book.
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6 What is present in the Book

This Book suggests the general approach for construction of superfunc-

tions and various algorithms of their evaluation. Superfunction is so-

lution F of equation (1.1); I repeat it here: F (z+1) = T (F (z)). This

equation is called “Transfer equation”, and the given function T is called

“transfer function”.

In this book, I describe various algorithms for evaluation of superfunc-

tions. The choice of the algorithm depends on the fixed points of the

transfer function, which are solutions L of equation T (L) = L; and,

also, depends on the additional requirements: what properties do we

expect from the required solution F of equation (1.1). These proper-

ties, being postulated, should provide the uniqueness of the solution,

but still should allow its existence and should indicate some way(s) of

the evaluation.

The inverse of superfunction F is called here “abelfunction” G= F−1.

The abelfunction satisfies the Abel equation G(T (z)) = G(z)+1. In this

book, I consider many examples of the transfer function T , superfunc-

tion F and the abelfunction G. I suggest ways of the efficient evaluation.

Efficient means, that the functions (and corresponding figures) are com-

puted in the real time and with good precision. With use of the complex

double arithmetics, the superfunctions and abelfunctions are evaluated

with 14 decimal digits. I load the figures together with their gener-

ators to http://mizugadro.mydns.jp/t/index.php/Category:Book;

the readers can check them with C++ and Latex.

By default, I assume, that the parameters have real values, while the

arguments of the functions may have complex values. For the illustra-

tions, the complex maps are essential. In particular, the complex map

of the natural tetration is used at the front cover of this Book.

I am more physicist, than mathematician. For physical applications,

the real values of the argument are of special interest. Usually, the

real values allow the straightforward interpretation and, sometimes, the

application. For this reason, I supply also the graphics for the real values

of the argument.
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7 What is absent in the Book

In this book, there are no accurate specifications, which values are al-

lowed for parameters and arguments of the functions considered. I spec-

ify them only in the cases, when they are essential for the consideration.

For each expression, the readers are supposed to examine the range of

applicability as the exercise. The reader is not a vessel to be filled, but

a candle to be lighted 11.

I try to define functions in such a way, that at least some vicinity of

the positive part of the real axis belongs to the range of holomorphism;

although, not always this is possible. This book seems to be the first

monograph with description of efficient methods of evaluation of super-

functions and abelfunctions, and this should be considered as an excuse

for the heuristic style of presentation of the results.

For the same reason, in this Book, there are no rigorous proofs of con-

vergence, existence and uniqueness of solutions. In particular, the de-

ductions, elaborated in collaboration with Henryk Trappmann, are not

included here. The Readers who like the deep drilling 12 are invited to

download our original articles [61, 66, 73, 79, 86], plumb through the

deduction expanded with the Saxon style of pedantic Henryk, drill the

examples and ask questions. Indications of the errors, at least misprints,

are of especial interest.

From my point of view, the theory of superfunctions is new branch of the

Mathematical Analysis, and the serious drilling and plumbing require

efforts of some institute with several research groups in order to bring

it to the beautiful and rigorous shape, like the theory of the differential

and Integral calculus and other mathematical analysis. Here, I deal with

functions of single variable; the generalisation to multidimentional case

is not presented.

History to development of theory of superfunctions and abelfunctions

begins approximately since century 19, and can be also interesting, but

11http://quoteinvestigator.com/2013/03/28/mind-fire/ garson. The Mind Is Not a Vessel
That Needs Filling, But Wood That Needs Igniting. March 28, 2013. .. None of the examples
came with citations:
Education is the kindling of a flame, not the filling of a vessel —Socrates
Education is not the filling of a pail, but the lighting of a fire. —William Butler Yeats
Education is not the filling of a pail, but the lighting of a fire. —Plutarch
The mind is not a vessel that needs filling, but wood that needs igniting. —Plutarch ..

12Importance of the deep drilling can be illustrated with the limerick below:
One Chinist colleague called Lee
Was drilling his girl at the sea;
She told him: Stop plumbing,
Somebody is coming!
And Lee had replied:That’s me!
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known proverb “to press a key, to have a tea”, as it is described in the

Supplement, page 299. I do not consider that poem as a part of this

Book, but the poem and figure 22.1 explains, why the most of figures

in this Book are generated as the direct EPS graphics from the C++

programs.

I do not describe in this book algorithms suggested after year 2015, al-

though such algorithms should appear in future. One of them is expected

to be presented by William Paulsen [93].

I do not include into this Book the codes of the programs (figure 22.1

is an exception), used for evaluation of functions and plotting graphics.

The algorithms are simple; any student, after a semester of program-

ming in any language, that supports the complex arithmetics, can easy

program the same, following the description from this Book. At figures,

I indicate the URLs, where the code is loaded.

Some results of this book can be reproduced with the Schröder equation

and the Schröder functions. In this Book, there is no detailed descrip-

tion of properties of the Schröder equation, nor analysis of the Schröder

functions; these functions are only mentioned. I could not construct

any example, that can be solved with Schröder functions, but cannot be

solved with superfunctions. Some properties of the Schröder equation

can be found at

http://mathworld.wolfram.com/SchroedersEquation.html and

https://en.wikipedia.org/wiki/Schroeder_equation

Preparing the results for the Book, I tried to refute each of the conjec-

tures suggested. In principle, it is possible. It is sufficient to construct

any example of a transfer function T such that the superfunction F ,

constructed by the methods, described in the Book, does not satisfy the

transfer equation (1.1). Or to construct two different superfunctions,

that satisfy the additional conditions, that are declared to provide the

uniqueness. My attempts to reject my claims failed. I could not find in

the literature any rejecting example, nor I could construct it by myself.

Only for this reason, the rejecting, refuting examples are not included

in the Book.

Many colleagues, as myself (since the childhood), prefer to watch pic-

tures in a book, rather than to read it. Therefore, I try to illustrate each

page with at least one figure. While, this goal is not yet achieved, but I

hope to approach it closer in the future editions.
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Chapter 2

Introduction

F (0)

T (F (0))=F (1)

Figure 2.1: Snowball of mass

F (0) gets mass T (F (0))=F (1)

after to roll once from the hill.

Iterates and Superfunctions arise naturally

at description of a sequence of similar trans-

formations of any quantity in a homoge-

neous physical system. This transform may

refer to accumulation of mass by a snow-

ball, that rolls down the hill, covered with sticky snow (Fig. 2.1). This

may be attenuation of a shock wave in one of the successive sections of

automobile muffler. The transform may refer to change of intensity of

light, passing one section of a laser amplifier or a saturable absorber. I

hope, the Reader can suggest more examples of this kind.

Let the state of the system before the transformation be described with

parameter x, and, after transformation - with parameter y; and let these

two quantities be related with y = T (x). Then, function T is called

“transfer function”. It describes the transformation of the signal in the

system.

System, that performs the transformation, can be called “filter”. Trans-

formation of signal x in a filter with transfer function T can illustrated

with expression

x→ filter → y= T (x) [frame1] (2.1)

Output of one filter can be directed to the input of another identical

filter. This can be expressed with

x→ filter → T (x)→ filter → T (T (x)) [frame2] (2.2)

One can write the similar expressions for combination of 3 filters and so

on. In these notations, the number of filters combined is supposed to

be a positive integer. The main idea of this Book is, that the number

of filters has no need to be integer. In this chapter, the notations are

suggested to describe this.
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1 Use of superscript

From the point of view of physics, every iterate describes some combina-

tion of identical filters. Let each filter be characterised with the transfer

function T . If we have signal z at the input, then, at the output, the

signal is T (z).

As it is mentioned in the Preamble of this chapter, the output of a filter

can be directed to another similar filter, and the transfer function of the

resulting combination can be expressed with

T (T (z)) = T 2(z) [IntroT2] (2.3)

In the right hand side of equation (2.3), the notation with superscript

is used. I am not first to suggest this notation; Walter Bergweiler had

used such a notation in the past century [26]. If there is superscript at

name of some function, and the expression in this superscript can be

interpreted as a number, then it is number of the iterate. The zeroth

iterate of a function is supposed to be identical function (its value is the

same as value of its argument):

T 0(z) = z (2.4)

First iterate of some function T is the same function T , and the minus

first iteration corresponds to the inverse function. For example, at the

sinusoidal transfer function T =sin, we have

sin−1(z) = arcsin(z) (2.5)

sin0(z) = z (2.6)

sin1(z) = sin(z) (2.7)

sin2(z) = sin(sin(z)) (2.8)

sin3(z) = sin(sin(sin(z))) (2.9)

and so on. In some textbooks, the notation is used (but not declared),

when expression sina(z) has sense of sin(z)a. Such a notation leads

to confusions: at a = −1, expression sina(z) might mean
1

sin(z)
; but,

according to another commonly used notations for the inverse function,

it should mean sin−1(z)=arcsin(z).

In such a way, in this Book, the expression in the upper superscript at

the name of a function is interpreted as number of iterate. However,

if the superscript is just “prime”, almost vertical stick, it indicates the

derivative; for example, sin′=cos; it is also usual notation.
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f0 T (f0) T 2(f0) T 3(f0)

filter filter filter −→
zF (0) F (1)

F (z)
F (2)

F (z+1)
F (3)

Figure 2.2: Combination of filters, each of them has transfer function T

2 Transfer equation

The use of the superscript allows to illustrate expressions (2.1) and (2.2)

with figure 2.2. The figure shows the combination of identical filters

with transfer function T each. I assume T to be some given, known

holomorphic function. The range of holomorphism is supposed to be

wide enough, to cover the needs of the following consideration.

At the left hand side of figure 2.2, in at the entry to the first filter, let

the signal is characterised with some fixed value f0. Then, after to pass

the filter, it becomes T (f0); after to pass the second filter, it becomes

T 2(f0)=T (T (f0)), and so on. These quantities are specified above the

vertical bars, that mark the end on one filter and beginning of the next

filter.

The notation can be even shortened, to count number of passes of the

filter. Let f0 be F (0); let T (f0) be F (1); let T 2(f0) be F (2), and so

on. In such a way, function F of non-negative integer argument can be

defined.

Now I need the strong assumption. Let the filters, inside, are uniform,

and act as some kind of continuous homogeneous nonlinear medium, that

transfers the signal by some fixed (although, may be, not yet known)

way; but, after to pass each section of the combined filter, the signal is

transformed with known transfer function T .

We may consider coordinate z along this combined filter, and treat it as

a continuous medium. It is convenient to choose the length of a single

filter as a unit to measure the coordinate along the combined amplifier.

Then, F (z) may have sense of signal at coordinate z; for integer values

of z, values of function F (z) are already known. The question is, how

to define, determine, evaluate function F for non-integer values of z.

If for some non-integer position z, for example, between zero and unity,

the signal is F (z), then, in the uniform medium, after a pass length
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unity along the composed filter, the signal should be transformed with

the same transfer function T . This can be expressed with the transfer

equation (1.1) mentioned in the Prologue. I repeat this equation:

F (z+1) = T (F (z)) [introeq] (2.10)

The transfer equation (2.10) specifies, how does the value of function F

changes, while its argument gets the unity increment. In such a way,

figure 2.2 indicates the physical meaning of the main equation in this

Book; the figure suggests the physical implementation of the transfer

equation (2.10).

3 Values of the argument

In this Book, I assume, that the signal, transferred through the filter,

is characterised by a single number, real or complex. In principle, term

“transfer function” allows generalisation to the multidimensional case;

then the transfer function appears as a functional, and its argument

may have sense of a vector or a function. As it is mentioned in the Pref-

ace, here I consider only the case of a single variable: it happened, that

even the single-dimensional case causes a lot of confusions at the inter-

net forums and discussions. It is methodically-incorrect, to develop the

multidimensional generalisations, while the colleagues have doubts even

in the single-dimensional case. According to the definition of science

[67, 100] in the Prologue, first, the results bout the single-dimensional

case should be presented, that still refute the commonly accepted point

of view, that the recovery of the signal inside a homogeneous system

from its transfer function is not possible [71, 72, 74, 75].

One of objections refers to the multitude of solutions. Consideration of

complex values of argument of the transfer function allows to reduce the

class of possible solutions (and sometimes even provides the uniqueness

of the solution). In such a way, consideration of complex argument is

more important, than analysis of some multidimensional signal. For

this reason, in this Book, I assume, that the argument of the transfer

function is a complex number. Also, I assume, that the transfer function

is holomorphic, at least at some vicinity of some part of the real axis.

23



4 Nest

Figure 2.3: Nest

For iterates of functions, in algorithmic language Math-

ematica, there is special routine Nest. It requires 3 ar-

guments. The first one indicates the name of function

that should be iterated. The second argument indicates

the initial value at the iterates. The third (and last) argument specifies

the number of iterate. The call looks as follows:

Nest[f, x, z] (2.11)

In Mathematica, the arguments of a function appear in squared paren-

thesis; and expression (2.11) means f z(x). (However, term “Nest” may

have also different meaning, as it is shown in figure 2.3.)

At least until year 2017, the implementation of Nest requires, that the

last argument can be simplified to a positive integer constant. Even 0th

and minus first iterates are prohibited. Perhaps, the designer assumed,

that only the integer number of iterate may have sense and meaning.

Actually, the non-integer iterates do have sense, as it is mentioned in

the preamble of this chapter. One more example is considered in the

next section.

5 Fibre amplifier

This section describes the example, that shows the sense of the non-

integer iterates. This example refers to the fibre amplifier. I type “fibre”

in order to indicate, that the signal is confined in two directions, and

only the power in the fibre as function of the coordinate along it is

subject of consideration. A lot of physical effects are dropped out in

this consideration: change of the spectral content of the signal, self-

peaking, spontaneous emission, etc.. So, I consider here the simplest

case, but for this model I want to get the exact solution.

Assume, some Manufacturer gives to some Physicist a piece of one meter

long of the optical fibre amplifier, together with the system of pumping,

and asks the Physicist to investigate, how the power of light inside grows

during the amplification, but Manufacturer does not allow Physicist to

cut the fibre to measure, what is inside. Physicist knows the only, that

the fibre is uniformly pumped. We may assume, that some system of

lateral delivery of pump is used [32, 33, 34, 41].
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Physicist can measure the transfer function T of this fibre. With this

transfer function, Physicist can say, what should be the transfer function

of similar piece of fibre of length 2 meter. Assuming, that the source

of pump is delivered together with each piece of the fibre, the transfer

function of the piece of two meter is T 2; that of the 3 meter piece should

be T 3 and so on; if z pieces of the fibre are combined, then, the transfer

function is T z.

Iterates T z are pretty clear, while z is integer. But how about non-

integer values? For example, what is transfer function to the piece of

half meter long?

As it is mentioned in the previous section, in Mathematica, the transfer

function of piece of z meter length could be expressed with T z(x) =

Nest[T, x, z]. Unfortunately, such an expression is not yet interpreted

correctly at non-integer z.

How to express the non-integer iteration of a given transfer function?

These question can be analyzed with the transfer equation (2.10). The

preliminary analysis is suggested in the next section.

6 Transfer equation and the Abel equation

Through this book, the transfer equation (1.1),(2.10) is repeated (and

used) again and again, and, in particular, here:

F (z+1) = T
(
F (z)

)
[transfereq] (2.12)

I remind, that T denotes the transfer function, z may have sense of

coordinate along direction of propagation of some signal, and function

F expresses dependence of the signal on this coordinate. (However,

coordinate z may have also any other meaning.)

In Laser Science, term “signal” denotes the wave (light), that is ampli-

fied; even if no information is transferred with this light. In this book,

the length is measured in units of the length of the amplifier. The gen-

eralisation for the arbitrary units is straight-forward.

For given transfer function T , solution F of the transfer equation (2.12)

is called “superfunction”. The inverse function G=F−1 is called “Abel

function” or “abelfunction” for the same transfer function T . The abel-

function G satisfies the Abel equation

G(T (z)) = G(z) + 1 [abeleq] (2.13)
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Equations (2.12) and (2.13) can be deduced from each other other by

the change of variable. Just replace z to F (z) in equation (2.13) and

apply function F to both side of the resulting equation. The Readers

are united to make this exercise or to look for it at some Wikipedia [96].

I hope, the Soviet veterans, that remove articles about the USSR, will

be stopped before they begin to vandalise the Abel equation.

Assume, that the superfunction F and the abelfunction G are somehow

constructed. This gives key to the iterate T z of the transfer function,

and the number z of the iteratie has no need to be integer. This iterate

can be expressed as follows:

T z(x) = F (z +G(x)) [Tzx] (2.14)

In order to show an example of application of formula (2.14), return to

the story about Manufacturer and Physicist from the previous section.

Assume, the Physicist has found the physically-meaningful solution F

of the transfer equation (2.12), and has constructed the inverse function,

id est, abelfunction G=F−1. Then, Physicist can express the transfer

function F of the amplifier of arbitrary length z by formula (2.14).

For transfer function T , its superfunction F and the abelfunction G

appear as two sponges of a wrench for some screw, as a tool, that allows

to rotate the screw for any rational angle.

7 Multiplicity of solutions

Solution F of equation (2.12) is not unique. One can reduce multitude

to solution, specifying its value at zero (or at any other point the Reader

likes); id est, choose some number F0 and add the requirement that

F (0) = F0 [f0] (2.15)

In many cases, the constant F0 does not affect the shape of iterates of

the transfer function; transform

F̃ (z) = F (z+x0) , G̃(z) = G(z)−x0 [zo] (2.16)

for some x0 and substitution F→ F̃ , G→ G̃ into equation (2.14) gives

the same iterate, as the initial F , G do.

However, even after addition of requirement (2.15), the solution is not

unique. If F is solution, superfunction, then another solution (another
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superfunction) can be constructed with

f̃(z) = F
(
z + θ(z)

)
[tif] (2.17)

where θ is periodic holomorphic function with period unity. At θ(0)=0,

even condition (2.15) is preserved.

The different superfunctions F , with their abelfunctions G=F−1, give

different iterates of the transfer function T . For this reason, one may

think, that the non-integer iterates of a function have no meaning. In

particular, in century 20, the colleagues had believed, that the half iter-

ation of factorial, denoted with
√

! =Factorial1/2, has no meaning.

Figure 2.4:
√

! as emblema

Function
√
! is especialy interesting, because

since 1950, it is used as logo of the Physics

Department of the Moscow State University

[36]. That logo is shown in figure 2.4, bor-

rowed from the Russian article [37]. Only in

2009, the physical and mathematical mean-

ing of this iterate and this logo had been re-

ported [62], when the apparatus of superfunc-

tions had been constructed. The uniqueness of

the superfunction of factorial (and, therefore, that of the half iterate of

factorial) is provided by the additional requirement of holomorphism and

behaviour at infinity: transformation (2.17) reduces the range of holo-

morphism of superfunction and that of the reconstructed non-initeger

iterates.

The problem of evaluation of non-integer iterate in some physically-

meaningful way arises not only at the phenomenological consideration

of an idealised amplifier. Similar problem appears at the analysis of

stability of jets; in the simple (single-dimensional) approximation, the

appearance and disappearance of instability by the Pomeau-Manneville

scenario [19, 53] can be described with some specific quadratic transfer

function. Similar equation arise at the analysis of stability of attractors

[20]. At least for the single-dimensional models, one can construct abel-

function and superfunction [69], and, hence, the non-integer iterates of

the transfer function.

Observation of similarities in construction of superfunctions allows to

formulate the problems about superfunctions and the goal of this Book.

This is suggested in the next section.

27





Chapter 3

Examples of superfunctions

Before to calculate the superfunctions and abelfunctions for transfer

functions of general kind, it worth to see the cases, when the superfinc-

tion and the abelfunction can be easy expressed in terms of already

known special functions. These examples are considered in this chapter.

It can be considered as continuation of the Inroduction: the most of

functions mentioned here are known since the school course of algebra.

Superfunction F for the transfer function T is solution to the transfer

equation (2.12); I repeat it here:

F (z + 1) = T (F (z))

In the next section, several known solutions are presented in Table 3.1.

Then, in the following sections and chapters, these functions are consid-

ered with more details.

1 Table of superfunctions

There is analogy between the table of superfunctions and tables of in-

tegrals. In both cases, the direct operation is, in certain sense, more

difficult, than the inverse operation. If one knows the indefinite integral

of some function, and this integral is expressed in terms of elementary

functions in a compact form (the writing fits the width of the column

of the table), then, one can calculate the integrand with known rules

of differentiation. In the similar way, if the superfunction F and the

abelfunction G=F−1 are known, the transfer function can be expressed

with

T (z) = F (1 +G(z))

One of ways to built-in the table of integrals is the building of table

of derivatives. One takes any short combination of basic elementary
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Table 3.1: Examples of superfunctions f : T (z) = f
(
1 + g(z)

)
T (z) f(z) g(z) = f−1(z) comment

1 c c

2 z+1 b+ z z − b b ∈ C

3 b+ z bz + c (z − c)/b b �= 0

4 bz + c bz + c
1−b logb

(
z − c

1−b
)

b �=0, b �= 1, [86]

5 bz tetb(z) ateb(z) [54, 61, 79]

6 zb exp(bz) logb
(
ln(z)

)
(4.19), b>0, b �=−1

7 −a2/z a tan
(π
2
z
) 2

π
arctan(z/a) a > 0

8
z

c+ z

1− c

1− cz
logc

(
1− 1− c

z

)
c �= 0 , c �= 1

9
z

1 + z
1/z 1/z f=g; T n(z)= z

1+nz

10 ln(b+ez) ln(bz) ez/b b �= 0

11 (ab+zb)1/b az1/b (z/a)b a>0, b �=0

12 2z
√
1−z2 sin(π2z) log2

(
arcsin(z)/π

)
13 2z

√
1+z2 sinh(2z) log2

(
ln

(
z +

√
z2+1

)
/π

)
14 2z2 − 1 cos(π2z) log2(arccos(z))

15 2z2 − 1 cosh(π2z) log2
(
ln

(
z +

√
z2−1

)
/π

)
16 2z/(1−z2) tan(2z) log2(arctan(z))

17 2z/(1+z2) tanh(2z) log2

(
2 ln

(
z+1

z−1

))

18 Factorial(z) SuFac(z) AuFac(z) (8.11), (8.19); [65]

19 b z (1−z) LogisticSequenceb(z) LogisticSequence−1b (z) (7.8), (7.19); [69]

20 Doyat(z) Tania(tz) (z + ln(z)− 1)/t (5.11), (5.3)

21 Kellert(z) Shoka(tz) ArcShoka(z)/t (5.14), (5.18)

22 sin(z) SuSin(tz) AuSin(z)/t (12.8), [91]

23 zex(z)=z exp(z) SuZex(tz) AuZex(z)/t (11.1) [88]

24 tra(z)=z+ez SuTra(tz) AuTra(z)/t (20.1) [88]

P (T (Q(z))) P (f(z)) g(Q(z)) P (Q(z))=z
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functions and differentiates it. If the result can be simplified to fit the

width of the column of the table, then it is declared as “function that

can be analytically integrated”.

In the similar way. one can deal with superfunctions. Any elementary

function f , for which the inverse function g=f−1 also can be expressed

as elementary function, can be taken as an example. Then, expression

t(z) = f(1 + g(z)) [tfg] (3.1)

should be considered. Sometimes, after simplification, this expression

fits the width of the column of the table. Then, this t can be declared as

“transfer function, for which the superfunction can be expressed analyt-

ically”, id est, also in terms of special functions. So, this f is declared as

its superfunction, and g is declared as corresponding abelfunction. The

most of table 3.1 is built-up in such a way.

Not all transfer functions can be expressed as elementary functions, and

not all superfunctions can be expressed through special functions. And

not all abelfunctions. In this Book, I describe methods, how to deal

with these cases. In general, any holomorphic function can be treated

as transfer function, and the only edges of the range of holomorphism

may limit the construction of the corresponding superfunction and the

abelfunction. If the superfunction and the abelfunction are constructed,

supplied with the specific names, described and implemented, they can

be treated as a special functions. I call any function as “special function”,

if (and only if) the properties are revealed, described and the algorithm

of the precise evaluation is supplied.

Aiming the application in physics (and, perhaps, in other sciences), I

am interested, first, in those functions, that can be evaluated quickly.

These functions can be used to construct new functions, and used to

describe various phenomena. One can use them in the similar way, as

one use other special functions (sin, bessel, erfc, etc.) These functions

appear in the Table 3.1 with names; I supply also the number of formula

or the cite, to indicate, where the function is described, where can one

find the algorithm for the evaluation.

Table 3.1 appears as the basic toolbox for evaluation of non-integer

iteration. In the following chapters, I describe, how the non-trivial su-

perfunctions from the table can be constructed and evaluated. However,

first, it worths to check properties of elementary superfunctions.

31



2 Construction of elementary superfunctions

As it is mentioned above, searching for elementary superfunctions, it
worth to begin not with a transfer function, but with the superfunc-
tion and the abelfunction, applying formula (3.1). As an example, I
show, how the 12th line of the Table 3.1 can be verified in language
Mathematica:
f[z_] = Sin[Pi 2^z]

g[z_] = Log[ArcSin[z]/Pi]/Log[2]

f[g[z]]

T[z_]=2 z Sqrt[1 - z^2]

Simplify[T[z] - f[1 + g[z]]]

In Mathematica, the argument of function should appear in squared
brackets. No other trick, specific for Mathematica, is used; the verifica-
tion can be performed in other languages too.

Table 3.1 collects only the simplest (already described) superfunctions,
They can be modified, using the last row of the Table. Any pair of
mutually inverse functions P and Q determines the transform, that can
be applied to any of previous rows, giving the new transfer function with
corresponding superfunction and abelfunction.

The scaling transform relates the quadratic transfer function at raws
14 and 15 of the table with logistic operator (also quadratic transfer
function) in raw 19, while parameter b = 4; in this case, the logistic
sequence is expressed with elementary function and its generalisation
to the non-integer values of the argument is trivial [69]. However, the
superfunciton can be constructed also for other values of b; with these
superfunctions, the iterates dan be calculated. This case is considered
below in chapter 7.

A special case of transformation of superfunction is displacement of its
argument for a constant. In some cases, it is difficult to recognise this
shift. For example, superfunctions in 14th and 15th rows of the table
correspond to the same transfer function T (z)=2z2−1; these superfunc-
tion are related with translation of the argument for constant iπ ln(2)/2.
Similar relations take place also for other superfunctions. For superfunc-
tions of expb for 1<b<exp(1/e) discussed in [61], this case is mentioned
in Chapter 9.

I invite the Reader to add some new raws to the table, following the
trick above: choose some special function f , for which g = f−1 is also
implemented, and try to simplify t, determined by equation (3.1).

This chapter only declares the superfunctions. Some elementary super-
functions are considered with more details in the next chapter.
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Chapter 4

Elementary superfunctions

Figure 4.1: M. Joudain:

These forty years now,

I’ve been speaking in prose

without knowing it! [2]

In order to use superfunctions, described in

this chapter, the Reader has no need to know,

that they are superfunctions. In the similar

way, during 40 years, Joudrain has no need to

know, that he speak in prose [2]. However,

many properties of elementary superfunctions

are the same, as properties of other, nontrivial

superfunctions, that cannot be easily expressed

through elementary functions. In order to show

these properties, in this chapter I consider ele-

mentary superfunctions.

I would not like the colleagues to say, that the

formalism of superfunctions is too complicated

[75]. So I begin with very simple example, with

linear function.

1 Iteration of linear function

Consider the linear transfer function

T (z) = A+Bz [TABz] (4.1)

where A and B are constants. For A=1, B=2 , iterates of this function

are shown in figure 4.2. Graphic y=T n(x) is plotted versus x for various

values of the number n of the iterate.

The nth iterate of function T can be written as follows:

T n(z) = A
Bn − 1

B − 1
+Bnz [TABzn] (4.2)
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Figure 4.2: Iterates of linear function (4.1) at A=1, B=2 ; y= T n(x)

versus x for various n [itelin125]

This representation is used to plot figure 4.2. The graphics are straight

lines. They cross at the point (L,L) of the coordinate plane. The fixed

point L is determined by the equation A+BL = L, that gives

L = A/(1− B) [Llin] (4.3)

AtB→1, the fixed point runs to infinity, and the graphics in the analogy

of figure 4.2 become parallel. For A=1, B=2 , this is case of figure 4.2,

we get value L=−1; so, lines in figure 4.2 cross in point (−1,−1).
Representation (4.2) can be obtained with the general formula (2.14)

with superfunction

F (z) = A
1− Bz

1− B
[FTABz] (4.4)
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and abelfunction

G(z) = logb

(
1 +

B − 1

A
z
)

[GTABz] (4.5)

In the special case B=1, the transfer function has no fixed points and

representations (4.2), (4.4), (4.5) cannot be used. For this case, id est,

for T (z) = A+z, superfunctions and abelfunctions can be written as

follows:

F (z) = Az , G(z) = z/A (4.6)

Their combination gives

T n(z) = F (1 +G(z)) = A (n+ z/A) = An+ z [Anz] (4.7)

Those, who still think, that the formalism is too complicated [75], are in-

vited to check the deduction above and verify, that this case corresponds

to the level of a junior high school.

Figure 4.3: Mathematician uses

sledgehammer to crack a nut

To iterate the linear function (4.1), the

use of superfunction (4.4) and abelfunc-

tion (4.5) can be qualified with term

“use sledgehammer to crac a nut”, as it

is shown in figure 4.3. However, this ex-

ample is important: it is simple and it

shows, how the superfunction and abel-

function can be used together to express

iterates with formula (4.7).

2 Rational function

The linear fraction, or “rational function” can be considered as general-

isation of the linear function. Let

T (z) =
U + V z

W + z
[Tuvwz] (4.8)

where U , V and W are constant parameters. First, as an example,

consider function

T (z) = −1/z [Tzm1z] (4.9)

This example corresponds to U =−1, V = 0, W = 0 in formula (4.8).

Negative value of U is chosen in order to have positive derivative at the
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Figure 4.4: u+iv=T (x+iy) = 1/(x+iy) [f1xmap]

positive values of the argument; iterates of a growing function are easy to

interpret in terms of modelling of physical process. Iterates of decreasing

function, contrary, imply dealing with complex values. I am interested

mainly in the applications for physics; so, I consider mainly the growing

transfer functions and growing real-holomorphic superfunctions.

Compex map of function T by equation (4.9) is shown in figure 4.4.

For this function, the levels of constant real part and levels of constant

imaginary part are circles, and all these circles pass through the origin

of coordinates.

For real values of the argument, iterates of function T by (4.9) are shown

in figure 4.5. Lines y=T n(x) are plotted versus x for various values of

n. Below I describe, how these iterates are calculated.

For transfer function T by (4.9), the superfunction F and abelfunction
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Figure 4.5: y=T n(x) for T (z)=−1/z by formulа (4.12) at various n

G can be written as follows:

F (z) = tan
(π
2
z
)

(4.10)

G(z) = F−1(z) =
2

π
arctan (z) (4.11)

Then, the nth iterate of the transfer function T n(z) = F (n+G(z))
appears to be

T n(z) =
−1− cot

(π
2
n
)
z

− cot
(π
2
n
)
+ z

[linfrac1ite] (4.12)

This case is represented in row 7 of table 3.1. Expiression (4.12) is used

to plot figure 4.5.
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Figure 4.6: y = tn(x) by (4.13) at c = 0.5 [c05]

Consider one more special case of formula (4.8). Let

t(z) =
z

c+ z
[tzcz] (4.13)

where c is constant. Then

tn(z) =
z

cn +
1−cn

1−c
z

[tnzc] (4.14)

Iterates of function t for c=0.5 are shown in figure 4.6. The same for

c=1 are shown in figure 4.7, and the same for c=2 are shown in figure

4.8. Below I show, how these iterates are evaluated.

For the transfer function t by (4.13), superfunction f can be written as
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Figure 4.7: y= tn(x) by (4.13) at c=1 [c10]

follows:

f(z) =
c− 1

cz − c
[fzfrac] (4.15)

Corresponding Abel function g = f−1 is

g(z) = logc

(
1 +

c−1

z

)
[gzfrac] (4.16)

Expressions (4.15) and (4.16) are used to evaluate tn(z) = f(n+G(z))

and plot figures, in particular, figures 4.6, 4.7 and 4.8. The Reader is

invited to plot iterates of function t by formula (4.15) at other values of

c too.
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Figure 4.8: y= tn(x) by (4.13) at c=2 [c20]

The iterates of the rational function of real argument show the smooth

transition from function t to the identity function and then to inverse

function t−1. All the curves in figures 4.6, 4.7 and 4.8 pass through the

fixed point. This value is mapped to itself at the iterates of the transfer

function. This property is not specific feature of the rational function.

Other functions, considered on the following chapters, have the same

property.

For construction and uniqueness of superfunctions in the following sec-

tions, it is important to consider them in the complex plane. The com-

plex maps help to understand properties of these functions. Following
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Figure 4.9: u+iv = f(x+iy) by (4.15) at c=2 [fzfracmap]

the idea to begin with simple examples, I suggest the complex maps

of superfunction f and abelfunction g. For c= 2, the complex map of

superfunction f by formula (4.15) is shown in figure 4.9. Similar map

of the Abel function g is shown in figure 4.10.

Function f by formula (4.15) is periodic; its period

P = 2πi/ ln(c) (4.17)

At c=2, this period P =2πi/ ln(2)≈9.06472 i. Vertical size of figure 4.9

covers a little bit more that two periods of this function. For real c, the

period is pure imaginary; the map reproduces itself at the translations

for integer factor of |P | along the imaginary axis.

The inverse function g= f−1 is expressed by formula (4.16). It is Abel
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Figure 4.10: u+iv = g(x+iy)by (4.16) at c=2 [gzfracmap]

function for the transfer function t. Abelfunction g is shown with its

complex map in figure 4.10 for the same value of parameter, c= 2, as

function f in figure 4.9

Function g has two branch points, c−1 and zero. For real c, the cut

line between these two points belongs to the real axis. Equilnes are

symmetric with respect to reflections from line 	(x) = (c−1)/2.

With superfunction f and abelfunction g by formulas (4.15) and (4.16),

iterates of the transfer function t can be written as usually,

tn(z) = f(n+ g(z)) [tnzfg] (4.18)

The readers are invited to check, that this representation agree with

expression (4.14). It is better to do this exercise for the simple. Then it

will be easier to reproduce the similar exercises for other superfunctions

in the following sections.
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Figure 4.11: u+iv = T (x+iy) = (x+iy)2, by (4.19) for a=2 [z2itmap]

3 Power function and its iterates

Figure 4.12: Superpower

Consider the power function

T (z) = Powa(z) = za [Pow] (4.19)

For a=2, the map of function T is shown in figure

4.11. Here, I suggest the superfunction of the power

function, id est, the superpower function. (However,

term “superpower” may have also other meaning, as

it is shown in figure 4.12, but such a meaning is not used in this Book).

Consider iterates of the power function T by (4.19), they can be written
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Figure 4.13: y=T n(x)=Pow2
n(x) для различных n. [IterPowPlot]

as follows:

T n(z) = Powa
n(z) = za

n

= Powa

(
Powa

(
...Powa(z)..

))
︸ ︷︷ ︸

n evaluations of function Powa

(4.20)

Figure 4.13 shows T n by formula (4.20) for a=2 at various n. Iterates

of the power function can be expressed also with the general formula,

T n(x) = F
(
n+G(x)

)
[againTc] (4.21)

where F is superfunction of the transfer function T and G=F−1 is the

abelfunction.

For the power function, the superfunction (id est, the superpower func-
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tion) can be written as follows:

F (z) = exp
(
exp(ln(a) z)

)
= exp2

(
ln(a) z

)
[powF](4.22)

Inverting this representation, one can get the abelfunction; id est, the

“abelpower” function,

G(z) = ln
(
ln(z)

)
/ ln(a) = ln2(z)/ ln(a) [powG] (4.23)

These formulas correspond to the 6th row of table 3.1.

For the transfer function T by (4.19), iteration (10.16) can be simplified,

T n(z) = exp2
(
ln(a)

(
n+ ln2(z)/ ln(a)

))
= za

n

[zbc](4.24)

leading to the 3d expression in equation (4.20).

In such a way, iterates of the transfer function T by (4.19) appear to be

function of the similar kind (also power function). I invite the Reader to

plot the complex maps of superpower function F by (4.22), abelpower

function G by (4.23) and iterates of power function by (4.24).

For T (z)=za, the simple relations take place:

T (zb) = T (z)b [fnz1] (4.25)

At b=a=2, in addition, the following relation hakes place:

T b(z) = T (z)b [fnz2] (4.26)

There is common confusion (the wrong public opinion), that some sim-

ple equivalents of relations (4.25), (4.26) should take place for other

values of b and for other functions too. In particular, one of critics of

the publication about half iteration of factorial [62] had insisted, that

Factorial1/2(z) = Factorial(z)1/2, and I was not successful explaining,

that it is not the case, even if notation
√
Factorial = Factorial1/2 is used.

The factorial is considered in this Book in the Chapter 8. However, be-

fore to deal with factorial, I would like to consider simple example. The

power function is one of the simple examples. I invite the Reader to

check, that even for a= 3, relation (4.26) is not valid (except of some

specific values of z).

Having the explicit representation, one can calculate all the iterates nec-

essary, including the non-integer iterates. But not so many elementary

functions are inverse of some other elementary functions, Perhaps, it

is better to refer to special functions. The simple example of the non-

elementary function is considerd in the next chapter.
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Chapter 5

Tania and Shoka

y
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−3 −2 −1 0 1 2 3 x

y=
Sh
ok
a(
x)

y=
Ta
nia

(x)

http://mizugadro.mydns.jp/t/index.php/File:ShokotaniaT.png

Figure 5.1: Functions Tania and Shoka by (5.1) and (5.2) [shokataniaplot]

This chapter considers functions, that have applications in laser science.

I call them Tania and Shoka. For some vicinity of the real axis, these

functions can be defined as follows:

Shoka(z) = z + ln(e−z+e−1) [shoka0] (5.1)

Tania(z) = WrightOmega(z+1) [Tania0] (5.2)

At |
(z)| ≥ π, function WrightOmega(z) behaves in a way I dislike.

To avoid confusions, for the function I like, I use name Tania. Below I

define functions Shoka and Tania for the complex argument. However,

the representations (5.1) and (5.2) are sufficient to plot Shoka and Tania

in figure 5.1.

This chapter retells the contents of articles [84, 85]. This chapter should

be especially important for the narrow specialists, who works in the laser

science.
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Figure 5.2: Complex map of function Tania, u+iv=Tania(x+iy) [TaniaMap]

1 Tania and Arctania

Let function Tania be solution f of the differential equation

f ′(z) =
f(z)

1 + f(z)
[taniaprim] (5.3)

with additional condition f(0)=1, where contour of integration of (5.3)

for f(z) goes first from zero to imaginary part of z along the imaginary

axis, and then, along the line, parallel to the real axis, goes to point z.

Figure 5.1 shows function Tania of real argument. For moderate values

of imaginary part of the argument, solution f=Tania of equation (5.3)

is expressed through the special function WrightOmega with equation

(5.2). Complex map of function Tania is shown in figure 5.2.
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Figure 5.3: u+iv=ArcTania(x+iy) [ArcTaniaMap]

For real values of argument, Tania is positive and grows monotonously.

Toward the negative values of the argument, Tania decays exponentially.

At zero, Tania grows with tangent 1/2. At large positive values of the

argument, Tania grows in a way, similar to the linear function with

tangent unity.

Function Tania, shown in figure 5.2, has two branch points, −2 ± iπ.

The cut lines are directed parallel to the real axis toward its negative

direction; they are determined by specification of path of integration of

equation (5.3).

Complex map of the inverse function, id est, ArcTania = Tania−1 is
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shown in figure 5.3. It can be expressed as elementary function,

ArcTania(z) = z + ln(z)− 1 [ArcTaniaz] (5.4)

There are no complex constants in the representations of functions Tania

and Arctania; these functions are real-holomorphic:

Tania(z∗) = Tania(z)∗ , ArcTania(z∗) = ArcTania(z)∗ (5.5)

Functions Tania and ArcTania look similar to the linear function at large

values of the argument; the lines of levels of constant real part and those

of constant imaginary part form almost rectangular grid. Functions

ArcTania also have almost linear asymptotic.

The almost linear asymptotic behaviour of Tania(z) at large |z| 
 1

holds for the most of the complex plane, except the strip 	(z) < 0,

|
(z)| ≤ π. In the strip |
(z)|<π, at 	(z)→−∞, function Tania(z)

decays exponentially, this agrees with graphic of this function for real

argument at figure 5.1.

For moderate values of the imaginary part of the argument, function

Tania can be expressed through the known special functionWrightOmega

[12, 115] with equation (5.2). In particular, one has no need to make

any difference between Tania(z) and WrightOmega(z+1) for real z.

For the efficient evaluation of Tania, its asymptotic expansions can be

used. The whole complex plane can be covered with these expansions.

At large values of the argument, Tania can be expanded as follows:

Tania(z) = z + 1−ln(z) +
ln(z)−1

z
+

ln(z)2−4 ln(z)+3

2z2
+ .. (5.6)

The effective small parameter of the expansion (5.6) is ln(z)/z. For

negative values of 	(z), this expansion is valid while |
(z)|>π However,

this representation does not work between the cut lines at figure 5.2. For

the representation of Tania in this half-strip, I define the new variable

ε = exp(1+z); then Tania can be expanded as follows:

Tania(z) = ε− ε2 +
3

2
ε3 − 8

3
ε4 +

125

24
ε5 +O(ε6) (5.7)

The expansions above are not good for the moderate values of the argu-

ment, and especially poor is the approximation in vicinity of the branch

points. For the branch point, the following expansion takes place:

Tania(z) = −1 + 3t− 3t2 +
3

4
t3 +

3

10
t4 +

9

160
t5 + .. (5.8)
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where t = i

√
2

9

(
z+2−πi

)
.

In addition, one may use the Taylor expansion at zero:

Tania(z) = 1 +
z

2
+

z2

16
− z3

192
− z4

3072
+

13z5

61440
− 47z6

1474560
+ .. (5.9)

With the representations above, for every point of the complex plane,

for Tania(z), one can get the “zeroth” approximation, let it be called s0,

with few correct significant figures. Then, in order to get the maximal

precision for the “complex double” variable, it is sufficient to make three

or four iterations by the Newton method

sn+1 = sn +
z − ArcTania(sn)

ArcTania′(sn)
[ssTania] (5.10)

where ArcTania′(z)= 1+1/z is derivative of ArcTania. I remind that,

ArcTania by equation (5.4) is ementary function. In such a way, Tania

can be evaluated quickly and precisely. The C++ implementation of

function Tania with this algorithm for “complex double” variables is

loaded as http://mizugadro.mydns.jp/t/index.php/Tania.cin

Function Tania is simpler than function WrightOmega. If necessary,

Tania can be used to evaluate WrightOmega.

Function Tania has simple physical meaning. It represents dependence

of intensity of light on the length of its propagation in laser with simple

model of the active medium. The argument has sense of coordinate mea-

sured in units of the inverse increment of the low signal. The returned

value has sense of intensity, measured in the units of saturation.

Figure 5.4:

V.Doya [116]

In this Book, function Tania is used many times. In this

chapter, Tania appears as superfunction of the special

function Doya, considered in the nest section. I use the

trick, mentioned in the chapter 3: First, I choose super-

function, id est, Tania, and then, I construct the transfer

function for it; I call this transfer function “Doya”. I am

grateful to Valérie Doya (Figure 5.4), she kindly allowed

to use her name for the function, that appeared during

our collaboration at Nice in 2010.
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Figure 5.5: u+iv=Doya(x+iy), left, and u+iv=Doya−1(x+iy), at right

2 Transfer function Doya

Functions Tania and ArcTania from the previous section allow to build-

up the “solvable” transfer function. I call it Doya,

T (z) = Doya(z) = Tania
(
1 + ArcTania(z)

)
[Doya] (5.11)

Complex map of function Doya, and also map of its inverse function

ArcDoya = Doya−1 are shown in figure 5.5. At large values of the

argument, each of these functions looks similar to identity function, but

they have the branch points and cuts in the central part of the maps.

While functions Tania and ArcTania are already implemented, the eval-

uation of function Doya is straightforward. In addition, in vicinity of

the real axis, Doya can be expressed through the known special function

LambertW [111]:

Doya(z) = LambertW
(
z ez+1

)
[DoyaLambertW] (5.12)

According to definition (5.11), Tania is superfunction of Doya, and Arc-

Tania is its abelfunction. The nth iterate of Doya can be written as

follows:

Doyan(z) = Tania
(
n+ArcTania(z)

)
[DT] (5.13)
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Figure 5.6: y=Doyan(x) по формуле (5.13) [doyaplo]

These iterates are shown in figure 5.6. The graphics represent y =

Doyan(x) versus x for various values of the number n of iterate.

As it is mentioned above, function Tania has simple physical sense; it

describes evolution of a signal in a simple model of a uniform saturable

amplifier (or absorber) at the appropriate choice of units of length and

units of intensity. Similar sense can be given to function Doya, it ap-

pears as dependence to the output intensity of this amplifier on its input

intensity [84, 85].

Functions Doya, Tania and ArcTania give an example, when the transfer

function, the superfunction and the abelfunction can be expressed in

terms of special functions, already described in the literature of 20th

century. In the following section, one more example of this kind is

considered.
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Figure 5.7: u+v = Keller(x+iy) by (5.14). [KellerMap]

3 Keller, Shoka and ArcShoka

Wave packet of light (or any other quasi–classical bosons) in a uniform

amplifier can be characterised with its energy or its fluence; this quantity

can be denoted as “signal”. Roughly, fluence is energy of pulse per area

of its transversal cross-section. In analogy with the continuous-wave

amplifier, the signal at the output of the amplifier can be considered

as function of the input; and this dependence can be interpreted as the

transfer function of the amplifier. For the simple model of the active

medium, this function can be expressed as elementary function. Com-

plex map of this function is down in figure 5.7; I call it “Keller function”

and define it as follows:
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Figure 5.8: u+v = ArcKeller(x+iy) by (5.16). [ArcKellerMap]

Keller(z) = z + ln
(
e− e−z(e− 1)

)
[KellerDef] (5.14)

Complex map of this function is shown in figure 5.7.

The inverse function ArcKeller = Keller−1 can be written as follows:

ArcKeller(z) = z + ln

(
1

e
+

e−1

e
e−z

)
[ArcKellerDef] (5.15)

Complex map of function ArcKeller is shown in Figure 5.8. Maps of

functions Keller and ArcKeller look similar; the following relation takes

place:

ArcKeller(z) = Keller(z − iπ − 1)− 1 + iπ (5.16)
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Figure 5.11: y=Kellern(x) . [kellerite]

Complex maps of functions Shoka and ArcShoka are shown in figures

5.12 and 5.13. These maps look similar to those for functions Tania and

ArcTania shown in figures 5.2 and 5.3.

For real values of the argument, functions Tania and Shoka are compared

in figure 5.1 mentioned in the preamble of this chapter. Both functions

in the left hand side of the graphic have the exponential growth with

increment unity; both pass thorough point (0,1) and both grow almost

linearly in the right hand side of the graphics.

Complex maps of functions Shoka and ArcShoka in figures 5.12 and 5.13

look similar. One of them can be obtained from another with constant

displacement of the argument and addition of some constant to its value.

This can be expressed with relation

ArcShoka(z) = Shoka
(
z − iπ − ln(e−1)

)
− ln(e−1) + iπ (5.20)
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Figure 5.12: u+iv=Shoka(x+iy) [ShokaMap]

In vicinity of the positive part of the real axis, the map of function

Shoka in figure 5.12 looks similar to the map of function Tania at Figure

5.2. However, I cannot suggest any simple expression of function Tania

through function Arctania. I know no analogy of formula (5.20) for

functions Tania and ArcTania.

There are also qualitative differences between Tania and Shoka. Tania

had only two branch points, and correspondently, two cut lines. Shoka

has countable set of branch points and cuts.

All the six functions Tania, ArcTania, Doya, Shoka, ArcShoka and Keller

look similar to the linear function at the large values of the real part of

the argument. The right hand side of the complex maps in figures 5.2,

5.3, 5.5, 5.12 5.13, 5.7, the structure of levels of constant real part and
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as http://mizugadro.mydns.jp/t/index.php/File:Doya500.png .

The Reader is invited to check that values of the 3 parameters, indi-

cated above, provide the structure, shown in figure 5.14. The range of

the almost linear transfer appears above the “head” of the contour of the

“human” in the figure.

Similarity of the transfer functions Doya and Keller and, correspon-

dently, similarity of their superfunctions Tania and Shoka indicate, that

for analysis of the nonlinear media, these functions should be measured

with several significant figures; over-vice, the measurement will not allow

to make choice between divergent models. At the convenient measure-

ment of the nonlinear response of the medium, variation of the intensity

in a sample should be small: over-vice, it is difficult to guess, namely

which intensity does the gain or absorption correspond to. At small

variation of the intensity, the precision of its measurement is poor. This

difficulty can be avoided with superfunctions. The transfer function

of the optically-thick sample should be measured, and then, the su-

perfunction, id est, the evolution of intensity inside the sample can be

reconstructed. In such a way, the number of parameters of the model,

can be reduced: one of parameters, namely, the length of the amplifier,

can be excluded from the model.

My particular interest in superfunctions is related to the ability of the

precise measurement of the gain (or absorption) in the nonlinear medium

versus intensity. The application may refer to investigation of limits of

validity of the commonly-used model of the Yb-doped crystals, glasses

and ceramics. The new effects are expected to appear at the edge of the

limit of applicability. One of such effects is described in the article about

switching of emissivity of Yb-doped samples, or the “Bisson effect” [48],

but namely in that case, the main mechanism of the phenomenon seems

to have thermal origin: the sample warms, and this warming enhances

the absorption (and heating), leading to the avalanche behaviour, that is

difficult to interpret in terms of the transfer function of a single variable,

considered in this Book 1 .

1The name “bisson effect” or ‘bison effect” refers to the analogy of the avalanche of the tribe of

running bisons, who awake, mock and force to run the new and new bisons. However the analogy

is limited, because the electrons, that were expected to be popped up into the conduction band,

are neither bisons, nor even bosons, but fermions.
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4 Overview

The six functions, (Tania, Shoka, ArcTania, ArcShoka, Doya and Keller)

are defined in this chapter. These functions show the realistic exam-

ples, the physically-meaningful transfer functions and the corresponding

meaningful superfunctions are expressed in terms of elementary func-

tions. These example will be used in this book later, to illustrate more

general methods of construction and evaluation of superfunctions.

My main claim is that I can construct the superfunction, abelfunction

and, therefore, the non-integer iterates of any growing real-holomorphic

function 2. Even more, everybody, after to read this Book, also can do

the same.

In the following chapters, I consider methods, that can be used for var-

ious transfer functions, even if the superfunction cannot be expressed

through the special functions known since century 20. One of these

cases is considered in the next chapter.

2With the same methods, the non-real, but still holomorphic functions also can be treated; such

an example is considered in chapter 18.
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Chapter 6

Regular iteration

Regular iteration is way to construct iterates of the transfer function,

that are regular in vicinity of its fixed point. The transfer function is

supposed to be holomorphic. In the most of examples, considered in

this Book, the transfer function is assumed to be also real-holomorphic.

In addition, in this chapter, I assume, that the fixed point is real. 1

This Book deals with solutions F of the transfer equation (2.12); I repeat

it here

F (z+1) = T
(
F (z)

)
Assume, that the transfer function T is real-holomorphic, and its fixed

point L is real, id est,

T (L) = L , L = L∗ (6.1)

In addition, I assume, that T ′(L)>0, this case is easier to interpret 2 .

For this case, In this chapter, the specific iterates of the transfer function

are constructed, that can be expanded into convergent Taylor series at

least in vicinity of the fixed point L. In this sense, they are regular.

On the other hand, the iterates are constructed with definite iteration

procedure, described below, in a regular straightforward way. Hence,

there are at least two independent reasons to use name “regular iteration”

for the procedure below.

1The same regular iteration can be applied also for the case of non-real fixed point, but the

resulting iterates of the transfer function are not real-holomorphic. The real-holomorphic functions

often are easier to interpret (and to apply in Physics), than the more general complex case. This

Book is planned as applied, so, the most of examples here refer to the real-holomorphic functions.
2Assumption T ′(L)>0 is natural. Case T ′(L)<0 is difficult to interpret in terms of real valued

non-integer iterates, because, Tn′(L) should approach unity at n→0, but, for realistic cases, should

avoid zero. Practically, this means that the non-integer iterates are complex, not real, as in the

case T ′(L)>0

61



1 General formula

Assume that L is fixed point of the transfer function T , id est, T (L) = L.

For the transfer equation (2.12), I search for the asymptotic solution F

in the following form:

F̃ (z) = L+ ε+ a2ε
2 + a2ε

3 + .. [Lea2general] (6.2)

where

ε = exp(kz) [Lea2] (6.3)

Here, k is constant, that bas sense of the increment, and a refer to some

set of real constants, that do not depend on z. As it is indicated in the

Preamble of this chapter, I keep in mind the case when T (z∗) = T (z)∗

и F (z∗) = F (z)∗; however, in principle, the expansion (6.3) can be used

for more complicated case too (and in this case the coefficients a should

be complex).

The consideration could be generalised, adding new terms in to the right

hand side equation (6.2), for example, terms, that are not polynomial

with respect to ε. Following my wishes about the popularity 3, below I

consider the simplest (but still non-trivial) case.

Substituting F → F̃ into the transfer equation (2.12), which is

F (z + 1) = T (F (z))

in the left hand side I get the following

F̃ (z+1) = L+ ekε+ a2e
2kε2 + a3e

3kε3 + .. [iteraz1] (6.4)

and the right hand side gives

T (F̃ (z)) = L+ T ′ · ε+ T ′ · a2ε2 + T ′ · a3ε3 + ..

+
T ′′

2
(ε+a2ε

2+..)2 +
T ′′′

6
(ε+..)3 + .. [i2] (6.5)

where T ′ = T ′(L), T ′′ = T ′′(L), T ′′′ = T ′′′(L), .. are derivatives of the
transfer function T at the fixed point L.

coefficients at the same power of ε in expression (6.4) and in expression

(6.5) should be equal. This gives the equations for increment k and

coefficients a:

ek = T ′ (6.6)

e2ka2 = T ′a2 + T ′′/2 (6.7)

e3ka3 = T ′a3 + T ′′a2 + T ′′′/6 (6.8)

..

3Here, the term “pipuliqrity” may have each of the two its meanings
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The chain of these equations determines

k = ln(T ′) [k38] (6.9)

a2 =
T ′′/2

(T ′ − 1)T ′
[a2.39] (6.10)

a3 =
T ′′a2 + T ′′′/6

((T ′)2 − 1)T ′
[a2.40] (6.11)

..

Typically, for a simple special function T , the Mathematica, the Maple

or any similar software allow to evaluate tens of coefficients a in real

time.4 The truncated series in representation (6.2) provides good ap-

procimation for F at ε � 1. For positive values k, this corresponds to
the large negative values of 	(z). For other values, the approximation

can be improved with

F (z) ≈ T n
(
F̃ (z − n)

)
[regi] (6.12)

for the large enough positive values of n at positive k, and for the large

enough negative values of n at negative k. Case k = 0 is qualified

as exotic and is considered below in the special chapter about exotic

iterates.

In may cases, representation (6.12) allows to evaluate the superfunc-

tion with the required precision. In particular, this allows to evaluate

the super exponentials to base b < exp(1/e) [61], superfactorial [65],

and holomorphic extension of the logistic sequence [69], and even the

holomorphic extension of the Collatz subsequence [110]. Some of these

examples are considered in the following chapters.

I call this case “regular iteration”, as the iteration by (2.14), id est,

T n(z) = F
(
n+F−1(z)

)
is holomorphic (“regular”) function in vicinity of

the stationary point z=L. For real fixed point L, I expect, namely reg-

ular iteration corresponds to the physically-meaningful solution F of the

transfer equation (2.12). This statement can be qualified as conjecture.

Following the TORI axioms, I tried to negate, refute this conjecture,

but I got confirmations instead. These confirmations, examples form

the significant part of this Book.

4My experience indicates, that, for applications, the evaluation of all quantities in real time is

so important, as the real holomorphism of the functions. In such a way, I try to be realistic, dealing

with real quantities in the real time. However, even for the real-holomorphic superfunctions, their

behaviour at complex values of argument is important and should be considered; but even in this

case I try to keep algorithms short and fast, to make evaluations in the real time.
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2 Exact solution

The approximate equality in expression (6.12) should not make an im-

pression, that the regular iteration gives only approximation of the su-

perfunction.5 For the case of 	(k)>0 (or, in particular, for k>0), the
exact superfunction can be expressed with limit

F (z) = lim
n→∞

T̃ n
(
Fm(z − n)

)
[regitexa] (6.13)

where

Fm = L+ ε+
m∑
�=2

anε
n (6.14)

and k, ε and coefficients a are defined in the previous section; while

m ≥ 2 is some integer number. Due to the asymptotic properties of

the solution F̃ , the limit in expression (6.13) does not depend on m.

However, the convergence is faster for larger m. Similar limit can be

written for the case 	(k)<0.

The series (6.3) can be inverted, giving the asymptotic approximation

G̃ of the abelfunction G = F−1. Then, the exact abelfunction can be

expressed with

G(z) = lim
n→∞

ln

(
1

k
G̃m(T

−n(z))

)
+ n (6.15)

where G̃m is some truncation of the asymptotic expansion for the abel-

function. The iterate of the transfer function, T n(z) = F (n + G(z))
happen to be regular in vicinity of z = L. In the following chapters,

this statement is verified for many specific realisations of the transfer

function T .

Before to apply the regular iteration to the new transfer functions, for

which the superfunctions cannot be easy expressed through the super-

functions, known in century 20, it worth to check the method for some

easy function, for which the answer is known. First, I use the method of

regular iteration to construct the superfunction for the transfer function

Doya, considered in the previous chapter. I do it, as if I would not know

that its superfunction is Tania. This regular iteration is considered in

the next section, and compared to the exact solution Tania.

5 One of my coauthors, until now, believes, that even π is approximate number. This can be

considered as a kind of a mental illness, as well as some kind of religion.. However, if for any given

α > 0, the error of evaluation of some quantity can be done smaller, than α, then the quantity

is considered as exact. Then, we may consider the spu time and number of flops required to get

some given precision of the approximate evaluation of superfunction F in (6.12).
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3 Example with known solution: again Doya
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Figure 6.1: Function Doya and its

polynomial approximations

In this section, I show, how does the

regular iteration work. I use the ex-

ample with transfer function Doya, de-

scribed in the previous chapter. For real

value of argument, graphic of this func-

tion is shown in figure 6.1 with thick

curve.

For transfer function T = Doya, the

superfunction is known, it is function

F =Tania, and the corresponding abel-

function is G=ArcTania. Properties of

thiese function are described in publica-

tions [85, 106, 107] and in the previous

chapter. But, in order to check the reg-

ular iteration, assume for a minute, that

we do not know the analytic expression

for the superfunction, and want to con-

struct it with the regular iterations described above. After to construct

it, we may compare the result with the special function Tania.

Let the transfer function, at least in some vicinity of the real values of

the argument, can be expressed with formula (5.12), I repeat it here:

T (z) = Doya(z) = LambertW(1+z ez) [doya1] (6.16)

Properties of function LambertW are known [111, 112, 113, 114]. This

function can be used even without to refer to function Tania; this emu-

lates situation, when the superfunction F is not known.

Graphic of function Doya is shown in figure 6.1 with thick curve. This

transfer function describes some idealised amplifier with saturation, ne-

glecting the spontaneous emission (and many other physical effects). In

this case, the fixed point L = 0 should be considered; T (0) = 0. At

small intensity at the input, the amplification coefficient is e, but it sat-

urates at the intensity of order of unity. For small argument, the transfer

function can be expanded as follows:

T (z) = Doya(z) = e z − e (e−1)z2 +O(z2) [DoyaExpa](6.17)

In this case, T ′(0)=e and T ′′(0)=−2e(e−1). The corresponding linear

and quadratic approximations are shown in figure 6.1 with thin lines.
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Figure 6.2: Superfunction F =Tania and its approximations F̃ by (6.12) for n=0..4

For regular iteration of transfer function Doya, using formulas (6.9) and

(6.10), I found k=1 and a2=−1. In such a way, the primary approxi-

mation with singe term is

F̃ (z) = exp(z) [refitF1] (6.18)

and the primary approximation with two terms is

F̃ (z) = exp(z)− exp(2z) [refitF2] (6.19)

These two primary approximations are shown in figure 6.2 with up-

pest and lowest curves. At the same figure, the four iterations of these

primary approximations by (6.12) are shown for n=0..4. These approx-

imations approach the exact solution

F (z) = Tania(z−1) = WrightOmega(z) (6.20)

This function F is shown in figure 6.2 with thick line. It remains between

approximations obtained with iterate from the primary approximation

F̃ with single term, id est, (6.18) and those with tho terms by (6.19).

Example with the transfer function Doya shows the efficiency of the

regular iteration. In the following chapters, the regular iteration is used

also for other transfer functions; I mean, for the cases, when the su-

perfunction cannot be easy expressed in terms of the special functions,

known in century 20.
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4 Schröder equation

E.Schröder
Figure 6.3:

For the regular iteration, instead of superfunctions (pre-
sented in this Book), another formalism can be used, namely,
the formalism of the Schroeder (Schröder) functions; they
are called after Ernest Schröder, shown in figure 6.3, and
described many years ago [11, 27].

Let transfer function T be real-holomorphic, and let L=0 be its fixed
point. The generalization to the case of other values of L is straight-
forward, so, here I consider only case L = 0. Let S = T ′(0). The
schröderfunction is solution g of the Schröder equation

g(T (z)) = S g(z) [schroederEq] (6.21)

where s is some constant. Usually, it is assumed that T (0) = 0, id
est, zero is fixed point of the transfer function T . One can search for
solutions in the asymptotic form (6.21)

g(z) =
∞∑
p=1

ap z
p [schroederexpa] (6.22)

where coefficients a are constants, id est, do not depend on z. Usually,
the series in the right hand side of (6.22) diverges, but this representa-
tion can be used for approximation of g at small values of |z|. Then,
any required precision can be achieved, applying the Schroeder equation
(6.21) or its inverse

g(z) = S g
(
T−1(z)

)
[schroederEr] (6.23)

looking, what is smaller, |T (z)| or |T−1(z)|. This method is especially
explicit for a real-holomorphic transfer function T , that monotonously
grows along the real axis.

In certain parti f the complex plane, the abelfunction G can be ex-
piressed through the Schroeder function g:

G(z) = logS(g(z)) [shroederabel] (6.24)

Taking logarithm to base S of the both sides of equation (6.21), I get

G(T (z)) = 1 +G(z) [analo] (6.25)

this equation is just Abel equation for the same transfer function T .

In the similar way one can express the analogy of superfunction. It can
be called “scaling function” or even “scalingfunction”. As examples of the
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Figure 6.4: u+iv = Olga(x+iy) by (6.26)

Schroeder functions and the scaling functions, figure 6.4 and 6.5 show
complex maps of functions Olga and Anka. They are Schroeder function
and the scaling function for the transfer function T = Doya, considered
in chapter 5 and in the previous section.

The Schroeder function Olga can be expressed through function Tania:

Olga(z) = Tania
(
ln(z)

)
[olga] (6.26)

The Scaling function Anka can be expressed through the ArcTania:

Anka(z) = exp
(
ArcTania(z)

)
[anka] (6.27)

For the transfer function Doya, the scaling factor S = e; so, the natu-
ral logarithm and the natural exponent appear in equations (6.26) and
(6.27). Definitions (6.26) and (6.27) imply, that olga=anka−1.
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Figure 6.5: u+iv = Anka(x+iy) by (6.27)

In this section, I use the example, when some dependences can be ex-
pressed in terms of elementary functions. In particular, this refers to
function ArcTania by equation (5.4); in the most of the complex plane
(except the negative part of the real axis), ArcTania(z) = z+ln(z)−1.
Then, function Anka can be expressed as follows

Anka(z) =
z

e
exp(z) [ankae] (6.28)

Functions Anka and Olga satisfy the scaling equation

Doya(Anka(z)) = Anka(e z) (6.29)

and the Schroeder equation

Olga(Doya(z)) = eOlga(z) (6.30)
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The Reader is invited to investigate the ranges of validity of equations

Olga(Anka(z)) = z (6.31)

Anka(Olga(z)) = z (6.32)

In wide range, that includes the positive part of the real axis, iterates
of function T = Doya can be expressed through its scaling function
f=Anka and Schröder function g = Olga = Anka−1=ArcAnka :

T n = f(Sn g(z)) [Tnfg] (6.33)

for some appropriate constant S. Readera are invited to check, that
formula (6.33) gives the same iterates, as the expression through the
superfunction F =Tania and Abel function G=ArcTania

T n = F (n+G(z)) [TnFG] (6.34)

While the real-holomorphic transfer function T has real fixed point L
with the scaling factor S, and this fixed point is used to construct the
superfunction F and the scalingfunction f , formulas (6.33) and (6.34)
are equivalent. Several examples from this book, considered with super-
functions and abelfunctions, can be treated also with scalingfunctions
and schroöderfunctions.

Relation (6.34) is more general than (6.33). Here I announce few cases,
when the Schroeder functions fail.

If T ′(L) = 1, then the scaling factor S becomes unity, and expression
(6.24) fails. In particular, this is case of T (z)=exp(z/e), case of T (z)=
zex(z)=z exp(z), and that for T (z)=sin(z), see Table 3.1.

The transfer function T may have no real fixed points, as it takes place
for T =exp.

In addition, it may happen, that the transfer function T has no fixed
points at all, as it takes place for T (z)=tra(z)=z+exp(z).

Iterates of these functions T are straightforward with the superfunctions
and abelfunctions. These examples are mentioned in the Table 3.1 and
considered in the following chapters of this Book. However, these cases
are difficult to treat with the scalingfunctions and the schroederfunc-
tions, if at al. The Schroeder functions, if they can be applied, do not
give any new in compare to use of the superfunctions. For this reason,
this Book is dedicated to superfunctions and abelfunctions, and not to
schroederfunctions.

I hope, the example above is sufficient to feel relation between Abelfunc-
tions and Schroederfunctions. On this point I stop speculations about
the Schroeder functions, Schroeder equations, Scaling equations, and
scaling functions, and return to superfunctions. Superfunctions for the
specific quadratic transfer function are considered in the next chapter.

70



Chapter 7

Logistic map

Figure 7.1:

P.V.Elutin

Term “Logistic map” 1 may refer to the quadratic transfer

function

T (z) = Elus(z) = s z (1−z) [logisticop] (7.1)

Usually, parameter s is assumed to be a real number. Term

“map” is used also in the context of the “complex map”, and

this may cause confusions. For this reason I give this func-

tion name Elus. The thee characters of the name are taken from the

last name of Pawel Elutin (see Figure 7.1), my teacher of Quantum Me-

chanics. He asked me to construct the analytic extension of iterates of

function T by (7.1) in the private communication [58]. In such a way,

this chapter could be called also “Elutin function”. Here I present some

results of publication [69] that appeared as the answer on the request

by Elutin.

Historically, iterates of another transfer function had been considered

before the iterates of the Elutin function. I mean, iterates of factorial

[65]. The request to do the same of the logistic map appeared as result of

the publication about the half iterate of factorial. In this Book, I do not

follow the history; first, I describe the superfunction, abelfunction and

iterates of the logistic map, or iterates of the Elutin function by (7.1);

these iterates seem to be simpler than those for the factorial. For various

values of parameter s, iterates of Elus are shown in figure 7.2. In order

to plot this figure, I use the specific superfuction and the corresponding

abelfunction. I describe them in this chapter.

The logistic sequence is solution F of the logistic equation

F (z+1) = Elus(F (z)) [LOGEQ] (7.2)

1http://en.wikipedia.org/wiki/Logistic_map
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Figure 7.2: Iterates of the Elutin function (7.1): y=Elun
s (x) for s=3, left; for s=4,

center; for s=5, right; curves for n=1, n=0.8, n=0.5, n=0.2 are drawn.

Equation (7.2) is, actually, the transfer equation (2.12), with the Elutin

function (logistic map) Elus by (7.1) as the transfer function T . In order

to define the sequence, the initial value F (0) should be specified.

In publications about the logistic equation (7.2) with transfer function

(7.1), the argument of function F is assumed to be an integer number

[25, 29, 31, 56]. For integer argument of the solution F of equation (7.2),

the solution catches some properties of transition of the physical systems

to chaos [55, 22, 21]. Iterates of the transfer function T by (7.1) appear

as a rough description of the stochastic physical systems, as a simple,

heuristic approach for the problems of hydro- and aero- dynamics, and

also the transition regime of the stochastic lasers, in vicinity of the single-

mode regime of generation. Here I consider the holomorphic extension

of the logistic sequence for not only integer, but complex values of the

argument.

1 Logistic sequence

Iterates of the Elutin function (logistic map) T = Elus by (7.1), as

functions of real argument, are shown in figure 7.2 for s=3 (left picture)

s=4 (central picture) and s=5 (right picture); y=Elun
s (x) is plotted

versus x for n=0.2, n=0.5, n=0.8 and n=1. All the graphics in figure

7.2 are plotted with the same formula

Eluns (z) = F (n+G(z)) [ite] (7.3)
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Figure 7.3: Pavs(x) by formulas (7.4),(6.12), (7.8) for s = 3, s = 3.4,

s=3.8, at the top picture, and for s=3.9, s=4, s=4.1, bottom. [logi56]

where F is specific superfunction, solution of equation (7.2), and G=

F−1 is the inverse function (id est, abelfunction of Elus). Superfunction

F appears as holomorphic extension of the logistic sequence [69]. Su-

perfunction F can be constructed with the regular iteration, described

in the previous chapter. This construction is described below.

At the construction of a superfunction, the key question is about the

fixed points of the transfer function. For transfer function T =Elu by

(7.1), equation Elus(z) = z has two solutions, z = 0 and z = 1−1/s.

First of these solutions does not depend on s. This solution is used for

construction and evaluation of the “holomorphic extension of the logistic

sequence”, id est, the specific solution F = Pavs of equation 7.2, shown

in figure 7.3 below. Then I can construct the inverse function G = F−1,

which is the corresponding abelfunction. These F and G allow to plot

figure 7.2 by formula (7.3). Construction of these functions is described

in the next section.

2 Fixed point L=0

For the Elutin transfer function by (7.1), with the regular iteration at

the fixed point L=0, I construct the superfunction F = Pavs. Graphics

y=Pavs(x) are shown in figures 7.3 for different s. The complex maps

are shown in figures 7.4, 7.5, 7.6. Below I describe the construction and

evaluation of this superfunction.
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Figure 7.4: u+iv=Pav3(x+iy) by (7.8) [logi2c3]

I need some name to denote superfunction for the transfer function Eluz;

For this superfunction, I suggest name “Pav”. In this name, I use first

2.5 characters of the first name Pawel of my teacher (who had asked me

to construct this function; half of letter w appears as v). First three

characters of his last name Elutin are already used below to denote the

quadratic function (7.1), known also as “logistic map”. My excuse for

defining of the new name is the following: the “logistic map”, as it is

called in the literature, is not actually map in the common sense of

this word; it is holomorphic function; and the similar note refers to the

so-called “logistic sequence”. So, I use term “Elutin function” insteat

of “logistic map”, in the context of this book, it is holomorhic function

rather than a map.
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Figure 7.5: u+iv=Pav4(x+iy) by (7.8) [logi2c4]

In order to define function Pavs, first, I construct its asymptotic. For

the fixed point L= 0, in the expansion (6.2), increment k= log s, and

the expansion parameter ε=sz; This gives the primary expansion of the

superfunction

F̃ (z) =
N−1∑
n=1

ans
nz +O(sNz) [as] (7.4)

For the representation (6.2), I set also a1 = 1. Variation of this pa-

rameter causes only the displacement of the argument of the resulting

superfunction; this does not affect the iterates of the transfer function
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Figure 7.6: u+iv=Pav5(x+iy) by (7.8) [logi2c5]

Elus. Expressions (6.10) determine the coefficients a. In particular,

a2 =
1

1−s
[logia2] (7.5)

a3 =
2

(1−s)(1−s2)
[logia3] (7.6)

a4 =
5 + s

(1−s)(1−s2)(1− s3)
[logia4] (7.7)

The primary representation F̃ (z) by (7.4) allows the accurate (precise)

evaluation of F (z) at large negative values of 	(z). Then, the continual
extension of the logistic sequence, shown in figure 7.3, appears as limit

F (z) = Pavs(z) = lim
n→∞

Elu n
s

(
F̃ (z−n)

)
[logilim] (7.8)
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For real argument, graphics of superfunction F = Pavs are shown in

figure 7.3 for s= 3, s= 3.4, s= 3.8 at the top picture and for s= 3.9,

s = 4, s = 4.1 at the bottom picture. For s = 3, s = 4 and s = 5, the

complex maps of function F = Pavs are shown in figures 7.4, 7.5, 7.6

announced above.

While s < 3.5 (id est, does not exceed the “Pomequ-Mannevill con-

stants” [69, 19, 53] ), the logistic sequence F (as for integer values of the

argument, as for the real values) shows pretty boring and regular oscil-

lations. At larger values of s, at the argument grows, the oscillations

become dense. Observation of F (n) =Pavs(n) at the integer values of

n make an impression of quasi-random sequence. While s≤ 4, at real

x, function F (x) oscillates within segment [0,1], and only at s = 4 it

touches the borders of this segment. At s> 4, the function has “gaps”;

they become deeper and deeper at the increase of the argument x or

parameter s.

At s=4, the holomorphic extensiion Fs=Pavs of the logistic sequence

can be represented as the elementary function,

Pav4(z) = (1− cos(2z))/2 [logicos] (7.9)

The curve, corresponding to s= 4 at figure 7.3, could be plotted even

without the regular iteration; the same applies to map at figure 7.5.

At consideration of the holomorphic extension of the logistic sequence

in the complex plane, its behaviour is regular. However, at large s,

the oscillations become more and more dense with the increase of the

argument.

Superfunction Fs, built with regular iteration at the fixed point L=0,

is entire and periodic. The period is pure imaginary (for real s):

P = 2πi/ ln(s) [logiperiod] (7.10)

This periodicity is seen in figures 7.4, 7.5, 7.6: The isolines are repro-

duced with the corresponding translations along the imaginary axis. A

little bit more than one period fit the height of the map in figures 7.4,

7.5, 7.6.

With holomorphic extension of the logistic sequence, id est, superfunc-

tion Pavs, one can construct the non-integer iterates of the logistic

map, id est, iterate the Elutin function Elus by (7.1); in particular,

the half iterate of this transfer function can be constructed. However,

for this, the inverse function is also required, I mean, the abelfunction

Gs=ArcPavs=Pav−1s .
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Figure 7.7: u+iv = ArcPav3(x+iy) [logi2d3]

The complex maps of the abalfunction ArcPavs are shown in figures 7.7,

7.8, 7.9 for s=3, s=4 and s=3. This abelfunction is described in the

next section.

3 Abelfunction for the Elutin function

This section describes the Abel function of the Elutin function Elus by

(7.1). I call this function ArcPavs. It is inverse function of function

Pavs by (7.8), described in the previous section.

Function G=Gs=ArvPavs=Pav−1s satisfies the Abel equation

Gs(Elus(z)) = Gs(z) + 1 [GT] (7.11)
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Figure 7.8: u+iv = ArcPav4(x+iy). [logi2d4]

This equation is the same as (2.13), the only additional subscript s

is gaffed to indicate the parameter in the transfer function T = Pavs.

Complex maps of functionGs are shown in figures 7.7, 7.8, 7.9 for various

values of s. This section describes evaluation of this function.

The asymptotic expansion G̃ for abelfunction G can be found with in-

version of expansion (7.4) for superfunction F ; it has the following form:

G̃(z) = logs

(
N−1∑
n=1

Cnz
n +O(zN)

)
[GC] (7.12)

In the software Mathematica, there is special procedure InverseSeries

for such inversions.

Coefficients C in equation (7.12) depend also on parameter s, but this
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Figure 7.9: u+iv = ArcPav5(x+iy). [logi2d5]

dependence is not indicated explicitly, in order to keep the expression

compact. The same coefficents can be found also substituting the ex-

pansion (7.12) into the Abel equation (7.11) with transfer function Elus
and equalising the coefficients at equal powers of z in the left and in the

right hand sides. In particular,

C1 = 1 (7.13)

C2 =
1

s− 1
(7.14)

C3 =
3s

(s− 1)(s2 − 1)
(7.15)

C3 =
(s2−5)s

(s−1)(s2−1)(s3−1)
(7.16)
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The truncated series of expansion (7.12) gives way to evaluate abefunc-

tion G at small values of the argument. At large values, the representa-

tion can be extended with

G(z) ≈ G̃(Elu−ns (z)) + n [Git] (7.17)

for some large enough integer n. The negative integer iterates of the

transfer function can be evaluated, using representation of the inverse

of the transfer function:

ArcElu−1s (z) = ArcElus(z) =
1

2
−

√
1

4
− z

s
(7.18)

Symbol “≈” in expression (7.17) should not make an impression, that

only the approximation of the Abel function is constructed. The exact

Abel function can be expressed through the limit

ArcPavs(z) = G(z) = lim
n→∞

(
G̃(Elu−ns (z)) + n

)
(7.19)

where symbol G̃s denotes the truncated series in the expansion (7.12).

This representation is used in generators of figures 7.7, 7.8, 7.9 . The

same representation is used to plot iterates of the transfer function in

figure 7.2. at s=3, s=4 and s=5.

Function ArcElus(z) by (7.18) has the branch point z = s/4. This

determines also the branch of the abelfunction ArcPavs and cuts in the

right hand sides of maps in figures 7.7, 7.8, 7.9 . The non-integer iterates

of the transfer fiunction, shown in figure 7.2, have the similar branching.

The half iterate is special case of the non-integer iterate; this case shown

in figures 7.10, 7.11, 7.12 and described in the next section.

4 Halfiteration of logistic operator

With superfunction Fs and abelfunction Gs = F−1s , iterates of the trans-

fer function Ts are expressed with formula (7.3). This representation is

used to generate figure 7.2. In particular, T 0.5
s by (7.3) is solution of the

problem, formulated by P.Elutin: The function hs is built as

hs=Elu0.5s [logih] (7.20)

such that its second iterate gives the logistic operator (7.1); id est, for

some range of values of z, the relation below holds:

h2(z) = h(h(z)) = T (z) = Elus(z) = s z (1−z) (7.21)
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Figure 7.10: u+iv = Elu
1/2
3 (x+iy). [logi2b3]

Complex maps of function hs are shown in figures 7.10, 7.11 and 7.12

for various values of parameter s. These maps look similar, because, at

large values of the argument z, the approximate relation takes place:

Elus(z) ≈ τ(z) = −s(−z)2 [lopbig] (7.22)

Iterates of function τ by (7.22) can be calculated in analogy with iterates

of the transfer function by (4.19).

The readers are invited to plot the superfunction and the abelfunction

for the transfer function τ . This can be done in analogy with the iterates

of the power function, presented in Table 3.1. In particular, the half

iterate can be written as follows:

τ 1/2(z) = −α(−z)
√
2 [logita] (7.23)
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Figure 7.11: u+iv = Elu0.54 (x+iy) [logi2b4]

where α = s1/(1+
√
2) is constant, and this constant depends on parameter

s slowly.

Figure 7.13 shows the map of function τ 1/2 by formula 7.23 at α = 1.8;

it should be compared to maps 7.10, 7.11 and 7.12 , that correspond to

various values of s. At large values x2+y2, the only quadratic term in the

expansion of the transfer function is important, and all the four maps

at figures 7.13, 7.10, 7.11 and 7.12 look similar. In order to make the

difference seen, these maps occupy all the width of the page available.

When the non-integer iterate of some function is constructed, it has

sense to check the results of iteration of this iterate. For the transfer

function Elus and its half iterate h=Elu0.5s , such a check, test is shown
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Figure 7.12: u+iv = Elu0.55 (x+iy) [logi2b5]

in figure 7.14. This figure shows the map pf function h2 for s=3, s=4

and s = 5, id est, for the same values of parameter, that are used in

figure 7.2.

In the left hand side of maps in figure 7.14, the second iterate of function

h coincides with the logistic mapping. The scratched lines show the limit

of applicability of relation (7.21).

Relation h(h(z)) = T (z) is valid at least for 	(z) < 1/2 . In such a

way, the holomorphic extension of the logistic sequence, and also the

corresponding non-integer iterates of the logistic operator correspond to

the intuitive expectations about these functions.

There is nothing specific in the half iterate of a function, while it is
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Figure 7.13: u+iv = −1.8(−(x+iy))
√
2

expressed through the superfunction and the abelfunction. It is just

non-integer iterate, while number n of iterate is 1/2. On the other

side, in the literature, the iteration half is often considered as something

magic; perhaps, because for iterate half of some transfer function, the

verification is especially simple; just iterate the halfiterate twice and see

the region, where the result coincide with the original transfer function.

Figure 7.14 appears as an example of such a verification.

Interest to iterate half, since the half iterate of factorial (
√

! ) [36, 37]

appears as a tradition. Namely iterate half is mentioned in the titles

of publications [10, 92]. So, I follow this tradition and analyse range of

validity of representation of a function through its iterate half.
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Figure 7.14: u+iv=h(h(x+iy)) by (7.20) for s=3, s=4 and s=5
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Figure 7.15: Superfunction Paw4(x) by (7.25),(6.12): explicit plot y=Paw4(x), top

picture, and complex map u+iv = Paw4(x+iy), bottom picture, by (7.28) [logi5ab4]

5 Another fixed point, L = 1− 1/s

Holomorphic extension Fs of the logistic sequence by formulas (7.4),(6.12)
is regular and periodic; the period Pa by (7.10) is pure imaginary and
slowly (as logarithm) depends on parameter s. This solution is not
unique. In analogy with the solution, that approaches the fixed point
L=0, one may construct other solutions, that approach the fixed point
L=1−1/s at minus infinity. Complex map of one of such solutions is
shown in figure 7.15; this superfunction is described in the is section.

The logistic operator, id est, the transfer function Ts by (7.1) has two
fixed points, L= 0 and L = 1 − 1/s. Consider the last of these fixed
points. By the general way of regular iterations, I construct the super-
function f , that approaches 1−1/s at minus infinity, as follows:

f̃(z) =
s− 1

s
+

N−1∑
n=1

dn

(
(s−2)z cos(πz + ϕ)

)n
[logina] (7.24)

f(z) = Paws(z) = F̃ (z) +O
(
(s−2)z cos(πz + ϕ)

)N
[L11s](7.25)

where d are real parameters and ϕ is real constant. Substitution of this
expansion into equation (2.12) gives the chain of equations for coeffi-
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cients d. As in the previous cases, I set d1 = 1; then

d2 =
−s

(s− 1)(s− 2)

d3 =
−s2

(s− 1)(s− 2)(s− 3)
[logid2] (7.26)

d4 =
−(s− 7)3 s3

(s− 2)(s− 3)(s3 − 8s2 + 22s− 21)

The truncated series gives the accurate approximation of function F (z),
while the effective parameter of expansion, id est (s−2)z cos(πz + ϕ) is
small. Truncation with 4 coefficients in (7.25) provides of order of 10
significant figures while

π|
(z)|+ln(s−2)	(z) < 4 (7.27)

The range of approximation can be extended with iterations (6.12); this
can be used both for definition and algorithm of precise evaluation of
the superfunction:

f(z) = Paws(z) = lim
n→∞

Elun
s (f̃(z−n)) [inoelim] (7.28)

I denote this function with Paws, in order to distinguish it from Pavs
in the previous sections; I hope, use of generic name F for different
superfunctions will not cause confusions. Representation (7.28) is used
to generate figure 7.15.

Superfunction Paws by (7.28) is asymptotically–periodic; the asymp-
totic period

P =
2π

ln(s−2) i + π
[logiquasiP] (7.29)

in the upped half plane and P ∗ in the lower half plane.

In contrast with superfunction Pavs, that is built up at the fixed point
zero, for superfunction Paws, the choice of the inverse function is not
straightforward. One needs to choose, which of the oscillations should
be used to return the value of function. For this reason I do not provide
the corresponding abelfunction here. The Reader is invited to construct
it according to own preferences.

Following the 6th of the TORI axioms, about the simplicity, I consider
the superfunction by (7.4),(7.8) as “principal”, because it seems to me
simpler than that by (7.24). For the logistic operator as transfer func-
tion, the regular iteration provides the regular superfunction; however,
superfunctions, constructed at different fixed points, may show pretty
different behaviour.
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Chapter 8

Factorial
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Figure 8.1: y=Factorial(x)

Factorial is holomorphic solution of

equation

Factorial(z+1) = z Factorial(z) (8.1)

Factorial can be expressed with

Factorial(z)=

∫ ∞

0

tze−t dt (8.2)

I use this notation instead of that with

with exclamation, Factorial(z) = z!,

in order to simplify indication of the

number of iterate in the upper super-

script.

Graphic y = Factorial(x) versus x is

shown in figure 8.1. At x>2, factorial

shows fast monotonous growth. At 0 < n < 1, the iterates Factorialn

should show the similar, but slower growth. These iterates are topic of

this chapter.

This chapter describes the superfunction of factorial, denoted below as

SuFac, and the Abel function, denoted as AuFac. Then, the iterates of

Factorial appear as

Factorialn(z) = SuFac
(
n+AuFac(z)

)
[faciterge] (8.3)

Below, I construct functions SuFac and AuFac and describe their prop-

erties. In this chapter, I retell the basic concept of publication in the

Moscow University Physics Bulletin, 2010 [65].
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1 Physics department

Iterates of factorial and its superfunction and abelfunctions had been

reported in 2010 [65], before iterates of the logistic map (Elutin func-

tion), described in the precious chapter. In this section I explain, why I

consider this function as important.

Past century, during the USSR, my teacher of Quantum Mechanics had

asked students to give the physical sense to the operator “square root

of factorial”. That sign was well known in the USSR as symbol of the

Physics Department of the Moscow State University shown in figure 2.4.

In analogy with other operators of Quantum Mechanics, “square root of

factorial” should be some function h such that its second iteration gives

factorial, h2=Factorial, id est,

h(h(z))=z! = Factorial(z) [hhzfac] (8.4)

One could guess, that this function should be real-holomorphic, growing

faster than any polynomial but slower than any exponential. That time

it was difficult (if at al), to evaluate such a function h: the formalism of

superfunctions had not yet been developed.

In principle, the Schroeder function and the scaling function could be

used to construct and evaluate the solution h of equation (8.4), instead

of superfunctions. That time, for students, dealing with Quantum Me-

chanics, it was difficult to guess, that for the square root of factorial,

the Schroeder (Schröder) equation should be used instead of the widely

known Schroedinger (Schrödinger) one 1. In addition, that time, no algo-

rithms for evaluation of the scaling function and the Schroeder function

were available.

After the successful evalation of tetration to base
√
2, reported in 2009

in journal Mathematics of Computation [61], the problem with iterates

of factorial (and, in particular, of the half iterate) happen to be pretty

solvable. The solution is published in the Moscow University Physics

Bulletin [65] and described below.

I feel, first I should remind the properties of factorial. This is matter of

the next section.

1Iterates of factorial and
√

! can be evaluated also with the scaling function f and the Schroeder

function g by (6.33)
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2 Factorial and its fixed points

For real argument, the explicit plot of factorial is shown in figure 8.1. I

extend a little bit that plot in figure 8.2, and I add some other related

functions. The complex map of factorial is shown in figure 8.3.
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Figure 8.2: Factorial and related functions for real argument [figfac]
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Figure 8.3: Complex map: u+iv = Factorial(x+iy) [facmap]

For construction of superfunction of any transfer function, there is im-

portant question about its fixed points. The fixed points of factorial

are solutions L of equation Factorial(L) = L . For real values of ar-

gument, the explicit plot of factorial is shown in figure 8.2 with thick

curve, y=Factorial(x). The fixed points correspond to intersections of

this curve with line y=x, also shown in the figure. For comparison, the

thin curves show functions Factorial−1 and z �→ Factorial(z)−1. These

curves are added in order to remind, that Factorialn(z), Factorial(zn)

and Factorial(z)n have pretty different meanings. Complex maps of

factorial and ArcFactorial are shown in figures 8.3 и 8.4.

I had found no C++ implementations of factorial and arcfactorial for

complex arguments in the literature. Mathematica software allows the

evaluation, but does it a little bit slowly; the Maple software happened

to be not better [51], see also the appendix, chapter 22, section 2.
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Figure 8.4: u+iv = ArcFactorial(x+iy) [arcfacmap]

For evaluation of superfunction and the abelfunction, the transfer func-

tion and/or its inverse should be evaluated many times, and the efficient

(quick and precise) implementation is important. For this reason, the

original “complex double” procedures for factorial and arcfactorial are

suggested and loaded as

http://mizugadro.mydns.jp/t/index.php/Fac.cin and

http://mizugadro.mydns.jp/t/index.php/Afacc.cin

These implementations are used to plot figures of this Chapter.

In figure 8.2, I show also line y = x and graphics y = Factorial−1(x)

and y = Factorial(x)−1. Some extremal points of factorial are shown;

the local minimum at point x=ν0 and local maximum at point x=ν1;

Values of factorial in these points are denoted as μ0 и μ1. Function

y = Factorial−1(x) has the branch point x= μ0, and ν0 is its value at

this point.
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3 Regular iteration for factorial

The asymptotic expansion of superffactorial can be written as follows:

F (z) = L+ exp(kx) + a2 exp(2kz) + a3 exp(3kz) + ..

= L+ ε+ a2ε
2 + a3ε

3 + .. [sufass] (8.5)

where ε = exp(kz), for some constant increment k and constant coeffi-
cients a According to the general formulas (6.9), (6.10), (6.11), substi-
tution of this expansion into the transfer equation

Factorial
(
F (z)

)
= F (z+1) [Tfac] (8.6)

gives the value of the increment. For Factorial’s fixed point L=2, I get

k = ln
(
3+2Factorial′(0)

)
= ln(3−2 γ) ≈ 0.61278745233070836 (8.7)

where γ = −Γ′(1) ≈ 0.5772156649 is Euer constant. I set a0 = 2 and
a1=1; then the partial sum in expansion (8.5) is easy to program. I get

a2 =
π2 + 6γ2 − 18γ + 6

12(3− 5γ + 2γ2)
≈ 0.798731835172434541585621 (8.8)

a3 =
(
− 36− 39π2 − 738γ2 + 324γ + 99π2γ − 60π2γ2 − π4 + 24γ5

+594γ3 − 120ζ(3)γ + 48ζ(3)γ2 + 12γ3π2 + 72ζ(3)− 204γ4
)
/(

144(−18 + 69γ − 104γ2 + 77γ3 − 28γ4 + 4γ5)
)

≈ 0.5778809754764832358038 (8.9)

In equation (8.9), the Riemann zeta-function appears, ζ(z) =
∞∑
n=1

1

nz
.

We need ζ(3)≈ 1.202056903 ; values of function ζ at other arguments
are not used for evaluation of coefficients a. Approximate values of
coefficients in expansion (8.5) are shown in table 8.1.

For factorial, the increment k > 0; expansion (8.5) gives good approxi-
mation F̃ (z) at −	(z)
 1. For other z, I use the integer iterates; the
superfunction

F (z) = lim
n→∞

Factorialn
(
F̃ (z−n)

)
[regufac] (8.10)

For 	(z)∼1, it is sufficient to iterate expression (8.10) only few times,
in order to get ε of order of 0.1 or less. Then, some 15 terms in the
expansion (8.5) provide of order of 14 correct significant figures of F (z).

Let z3 be is real solution of equation F (z3) = 3; the evaluation gives
z3≈−0.91938596545217788 ; then, I define

SuFac(z) = F (z3+z) [SuFac] (8.11)

Function SuFac is also superfunction of factorial, and SuFac(0)=3 .
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Table 8.1: Coefficients a and U in the expansions (8.5) and (8.14)

n an Un

2 0.7987318351724345 −0.7987318351724345
3 0.5778809754764832 0.6980641135593670

4 0.3939788096629718 −0.6339640557572815
5 0.2575339580323327 0.5884152357911399

6 0.1629019581037053 −0.5538887519936520
7 0.1002824191713524 0.5265479025985924

8 0.0603184725913977 −0.5041914604280215
9 0.0355544582258062 0.4854529800293392

10 0.0205859954874424 −0.4694346809094714
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Figure 8.5: y = x! and y = SuFac(x) by

(8.10),(8.11) versus x

I have displaced the argu-
ment of superfactorial, in
order to let it have inte-
ger value at zero. This is
smallest integer, that is still
greater than the fixed point
L = 2.

Graphic of function SuFac of
the real argument is shown
in figure (8.5), y=SuFac(x).
For comparison, in the same
figure, factorial is shown,
y = Factorial(x). Graphic
of factorial passes through
poins with coordinates (0,1),
(1,1), (2,2), (3,6). Graphic
of the super factorial passes
through points with coordi-
nates (0,3), (1,6), (2,720);
the last point is far away
from the range of the figure.

Complex map of SuFac is shown in figure 8.6. This function has period

P =
2πi

k
= 2πi ln

(
3+2Factorial′(0)

)
≈ 10.253449681156 i (8.12)

This period is pure imaginary. A little bit less than two periods fit the

height of the upper map in figure 8.6.
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Figure 8.6: u+iv=SuFac(x+iy) and the zoom-in of the central part
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In the half-strips

x>2,
∣∣y + n|P |

∣∣ < 1, for integer n [sufastrips] (8.13)

SuFac(x + iy) has countable set of singularities. At the map, every

negative integer value of 
(SuFac(x+iy)), at the translation for unity

along the real axis, produces the singularity, due to the transfer equation

(8.6). In order to show the structure of these singularities, the zoom-in

of the map is shown at the bottom of figure 8.6. Outside the half-strips

(8.13), factorial is regular; it approaches to the fixed points L of factorial:

L=2 in the left hand side and L=1 in the right hand side of the map.

The fast growth of factorial implies the slow growth of the inverse func-

tion, id est, growth of the abelfactorial. I denote this function with

symbol AuFac. Complex map of AuFac = SuFac−1 is shown in figure

8.7; this function is considered in the next section.

4 Abelfactorial

The asymptotic series for super factorial can be inverted. This gives the

asymptotic expansion of abelfactorial (arcsuperfactorial) in vicinity of

the fixed point L=2:

G̃(z) =
1

k
ln

(
N−1∑
n=1

Un(z−2)n +O(z−2)N

)
[abelFacExp](8.14)

Parameter k has the same meaning, as in expansion (8.5); its value is

determined by (8.7). The first two coefficients U are

U1 = 1 (8.15)

U2 = −π2 + 6γ2 − 18γ + 6

12(3− 5γ + 2γ2)
≈ 0.7987318 [UAFac] (8.16)

The Mathematica routine InverseSeries allow to calculate these coef-

ficients analytically, although the expressions for the highest U are a

little bit long. The approximate values of these coefficients are shown

in the right column of table 8.1.

For argument close to 2, the truncated series in (8.14) provides the

precise evaluation. For other values, the repeated application of the

recurrent formula

G(z) = G
(
ArcFactorial(z)

)
+ 1 [AbelFacDrugaya] (8.17)
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Figure 8.7: u+iv = AbelFactorial(x+iy). [AbelFactorialMap]

is used, until |z−2| becomes small. This algorithm determines the cut

line of the abelfctorial AuFac; the cut goes from 2 to −∞.

The abelfunction G of factorial can be defined with

G(z) = lim
n→∞

G̃(Factorial−n(z) + n [facG] (8.18)

then, AuFac=AbelFactorial=SuFac−1, appears as

AuFac(z) = G(z)− z3 = G(z)−G(3) [AuFac] (8.19)

where z3 = G(3) ≈ −0.91938596545218. This expression automatically

provides condition AuFac(3)=0. In such a way,

AuFac(z) ≈ AuFacn(z) = G̃
(
ArcFactorialn(z)

)
+ n− z3 (8.20)
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Figure 8.8: ArcFactorial and AuFac

Function AuFac is plotted

in figure 8.8. For compari-

son, graphic of ArcFactorial

is also shown. Graphic of

ArcFactorial goes through

points (1,1), (2,2), (6,3),

(24,4), although the last

one is already out of range

of the figure (and out of

range of the page. Graphic

of AuFac passes through

points (3,0), (6,1), (720,2),

and the last one is not only our of range of the page, but also out of

room, were this Book is written, and the next point, where AuFac takes

the integer value, id est, (720!, 3) is far away from the visible part of

our Universe.

Function AuFac grows very slowly. If the argument of this function

represents some physical quantity (distance, mass, charge, number of

atoms, etc.), measured in any reasonable units, then, there is no way to

make this quantity so big, that AuFac of it reaches 3.

While superfactorial and abelfactorial, id est, SuFac and AuFac, are

already constructed and implemented, one can use them to evaluate the

non-integer iterates of factorial. These iterates are matter of the next

section.

5 Iterates of factorial

With super factorial and abelfactorial, the nth iterate of factorial can

be written as follows:

h(z) = Factorialn(z) = SuFac
(
n+AuFac(z)

)
[Facc] (8.21)

In this representation n has no need to be integer. Figure 8.9 shows

graphic y=Factorialn(x) versus x for various real n. Figure 8.9 should

be compared to figures 4.2, 4.5, 4.6, 4.7, 4.8, 4.13, 5.11, that show iterates

of other functions, that can be expressed through the special functions,

known at least since century 20. There is no similar representation for

the abelfactorial. I hope, in century 21, some of new superfunctions,
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Figure 8.9: y=Factorialn(x) versus x for various n [facit]

including SuFac, AuFac will be included in the handbooks on the spe-

cial functions and implemented as built-in routines in the programming

languages; then, the difference between iterates of factorial and iterates

of other functions, mentioned in the previous chapters, will be even less

significant.

At n = 1/2, formula (8.21) gives the half iterate of factorial. Map of

function h=Factorial1/2 is shown in figure 8.10. This function can be

interpreted as “square root of factorial”
√
! , used as logo of the Phys.

Dep. of the Moscow State University, shown in figure 2.4.

Concept of square root of factorial caused confusions and discussions.

Some colleagues did not want to see difference between expiressions

Factorial1/2(z) and Factorial(z)1/2, interpreting
√
Factorial(z) as equiv-
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Figure 8.10: u+iv = Factorial0.5(x+iy) [QFacMap]

alent of
√
Factorial(z). In order to eliminate, en fin, this confusion,

function h=Factorial1/2 is considered here with more details.

The key for the verification of interpretation of function h =
√

! , is

analysis of the range of validity of relation

h(h(z)) = Factorial(z) = z! [hh] (8.22)

Map of function h2 in the left hand side of equation (8.22) is shown in

figure 8.11. This figure should be compared to figure 8.3, that represents

the complex map of factorial.

In the right hand side of figure 8.11, complex map of the second iterate

of function h, id est, h ◦ h = h2, coincides with the map of factorial,

shown in figure 8.3. At least in the halfstrip 	(z)>1, |
(z)|≤4, relation

(8.22) holds. The resulting half iteration of factorial corresponds to the
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Figure 8.11: u+iv = h2(x+iy). [QQFacMap]

intuitive expectations about this function.

Range of validity of relation (8.22) is limited with cut lines, shown in

figure 8.11. Such cutlines are typical for non-integer iterates, if the

superfunction cannot be represented through elementary function.

Factorial is not exotic, not an exception. With superfunctions, one can

build-up non-integer iterates for other holomorphic functions too. More

examples are considered in the following chapters below.

Many transfer functions can be treated in a way, similar to that of this

chapter. One of them, namely, the exponential to base b =
√
2, is

considered in the next chapter.
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Chapter 9

Exponent to base sqrt(2)
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Figure 9.1: Exponent to base b=
√
2

Exponent to base
√
2 happened to be first function treated with the

regular iteration [61]. With this example (and for this function), the

methods, described in chapter 6, were developed. In this chapter, this

exponent to this specific base is considered as transfer function T .

Exponent to base
√
2 can be expressed through the natural exponent:

T (z) = exp√2(z) = exp
(
ln(
√
2)z

)
= exp

(
ln(2)

2
z

)
[Texpq2] (9.1)

Explicit plot of this function is shown in figure 9.1.

For exponential to base b=
√
2, the fixed points L= 2 and L= 4 are

natural numbers. In figure 9.1, they correspond to intersections of curve

y=T (x) with the straight line y=x.
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Figure 9.2: u+iv = exp√2(x+ iy)

Complex map of exponent to base b=
√
2 is shown in figure 9.2. This

function is periodic; its period

P =
2 π i

ln(b)
=

2 π i

ln
(√

2
) ≈ 18.1294405673 i [Q2P18] (9.2)

is pure imaginary. A little bit less than one period fits the height of map

in figure 9.2.

For the exponential to base b=
√
2, the inverse function is logarithm to

base b; this logarithm can be interpreted as minus first iterate:

T−1(z) = log√2(z) = logb(z) =
2

ln(2)
ln(z) [logsqrt2] (9.3)

Complex map of logarithm to base b=
√
2 is shown in figure 9.3. The

dashed line marks the cut of the range of holomorphism; that cut runs
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Figure 9.3: u+iv = log√2(x+ iy) [LogQ2map]

from zero along the negative part of the real axis. The jump at the cut

line is determined by the period (9.2) of the exponent:

log√2(x+ io)− log√2(x− io) = P ≈ 18.1294405673 i (9.4)

for x < 0. At the map, the levels v = 
(log√2(x+iy)) = −9 and v =


(log√2(x+iy))=9 are seen close to the negative part of the real axis.

Fixed points L= 2 and L= 4 of the exponent are also fixed points of

the logarithm; these points are seen in figures 9.1, 9.2 and 9.3.

This chapter describes the regular iteration of exponential to base
√
2

at the fixed point L=4. The next section describes the construction of

the supedfunction, id est, the growing superexponential to this base.
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1 Superfunction at fixed point L=4
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Figure 9.4: y = SuExp√2,5(x) by

(9.13) and y=exp√2,5(x)

Chapter 6 describes the construction
of iterates of a transfer function, that
are regular in vicinity of its fixed
point. Here, that method is used
for T = exp√2 ; the superfunction
is constructed, that exponentially ap-
proaches the fixed point L=4 at large
negative values of the real part of the
argument, and grows to infinity at the
large positive argument. This func-
tion is denoted with SuExp√2,5. The
last superscript in the name of the
function indicates its value at zero,
SuExp√2,5(0) = 5. In figure 9.4, curve
y=SuExp√2,5 is compared to that of
y = exp√2(x). Below I construct and
describe function SuExp√2,5.

I use formula (6.2) of the asymptotic
expansion of superfuction f :

f(z)=
N−1∑
n=0

an e
nkz+O

(
eNkz

)
(9.5)

Here I assume, that a0 = L = 4 and
a1 = 1. Coefficient a1 could be cho-
sen arbitrary, but then other coeffi-
cients depend on a1. Alteration of a1
is equivalent of scaling of parameter
ε and displacement of the argument
of the superfunction. Then, formula
(6.9) gives

k=ln
(
expb

′(4)
)
=ln

(
4 ln(

√
2)
)
=ln(2 ln(2))≈0.32663425997828 (9.6)

This value determines periodicity of the superfunction; its period

P = P4 =
2 π i

k
=

2πi

ln(2 ln(2))
≈ 19.236149042042854712 i (9.7)

I use equations (6.10),(6.11) or directly the transfer equation (which
gives the same results) to get coefficients a. While the transfer function
is exponent to base

√
2, the transfer equation can be written as follows:

f(z+1) =
(√

2
)f(z)

[q2Transfereq] (9.8)
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Table 9.1: Coefficients a and U in expansions (9.5), (9.15)

n an Un

1 1.0000000000000000 1.0000000000000000

2 0.4485874311952612 −0.4485874311952612
3 0.1903722467978068 0.2120891200549197

4 0.0778295765369683 −0.1021843675069717
5 0.0309358603057080 0.0496986830373718

6 0.0120221257690659 −0.0243075903261196
7 0.0045849888965617 0.0119330883965109

8 0.0017207423310577 −0.0058736976420089
9 0.0006368109038799 0.0028968672871058

10 0.0002327696003030 −0.0014309081060793
11 0.0000841455118381 0.0007076637148566

12 0.0000301156464937 −0.0003503296158730
13 0.0000106807458130 0.0001735756004664

14 0.0000037565713616 −0.0000860610119291
15 0.0000013111367785 0.0000426959089013

16 0.0000004543791625 −0.0000211930290682
17 0.0000001564298463 0.0000105244225996

18 0.0000000535232764 −0.0000052285174354
19 0.0000000182077863 0.0000025984499916

20 0.0000000061604765 −0.0000012917821121

Substitution of expansion (9.5) into the transfer equation (9.8) deter-
mines coefficients am for m>1. In particular,

a2 =
ln(2)/4

1− 2 ln(2)
≈0.448587431195261 (9.9)

a3 =

(
1−ln(2)

)
ln(2)2/12

1−2 ln(2)−4 ln(2)2+8 ln(2)3
≈0.1903722467978067 (9.10)

Similar (but longer) expressions can be written for the other coefficients
a. The first column in table 9.1 suggests the approximate values of
coefficients a in expansion (9.5).

I use the truncation of the expansion (9.5), taking into account N =20
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Figure 9.5: u+iv = f̃(x−1.11520724513161+ i y) ; [sqrt2figf45b][mapeq2F4]

terms. This gives the primary approximation f̃ for superfunction f :

f̃(z) =
19∑
n=0

an exp(nkz) [q2Fz4tilde20] (9.11)

Approximation f̃ is shown in figure 9.5. In order to simplify the com-
parison with other maps, the argument of function in this figure is
displaced for the real constant x45 ≈ −1.11520724513161; this con-
stant provides approximate condition f(x45) ≈ 5 and the exact equality
SuEx√2,5(0) = 5 for the superfunction constructed below and shown in
figure 9.6.

The primary approximation (9.11) allows to plot the complex map of
superfunction in the left hand side of the complex plane. The residual at
the substitution of the approximation (9.11) into the transfer equation
(9.8) becomes of order of rounding errors at 	(z)<−2. The readers are
invited to plot this residual by themselves (preferably), or to look at it
in the right hand side of figure 4 of the original publication [61].
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Figure 9.6: u+iv = SuExp√2,5(x+iy) by (9.13) [sqrt2f45map]

Superfunction f appears as limit

f(z) = lim
n→∞

expb
n
(
f̃(z−n)

)
[sqrt2regi45] (9.12)

This limit does not depend on the number N of terms in the primary
approximation (9.11). Instead of 19 terms, one could choose another
constant. However, the more terms are taken into account, the faster
does the limit converge. Choosing N=19, I keep in mind the implemen-
tation complex double. For the approximation of f with 14 significant
figures, it is sufficient to choose n>	(z)+2.

It is convenient, when at zero the superfunction takes integer value. I
choose this value to be 5. This is smallest integer, that is still greater
than the chosen fixed point L = 4. I denote this superfunction with
symbol SuExp√2,5 and define it as follows:

SuExp√2,5(z) = F (z) = f(x45 + z) [Ff45] (9.13)
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where x45 ≈ −1.11520724513161 is real solution of equation f(x45)=0.
Namely this constant is used for the displacement of the argument of
function f̃ in figure 9.5 in order of simplify the comparison with map of
function SuExp√2,5 shown in figure 9.6.

In the left hand side of the complex plane, functions z �→ f̃(z+x45) and
SuExp√2,5 practically coincide. In the whole complex plane, the super-
function can be approximated with any arbitrary precision; so, it should
be qualified as exact solution. In such a way, the primary approxima-
tion f̃ provides the exact solution for the superfunction SuExp√2,5 in
the whole complex plane.

For the transfer function as exponential to base b =
√
2, the regular

iteration at the fixed point L=4 gives the function F =SuExp√2,5 that
is holomorphic in the whole complex plane. Graphic of this function is
shown in figure 9.4. Complex map of function SuExp√2,5 is shown in
figure 9.6.

For function F = SuExp4,5, value at zero is chosen a smallest integer,
which is still greater than L = 5; so, F (0) = 5. Then, function F =
SuExp4,5 can be interpreted as iterate of exponent with initial value 5:

F (z) = SuExp√2,5(z) = expz√
2,u
(5) [expq2z5] (9.14)

where subscript u indicates, that the regular iteration is built-up at the
highest (“upper”) fixed point of the exponent. In order to evaluate the
non-integer iterates of other argument, the abelfunction is also required,
I mean, G = F−1 = AuExp√2,5. This abelfunction is described in the
next section.

2 Abelfunction at fixed point L=4

Superfunction F =SuExp√2,4 of the exponent to base
√
2 is descried in

the previous section. This section considers the inverse function, G=
AuExp√2,4=F−1=SuExp−1√

2,4
. Then, the combination of superfunction

F and abelfunction G allows to evaluate the non-integer iterates of the
transfer function T =exp√2 by the general formula (2.14).

Expansion for the abelfunction g = f−1 can be obtained, inverting the
asymptotics (9.5). This gives for the abelfunction g expansion g̃ in the
following form:

exp(kg̃(z)) =
N−1∑
n=1

Um (z−L)n +O(z−4)N [q2Gz4] (9.15)

where U0=0; this implies, that at the fixed point L, function g becomes
infinite. Then, according to expansion (9.5), we get U1=1 and U2=−a2.
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While coefficients a are represented with exact expressions (with infinite
precision), Matgematica or Maple can calculate of order of 10 coefficients
U in expansion (9.15). Routine, that perform this inversion, is called
InverseSeries. In particular,

U2=
ln(2)/4

1− 2 ln(2)
≈−0.4485874311952612289 (9.16)

U3=

(
1+4 ln(2)

)
ln(2)2/24

1−2 ln(2)−4 ln(2)2+8 ln(2)3
≈ 0.21208912005491969757 (9.17)

Approximate values of coefficients U are shown in the right hand side
column of table 9.1. The same coefficients can be obtained also indepen-
dently on the expansion of superfunction, by substitution to expansion

g̃(z) =
1

k
ln

(
N−1∑
n=1

Um (z−L)n +O(z−4)N

)
[eq2ga](9.18)

into the Abel equation

g(expb(z)) = g(z) + 1 [eq2gass] (9.19)

In order to fit the with of the screen (at the authomatic computation) or
the width of the page (at the calculation with paper and pen), getting
g̃(z) by formyla (9.18) it worth to use the new variable ζ=z−L=z−4.
Then, first coefficients U in expansion (9.15) can be found even without
computer.

Truncated expansion g̃(z) approximates g(z) at |z−4|< 2. For other
values, the iterates with the Abel equation (9.19) can be used. Abel-
function G=F−1, shown in figure 9.7, appears as limit of these iterates:

AuExp√2,5(z) = G(z) = lim
n→∞

g̃
(
logb(z−n)

)
+ n+ x45 [eq2G](9.20)

where x45 ≈ −1.11520724513161 is the same constant, that appears in
the definition (9.13) of the superexponent F = SuExp√2,5, providing
F (0)=5.

The inverse function of any non-trivial entire function has cut(s). The
abelexponent G = AuExp√2,5 is not exception. The cut of the range
of its holomorphism is shown in figure 9.7 with dashed line. This cut
goes along the real axis from minus infinity to the branch point 4. The
abelexponent has logarithmic singularity at this point. This singularity
corresponds to the exponential approach of the superesponent to the
fixed point, as the real part of the argument goes to minus infinity.

The readers are invited to plot the map of the region, where the relation
below holds:

SuExp√2,5

(
AuExp√2,5(z)

)
= z [SuExpAuExpQ23] (9.21)
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Figure 9.7: u+iv = AuExp√2,5(x+iy) by formula (9.20)

and the map of range of validity of relation

AuExp√2,5

(
SuExp√2,5(z)

)
= z (9.22)

Especially for the exponent to base
√
2, the algorithms of evaluation of

the growing superfunction and the abelfunction are loaded as
http://mizugadro.mydns.jp/t/index.php/F45E.cin and
http://mizugadro.mydns.jp/t/index.php/F45L.cin
They are implemented in C++ as complex double functions of complex
double arguments. With these algorithms, the Reader can reproduce
figures of this chapter, even without downloading generators of these
figures.
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3 Notations

The most of notations, used in this Book, are already introduced. This

section suggests some kind of short overview of these notations. for

the transfer function (practically, it is any holomorphic function, for

which the superfunction and abelfunctions are considered): F for the

superfunction, and G=F−1 for the corresponding abelfunction. These

notations are convenient, while it is clear, which transfer function is kept

in mind, and which of its superfunctions is denoted with F and which

of its inverse G is assumed.

However, these notations may cause confusions, if cited from other chap-

ters. Functions T , F and G may have (and actually have) different

meanings in different chapters. For this reason, in this chapter, I intro-

duce also long names SuExp√2,5 = F and AuExp√2,5 =G. The names

above have simple mnemonics. The first letter indicates, that it refers

to Superfunction or to Abelfunction. This letter is capitalised, following

the tradition of language Mathematica. The second letter indicates, that

the biggest, “upper” fixed point of the transfer function is used. This

have sense, if the transfer function T is real-holomorphic, and has real

fixed point(s), and one of them can be qualified as maximal, upper. This

takes place for the exponent to base
√
2. The following three characters

refer to the name of the transfer function, id est, exp; again, its first

letter is capitalised. The subscript indicates the base of this exponent,

b=
√
2 and value of this superexponent at zero; F (0)=5 and G(5)=0.

4 Iterates of exponent to base b =
√
2

With superfunction F =SuExp√2,5 and abefunction G=AuExp√2,5, the

nth iterate of transfer function T =exp√2 can be expressed as follows:

T n(z) = exp n√
2,u
(z) = SuExp√2,5

(
n+AuExp√2,5(z)

)
[q2Tn5] (9.23)

This formula is valid at least for 	(z)> 4. If one choose the upper (or

lower) border at the cut of abelfuntion G=AuExp√2,5 between 2 and 4,

the resulting iterate T n(z) is holomorphic in the whole compilex plane

except the cut along line z≤2. In figure 9.8, this T n(x) is shown versus

x for various real values of n. These iterates are defined at least for

x>2. For integer n, the curves can be extended also to x≤2.

For n=1/2, the complex map of function T n(z) by (9.23) is shown in

figure 9.9. This is half iterate of exponential to base
√
2:
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Figure 9.8: y=exp n√
2,u
(x) by (9.23) for various n. [iterEq2plot]

T 1/2(z)=exp
1/2√
2,u

=F

(
1

2
+G(z)

)
=SuExp√2,5

(
1

2
+AuExp√2,5(z)

)
(9.24)

I remind, that symbol “u” in the subscript indicates, that for the reg-

ular iterate, the highest (“upper”) fixed point is used as asymptotics of

superfunction at infinity.

Abelfunction G, built up at the fixed point L=4, has logarithmic sin-

gularity at this point, and the corresponding cut; the jump at this cut

is constant; and this constant is just period of the superfunction F . For

this reason, the iterates, even non-initeger, and in particular, the half

iterate by equation (9.24), are regular at the point L = 4. However,

the non-integer iterates have branch point at another fixed point of the

transfer function, namely, L=2. In figure 9.9, the corresponding cut is

marked with dashed line.
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Figure 9.9: u+iv=T 1/2(x+iy) by formula (9.24). [iterEq2map]

5 Intermediate finish

Figure 9.10: View from the saddle point

Several results and tools for super-

functions, abelfunctions and non-

integer iterates are already pre-

sented above. Here I make a view

on the way already past and an-

nounce, what will be in the future

way, as it is shown in figure 9.10.

This chapter, above, deals with

transfer function T (z) =
(√

2
)z

=

exp√2(z); superfunction F , abel-
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functon G and iterates of the transfer function T are described:

F = SuExp√2,5 (9.25)

G = AuExp√2,5 (9.26)

T n(z) = F (n+G(z)) = exp n√
2,u
(z) [expbc] (9.27)

Iterates by equation (9.27) are shown in figure 9.8. These iterates look

similar to iterates of other growing functions, in particular, those shown

in figures 4.13 for iterates of the power function and 8.9 for iterates

of factorial. One may expect, at least for the real-holomorphic growing

functions, the similar iterates can be constructed in the similar way, even

if the superfunction and the abelfunction cannot be expressed through

the special functions described in the textbooks of century 20. I mean,

with the regular iteration,

With the examples above, the Reader already understands, how can one

iterate a holomorphic function in such a way, that the number to iterates

has no need to be integer. These iterates greatly extends the tools,

available for scientific description of various processes, for approximation

(fitting) of physical (and, perhaps, not only physical) dependences. The

non-integer iterates of exponential can be used, and, in particular, those

to base
√
2. The example of such a non-integer iterates is shown in

figure 9.9. I believe, the Reader can easy plot other examples of the

iterates of the exponential to this base, and also for some other values

of base.

The results presented above may cause impression, that they finish the

investigation of superfunctions, abelfunctions and non-integer interates,

and that, in future, one needs just to apply the regular iteration to

various special functions. Actually, it is not the case.

For some functions, the regular iterates with asymptotic (6.2),(6.3) can-

not be constructed, as the equations for the coefficients of the expansion

have no solution. One of these cases is considered in the the next chapter

and qualified as “exotic”.

116



Chapter 10

Exotic iteration and exp to base e1/e
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Figure 10.1: y=bx for b=η=e1/e≈1.44466786 and b=
√
2≈1.41421356

The regular iteration by (6.2)-(6.12) looks as general method of construc-

tion of superfunctions. However, in some cases, it cannot be applied as

is. In particular, the asymptotic expansion (6.2) becomes invalid, if the

derivative of the transfer function at the fixed point is unity:

T (L) = L , T ′(L) = 1 [Tprimeu] (10.1)

In this case, expression T ′−1 = T ′(L)−1 in denominator of fraction

in the right hand side of equation (6.10) becomes zero; and the co-

efficients in expansion (6.2) loss their meaning. Exponential to base

b=e1/e≈1.44466786 is an example of such an exotic transfer function;

construction of superfunction for such a case is matter of this chapter.
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1 Exotic iterate

Figure 10.2: Exotics

The coincidence, that the derivative in equation

(10.1) becomes unity, can be qualified as exotic.

This determines the title of the chapter and that

if this section. Condition (10.1) is not only ex-

otic possible, (see figure 10.2), but, first, I consider

namely case (10.1).

The general formulas of chapter 6 fail for the special case T ′(L)=1, and

Henryk Trappmann expected, that for this case the precise evaluation

of superfunction is very difficult, if at all. In order to convince him, that

it is doable, we had to write the paper [79]. Part of that publication is

described below.

This section considers the case, when the derivative of the transfer func-

tion T in the fixed point L is unity. Then, formulas of section 6 for the

regular iteration cannot be applied as is.

Calculation of iterates of a function is simpler, if its fixed point is zero.

If the fixed point L of transfer function T is not zero, then, the super-

function F can be represented in the following form:

F (z) = f(z) + L [FfL] (10.2)

Then, for function f , we get

f(z+1) = F (z+1)− L = T (F (z))−L = T (L+f(z))− L (10.3)

We may define

Tnew(z) = T (L+ z)− L [TnewTLzL] (10.4)

and interpret this Tnew as new transfer function, and f is superfunc-

tion for it. Below, the subscript new is omitted. This is equivalent to

assumption

T (0) = 0 (10.5)

Let the Taylor expansion of the transfer function have the following

form:

T (z) = z + vz2 + wz3 + .. [TExpan] (10.6)

where v �=0. For such a transfer function, it is difficult (and, perhaps, im-

possible) to built-up any superfunction, that exponentially approaches
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zero at infinity. But it is possible to construct the superfunction, that

decays, roughly, as the inverse proportional function. Let

f(z) =
a

z
+

b�

z2
+

α�2+β�+γ

z3
+ .. [FExpan] (10.7)

where a, b, α, β and γ are constants, and �= ln(z). Below I assume,

that coefficients v and w of the expansion (10.6) are known, and show,

how to calculate coefficients a and b of the asymptotic (10.7).

For the displacement of the argument z �→ z+1, expressions in the

asymptotic representation (10.7) are transformed in the following way:

1

z
�→ 1

z+1
=

1

z

(
1 +

1

z

)−1
=

1

z
− 1

z2
+

1

z3
+ .. (10.8)

1

z2
�→ 1

(z+1)2
=

1

z2

(
1 +

1

z

)−2
=

1

z2
− 2

z3
+

3

z4
+ .. (10.9)

�=ln(z) �→ ln(z+1) = ln

(
z ·

(
1 +

1

z

))
= ln(z) + ln

(
1 +

1

z

)
= �+

1

z
− 1

2z2
+ .. (10.10)

Using these preparations, the left hand side of the transfer equation

f(z+1) = T (f(z)) [transff] (10.11)

can be written as follows:

f(z+1)=
a

z
− a

z2
+

a

z3
+

b�+ b/z

z2

(
1− 2

z

)
+

α�2+β�+γ

z3
+ ..

=
a

z
+

1

z2

(
−a+b�

)
+

1

z3

(
a+b− 2b�+ α�2+β�+γ

)
+ .. (10.12)

The right hand side of equation (10.11) becomes

T (f(z)) =
a

z
+

b�

z2
+

α�2+β�+γ

z3
+ v ·

(
a

z
+

b�

z2
+ ..

)2

+ w
(a
z
+ ..

)3

..

=
a

z
+

1

z2

(
b�+va2

)
+

1

z3

(
α�2+β�+γ+2vab�+wa3

)
+.. (10.13)

We should equalize the right hand sites of equations (10.12) and (10.13).

Coefficients at 1
z coincide automatically. Coefficients at 1

z2 gives

−a = va2 [ava2] (10.14)
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Equalisation of coefficients at 1
z3 gives

a+ b− 2b� = 2vab�+ wa3 [f1tttttt] (10.15)

Variable � = ln(z) depends on z, but equation (10.15) should be valid

for various z. So, we get the two equations:

−2b = 2vab [again] (10.16)

which, at b �=0, gives the same, as (10.14), and also

a+ b = wa3 [f1tttt] (10.17)

Solving these two equations, I get

a =
−1
v

, b =
−w
v3

+
1

v
[avbwv] (10.18)

One can add more terms in the expansion (10.7), and, in the similar

way, calculate coefficients α, β, γ and even higher, assuming, that the

expansion (10.6) of the transfer function is known. In such away, the

coefficients of the asymptotic expansion (10.7) of the superfunction f

are determined by the coefficients of expansion of transfer function T .

The asymptotic solution (10.7) allows evaluation of the transfer function

at large z. Then, as in the case of the regular iteration, the asymptotic

solution can be extended to the whole complex plane (except the cut

lines) with the transfer equaltion, applying one of the two formulas be-

low:

f(z) = T n
(
f(z − n)

)
[iterA] (10.19)

or

f(z) = T−n
(
f(z + n)

)
[iterB] (10.20)

in order to make the argument of the superfunction large, bringing it to

the range, where the truncated asymptotic expansion (10.7) provides the

required precision. The choice of one of the formulas (10.19) or (10.20)

determines the position of the cut lines of the resulting superfunction.

The direction of the cut lines can be changed also with replacement of

� = ln(z) to � = ln(−z). In order to get unique solution, we need to

choose (and postulate) the asymptotic behavior of the function we want

to construct. In the following section, the method above is applied to
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exponential to base e1/e, and then, in the following chapters, to other

functions.

In principle, even with two terms in equation (10.7), one can get the

camera-ready maps of the superfunction and related functions. Per-

haps, this is sufficient for the application in physics and other sciences,

where the precision of measurements is usually less than 14 decimal

digits. The precision can be infinitely improved with modification of

the argument of the primary approximation f with equations (10.19) or

(10.20), increasing the number n of iterates.

However, for the numerical tests, it worth to calculate several coefficients

of expansion of superfunction. This reduces the time of evaluation and

improves the precision. For various transfer functions, that are holomor-

phic in vicinity of the fixed point and have expansion beginning with

(10.6), some tens of coefficients of the expansion (10.7) can be calculated.

Examples of the numerical tests for such expansions are presented below.

2 Exponent to base exp(1/e)

Let us apply the formalism of exotic iterations above to the exponential

to base b=η=exp(1/e)≈1.44466786 . This section deals with function

T by

T (z) = ηz = expη(z) = exp(ln(η) z) = exp(z/e) [etaz](10.21)

Explicit plot of this transfer function is shown in figure 10.1 with thick

curve. For comparison, the thin curve shows the exponent to base
√
2,

considered above in chapter 9; this curve is borrowed from figure 9.1.

The curves at this figure look close; at small and negative values of the

argument, they almost overlap. However, the deviation is significant at

large positive values of the argument, and this determines the pretty

different behaviour of the corresponding superfunctions.

Complex map of the transfer function expη is shown in figure 10.3. This

map looks similar to the map at figure 9.2; the only period is slightly

different. For the base η, this period

Pexpη = 2 π i e ≈ 17.0794684453 i [Pexpeta] (10.22)

It is amassing, that the simple formula (10.22) combines the 3 fundamen-

tal constants, : π, i and e. In addition, the Henryk base η=exp2(−1)=
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Figure 10.3: u+iv = expη(x+iy) [expe1emap]

exp(1/e) ≈ 1.44466786101 also is mathematical constant. A little bit

leas than one period Pexpη fits the range of map in figure 10.3.

For transfer function T = expη, the inverse function is T −1 = exp−1η =

logη. Complex map of this function is shown in figure 10.4. This map

looks similar to the map of logarithm to base
√
2, shown in chapter 9 at

figure 9.3. At that map, the mesh of isolines is a little bit more dense;

for example, all the line u= 6 happen to be in the range of the map,

while at the map at figure 10.4 the only part of this line is seen; as for

level v=±9 it happen to be beyond the cut line and, therefore, not seen

in the map.

Value b = η is maximal real base, at which the exponent still has at

least one real fixed point. Below, for this exponent, the superfunction

is constructed.
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Figure 10.4: u+iv=logη(x+iy) [loge1emap]

3 Superexponent to base η=e1/e=exp2(−1)

This case had been considered by request from Henryk Trappmann. He

believed, that for the exponential to base

η = exp(1/e) = exp2(−1) ≈ 1.44466786101 [eta] (10.23)

I cannot construct the efficient (fast and precise) algorithm of evaluation.

The similar opinion had been expressed in century 20 by Peter L. Walker

[24].

In order to convince Henryk, we had to write the special article for the

journal Mathematics of Computation [79]. Some formulas and figures

from that publication are repeated below.
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Let the transfer function T be defined with equation 10.21 of the pre-

cious section; let

T (z)=ηz=expη(z)=exp
(
ln(η) z

)
=exp(z/e) (10.24)

In order to apply the formalism of exotic iteration from the previous

section, I define the new, “displaced” transfer function, as it is suggested

by equation (10.4); for the initial transfer function T by (10.24). To

distinguish these transfer functions, I use slightly different fonts for the

letter T in the names. The new (displaced) transfer function

T (z)=T (z + e)−e=exp
(
(z+e)/e

)
− e = exp(z/e+1)−e (10.25)

For this transfer function,

T (0) = 0 (10.26)

T ′(0) = 1 (10.27)

T ′′(0) = 2 v = 1/e (10.28)

T ′′′(0) = 6w = 1/e2 (10.29)

... (10.30)

T (n)(0) = 1/en−1 (10.31)

In the last formula, in the left hand side, the parenthesis in the su-

perscript indicates not a number if iterate, but number of derivative;

function T is differentiated n times.

For this case, the formalism of exotic iteration, described in the precious

section, can be applied as is. Expansion (10.6) can be written as follows:

T (z) = z +
1

2e
z2 +

1

6e
z3 + .. (10.32)

For v=
1

2e
and w=

1

6e2
, formulas (10.18) give

a = −2e ≈ −5.43656365691809 (10.33)

b = −e

3
+

1

8e3
≈ 1.604598172578777 (10.34)

Then, the primary approximation f for superfunction (10.7) has the

following form:

f̃(z) = −1

z
+

(
1 +

1

e

) ln(±z)
z2

+ .. [fe1ez2] (10.35)
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More terms of this expansion can be calculated analytically, especially,

if some Mathematica or Maple are used. In principle, the truncated

series in (10.35), even with two terms, approximates the superfunction

and can be used for its definition. For |z|> 100, such a representation

gives few correct decimal digits and can be used to plot the complex

maps.

For the accurate representation of superfunction, more terms in the ex-

pansion, similar to (10.35), should be calculated. The asymptotic ex-

pansion can be written as follows:

F̃ (z) =
−2e
z

(
1 +

M∑
m=1

Pm

(
− ln(±z)

)
(3z)m

+O
(
ln(±z)/z

)M+1
)

(10.36)

where

Pm(x) =
m∑

n=0

cm,nx
n [e1ePm] (10.37)

One may choose the first coefficient c0,0 = 1; then, P0(t) = 1. Other

coefficients c are determined by the substitution of the expansion (10.36)

into the transfer equation

F̃ (z+1) = exp
(
F̃ (z)/e + 1

)
− e

The first 5 polynomials P are shown below:

P1(t) = t (10.38)

P2(t) = t2 + t+ 1/2 (10.39)

P3(t) = t3 +
5

2
t2 +

5

2
t+

7

10
(10.40)

P4(t) = t4 +
13

3
t3 +

45

6
t2 +

53

10
t+

67

60
(10.41)

P5(t) = t5 +
77

12
t4 +

101

6
t3 +

83

4
t2 +

653

60
t+

2701

1680
(10.42)

The superfunction F appears as limit

F (z) = lim
n→±∞

T n(f(z − n)) [e1elim] (10.43)

where function f is just truncation of the asymptotic expansion in

(10.36) at some positive integer M , and n is chosen positive or neg-

ative, dependently on the sign in the argument of logarithm in formula

(10.36).
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It is convenient to deal with functions, that have integer value at zero;

so, I use the translation of the argument in order to define iteration tetη
and the growing sperexponential SuExpη,3 with the following formulas:

tetη(z) = F1(z) = f(z+x1) [e1etet] (10.44)

SuExpη,3(z) = F3(z) = f(z+x3) [e1eSuExp] (10.45)

where constants x1≈2.798248154231454 and x3≈−20.28740458994004
are chosen to provide relations F1(0)=1 and F3(0)=3.

Function tetη corresponds to the upper sign go the ± in formuas (10.36),

(10.43), while finction SuExpη,3 by (10.45) refers to the lowerst sign. In

such a way, F1 and F3 are pretty different functions, and it is difficult

to express one of them through another.

In formulas (10.44) and (10.45), for the two superfunctions F1 and F3, a

little bit longer names tetexp(1/e) and SuExpexp(1/e) are suggested. These

long names simplify the identification at the use from other chapters of

this Book (and also from other publications), where the base b may have

various values, and not necessary b=η.

I repeat the meanings of the names suggested. tetη, indicates, that this

refers to tetration. For any tetration (to any base b), I assume condition

tetb(0)=1.

The shoice of value at zero of the growing super exponential F3 is not

so obvious. In publications [61, 79] (and not only there), the value at

zero is chosen as minimal integer, that is still larger, than the real fixed

point. Such a choice has sense, while the only one transfer function

without parameters is considered, or if value of its parameter is fixed,

and no continuity properties with respect to this parameter are analysed.

However, if we treat base b as parameter, then, the choice of integer value

at zero leads to discontinuity with respect to base b. For the case, if such

a dependence will be requested, the notation SuExpη,3; is used; the value

at zero is indicated as the additional subscript.

For the real argument, functions F3 and F1 are shown in figure 10.5.

Complex maps of these superfunctions are shown in figure 10.6. These

functions are pretty different. In order to release the notation F with

subscripts for other functions, used in other chapters (and in other pub-

lications), I give them the special names SuExpη,3 = F3 and tetη = F1.
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Figure 10.5: Two super-exponentials to base b=exp(1/e) [e1eplot]

Symbol tet refers to tetration; in the following chapters, it is defined

also for other values of base.

Along the real axis, function SuExpη,3 infinitely grows at the positive

values of the argument, and approaches its limiting value e at large

negative values. The function approaches to the same value in the most

of the complex plane, except the strip along the positive direction od

the real axis.

Function tetη, at large values of the argument, approaches its limiting

value η almost everywhere, but has logarithmic singularity at −2, going
to infinity at this point. Tetration to any base has this singularity;

it follows from the additional condition tetb(0) = 1 and the transfer

equation, that in vicinity of the real axis can be rewritten in the following

form:

tetb(z)=logb

(
tetb(z+1)

)
(10.46)

For iterates of exponent to base η, we need not only the superfunc-

tions, but also the corresponding abelfunctions. These abelfunstions are

considered in the next section.
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Figure 10.6: u+iv =SuExpη,3(x+iy) = F3(x+iy) by (10.45), at the top,

and u+iv=tetη(x+iy)=F1(x+iy) by (10.44), at the bottom. [e1efig2]
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4 Abelexponent to Hernyk base

Historically, the exponent to base η = exp(2/e) is first function, for

which the exotic iteration had been applied [79]. The two superfunctions

for this exponent are specified in the previous section. Here, I describe

the inverse functions, id est, the two abelfunctions of the exponent to

base η.

Let G1 = F−11 and G3 = F−13 . Maps of these functions are shown

in figure 10.7. For evaluation of functions G1 and G3, the asymptotic

representations are used:

g(z) = g±(z) =
ln(±t)

3
+

2

t
+

15∑
n=1

cnt
n +O(t16) [e1egpm] (10.47)

where t=(z−e)/e. The coefficients c can be found inverting the expan-

sion for the superfunction, and also by substituting expansion (10.47)

into the Abel equation

g(z) + 1 = g
(
exp

(
g(z)/e

))
[e1eAbeleq] (10.48)

The truncation of the series, id est, omitting of O in the right hand side

of (10.47), provides the algorithm for evaluation of the abelfunction g

with at least 15 significant figures, while |t| < 1/2. For larger values,

the argument of g should be transformed, using the equation (10.48).

Then the inverse functions G1 = F−11 and G3 = F−13 can be defined,

adding the corresponding constants,

ateη(z) = G1(z) = g(z)− g(1) ≈ g(z)− 3.029297214418 (10.49)

where the upper sign in (10.47) is used, and

AuExpη,3=G3(z)=g(z)−g(3)≈g(z)+20.0563555297533789 (10.50)

where the lower sign in (10.47) is used.

The additional names ate and AuExp are introduced in order to simplify

identification and referencing to these functions from other chapters.

Representations (10.49) and (10.50) provide relations G1(1) = 0 and

G3(3) = 0, as it is supposed to be for the inverse functions of F1 and

F3. The numerical tests confirm, that in wide ranges of values z, the

relations

F1(G1(z))=z , F3(G3(z))=z , F1(G1(z))=z , G3(F3(z))=z (10.51)
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hold with 14 significant figures. The readers are invited to plot the map

of the agreement function

A(z) = − lg

(
|F (G(z))− z|
|F (G(z))|+ |z|

)
[e1eA] (10.52)

adding appropriate subscripts and exchanging F ↔ G. as numerical

check of equalities in statement (10.51). Levels of A(x+iy) in the x, y

plane indicate, where the algorithm works almost without loss of pre-

cision, id est, close to the maximal precision allowed for the complex

double variables.

5 Iterates

With function F3 and G3, one can express the iterates of exponential to

base exp(1/e). For T (z)=exp(z/e),

T n
u (z)=expnη,u(z)=F3(n+G3(z))=SuExpη,3

(
n+AuExpη,3(z)

)
(10.53)

Here, the subscript u indicates, that the this iterate is holomorphic at

the highest, upper range of the real values of the argument, and, in

particular, in the vicinity of the half-line z>e.

In the representation (10.53), neither argument z nor number of iterate

has need to be real. For n=1/2, the complex map of the half iteration

of exponential to base exp(1/e) is shown in figure (10.9).

For real values of argument T n
u (x) versus x for various values of number

n of iteration is shown in figure 10.8. The thick curves correspond to

the integer values of n. The non-integer iterates are holomorphic at

least in some vicinity of falf-line x > e. The integer iterates can be

extended to −∞ for positive b or to the closest vertical asymptotic

of the corresponding logarithm for negative number of iteration. The

bissectrisse of the First quadrant of the coordinate plane corresponds to

the identity function.

Тhe non integer iterates by (10.53) are shown in figure 10.8 with thin

lines. These lines cannot be extended beyond the fixed point e; this is

branch point of the non-integer iterates. These lines remain in the range

x>η, y>η; in particular, they cannot be holomorphically extended into

the third quadrant.

The non-integer iterates by formula (10.53) have cut line along the real

axis from −∞ to e ≈ 2.71; in order to shown this cut, figure 10.9
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Figure 10.8: y = exp n
η,u(x) by (10.53) versus x for various n [e1eiter]

represent the complex map of the half iterate, n = 1/2. This cut is

traced with dashed line and labeled with symbol cut.

As other complex maps of other iterates of a real-holomorphic function,

the map at figure 10.9 is symmetric with respect to reflection from the

real axis,

exp1/2η,u (z
∗) = exp1/2η,u (z)

∗ (10.54)

In order to remind this symmetry, I plot the maps, placing the real axis

at the centre of the figure. However, sometimes, there is not enough

space at the page, then I plot the only upper part of the map. I hope,

the Reader has enough imagination, that allows him or her to consider

the imaginary mirror, and imaginate in this imaginary mirror the func-

tion with inverted sign of the its imaginary part. With hopes for such

imagination, in Figure 10.10, I show the iterates of the exponent to base
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Figure 10.9: u+iv = exp
1/2
η,u (x+iy) by (10.53) for n=1/2 [e1eghalf]

η for various number of iterate n in a similar way, as the case n=1/2

is shown in Figure 10.9. However, the only halts of the maps are shown

in Figure 10.10.

6 Not only exp

Exponential to base η = exp(1/e) = exp2(−1) is not only transfer

function, that have derivative unity at its fixed point, T ′(L) = 1. Some

of such transfer functions can be treated with the method of exotic

iteration, described in this chapter.

One more example is considered in the next chapter, referring to the

elementary transfer function T (x) = zex(x) = z exp(z). It is treated in

a pretty similar way, as expη.

Then, in the following chapters, even more exotic cases are treated, when

T ′(L) = 1 and T ′′(L) = 0 also can be treated. However, I try to go step

by step. So, open the next chapter and read about iterates of zex.
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Figure 10.10: u+iv = exp n
η,u(x+iy), complex maps of iterates of exponent

to base η by equation (10.53) for various n [e1e000map]
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Figure 11.3: u+iv=zex(x+iy) by (11.1) [zexmap]

Short name zex is created from the first three characters in the right

hand side of equation (11.1). Hope, this long explanation helps to avoid

confusions. In the chapter name I keep the indication to LambertW, as

it is used in many other publications and algorithmic languages. As the

negative iterates are allowed, if one can iterate zex, one can iterate also

LambertW. Function zex is simpler than LambertW, so, I consider zex

first.

Consideration in this chapter is very similar to that of the previous

one; the similar exotic iterates are constructed. I hope, the reader can

perform the calculus for iterates of zex in the same way, as the deduction

is performed in the previous chapter for the exponent to base η=e1/e.

On the other hand, I remember the old rule:
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If at your presentation, at the first desk you see some Hideki Yukawa

and Sofia Kovalevskaya, and at the last desk you see some Bart Simpson

and Shoko Okudaira, then you should address to Bart and Shoko. In

this case, you may hope, that Hideki and Sofia will understand at least

the main idea of your talk.

Adopting that rule to the Book, here I repeat the deduction of the

previous section for function zex. However, I would like the Readers at

least to try to make this deduction by themselves, using the Book only

to verify the results; then the Readers will be able to do the same also

for other functions (including exotic ones).

1 Holomorphic zex

For real argument, function zex by (11.1) is shown in figure 11.1. At

negative values of the argument, zex is negative, and it is positive for

positive argument. At large negative values of the argument, zex de-

creases, reaches its local minimum −1/e at −1, then grows up. The

graphic passes through point (0,0); zero is fixed point. At zero, its

derivative is unity; so the iterates of zex are qualified as exotic; the non-

integer iterates are not regular at the fixed point. Here, it may be a

good moment to go a little bit back, to the regular iteration, in order to

remember, what happens, for example, at the right hand side of equa-

tion (6.10), when the derivative T ′ of the transfer function at the fixed

point becomes zero.

Complex map of function zex is shown in figure 11.3. This function is

entire, it has no singularities. Map of the inverse function

zex−1 = ArcZex = zex−1 = LambertW (11.2)

is shown in figure 11.4. This function has cut, along the negative part

of the real axis. This cut is marched with dashed line.

Function LambertW can be defined as solution F of the differential

equation

F ′(z) =
F (z)

(1 + F (z)) z
[LambertWdifur] (11.3)

with additional condition F (0)=0, where the contour of integration goes

along the imaginary axis from zero to the imaginary part of argument z,
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Figure 11.4: u+iv=ArcZex(x+iy)=LambertW(x+iy)

and then, parallel to the real axis, to the value z. Solving the equation

(11.3), the Reader may verify, that the inverse function of the solution

is zex. Note, that the similar contour of integration is used in chapter 5

to define function Tania by equation (5.3). Indeed, function LambertW

is related to the Tania function: (5.3):

LambertW(z) = Tania
(
ln(z)− 1

)
[taniaLambertW] (11.4)

As the imaginary part of the logarithm is limited to the −π, π range, in

this expression, the argument of the Tania function is always inside the

strip along the real part, seen in the complex map of the Tania function

in figure (11.4). Function LambertW is in some sense simpler, than

function Tania: it has only one cut line (and one branch point −1/e),

138



while the Tania functions has two.

I could not find good implementation complex double for function Lam-

bertW in C++ (in which I have good plotters of complex maps). For

this reason, I use the expansions listed below.

For small values of argument, LambertW can be expanded as follows:

LambertW(z) = z

∞∑
n=0

(n+1)n−1

n!
(−z)n

= z−z2+
3z3

2
−8z4

3
+
125z5

24
−54z6

5
+
16807z7

720
+ .. (11.5)

The series converges at |z|< 1/e≈ 0.367879 . With 48 terms, at |z| ≤
0.2, the truncated sum provides at least 16 correct decimal digits.

The expansion at of the branch point can be written as follows:

LambertW
(−1

e
+

t2

2e

)
= −1 + t− t2

3
+

11t3

72
− 43t4

540
+

769t5

17280
− 221t6

8505

+
680863t7

43545600
− 1963t8

204120
+

226287557t9

37623398400
− 5776369t10

1515591000
+ .. (11.6)

The expansion can be used for approximation of LambertW while |t|<
1, id est, while the argument of LambertW is close to − exp(−1) ≈
−0.367879 .

For large values of |z|, using notations L = ln(z) and M = ln2(z) the

expansion of LambertW(z) can be written as follows:

LambertW(z) = L−M +
M

L
+

M(−2 +M)

2L2

+
M(6− 9M + 2M 2)

6L3

+
M(−12 + 36M − 22M 2 + 3M 3)

12L4

+
M(60− 300M + 350M 2 − 125M 3 + 12M 4)

60L5

+
M(−120 + 900M − 1700M 2 + 1125M 3 − 274M 4 + 20M 5)

120L6

+ O
(M
L

)7

(11.7)
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where the effective parameter of expansion happens to be ε=ln2(z)/ ln(z);

at |ε| � 1, the asymptotics (11.7) can be used for the evaluation of

LambertW.Here, as usually, the upper superscript after the function in-

dicates the number of iterations, and the upper superscript after the

argument and the closing parenthesis indicates the power that is as-

sumed to be evaluated after the evaluation of the function. However,

ln−1(z) = exp(z) should not be confused with 1/ ln(z), nor ln2(z) =

ln(ln(z)) should be confused with ln(z)2, and so on.

The asymptotics above allow to implement the efficient and precise algo-

rithm for evaluation of LambertW. The C++ implementation is loaded

as http://mizugadro.mydns.jp/t/index.php/LambertW.cin.

With functions zex and LambertW=zex−1, the superfunction of zex and

its abelfunction can be implemented. The superfunction is considered

in the next section.

2 SuZex

Superfunction for the transfer function zex is solution F of the transfer

equation

F (z+1) = zex
(
F (z)

)
[suzexFeq] (11.8)

For some integer M > 1, search for the asymptotic expansion of the

solution in the following form:

F (z) = FM(z) +O

(
ln(±z)M+1

zM+2

)
[SuZexFMa] (11.9)

where

FM(z) = −1

z
+

1
2 ln(±z)

z2
+

1

z

M∑
m=2

Pm

(
ln(±z)

)
zm

[SuZexFM] (11.10)

Pm(z) =
m∑

n=0

cm,n(−z)n [SuZexP] (11.11)

The coefficients c can be found by substitution of expansion (11.9) into

the transfer equation (11.8). This can be done with the Mathematica

code below:
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zex[z_] = z Exp[z];

Foo[z_] = -1/z + a Log[z]/z^2

Soo = Series[Foo[z+1]-zex[Foo[z]], {z,Infinity,3}]

Eoo = Coefficient[Soo,1/z^3]

Ao = Extract[Solve[Eoo==0, a], 1]

F2o[z_] = ReplaceAll[Foo[z], Ao]

F20[z_] = F2o[z] + (a Log[z]^2 + b Log[z] + c)/z^3

S2o = Series[F20[z+1] - zex[F20[z]], {z,Infinity,4}]

S20 = ReplaceAll[S2o, Log[1/z] -> -L]

E2o = Coefficient[S20, 1/z^4]

E22 = Coefficient[E2o, L^2]

A1 = Extract[Extract[Solve[E22==0, a], 1], 1]

E2A = ReplaceAll[E2o, A1]

E21 = Coefficient[E2A, L]

B1 = Extract[Extract[Solve[E21==0, b], 1], 1]

E2B = ReplaceAll[E2A, B1]

C1 = Extract[Extract[Solve[E2B==0, c], 1], 1]

F3o[z_] = ReplaceAll[F20[z], {A1, B1, C1}]

F30[z_] = F3o[z]+(a Log[z]^3+b Log[z]^2+c Log[z]+d)/z^4

S3o = Series[F30[z+1] - zex[F30[z]], {z, Infinity, 5}]

S30 = ReplaceAll[S3o, Log[1/z] -> -L]

E3o = Coefficient[S30, 1/z^5]

E33 = Coefficient[E3o, L^3]

A3 = Extract[Extract[Solve[E33==0, a], 1], 1]

E3a = ReplaceAll[E3o, A3]

E32 = Coefficient[E3a, L^2]

B3 = Extract[Extract[Solve[E32==0, b], 1], 1]

E3b = ReplaceAll[E3a, B3]

E31 = Coefficient[E3b, L]

C3 = Extract[Extract[Solve[E31==0, c], 1], 1]

E3c = ReplaceAll[E3b, C3]

D3 = Extract[Extract[Solve[E3c == 0, d], 1], 1]

F4o[z_] = ReplaceAll[F30[z], {A3, B3, C3, D3}]

F40[z_] = F4o[z] +

(a Log[z]^4+b Log[z]^3+c Log[z]^2+d Log[z]+e)/z^5

S4o = Series[F40[z+1] - zex[F40[z]], {z, Infinity, 6}]
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Such a calculus leads to the following asymptotics:

F (z) = −1

z
+

1
2�

z2
+

−1
4 �

2 + 1
4�−

1
6

z3
+

1
8�

3 + −5
16 �

2 + 3
8�+

−7
48

z4

+
−1
16 �

4 + 13
48�

3 + −17
32 �

2 + 23
48�+

−707
4320

z5

+
1
32�

5 + −77
384 �

4 + 37
64�

3 + −83
96 �

2 + 1121
1728�+

−1637
8640

z6

+
−1
64 �

6 + 87
640�

5 + −205
384 �

4 + 443
384�

3 + −1619
1152 �

2 + 15427
17280�+

−274133
1209600

z6

+ O

(
�7

z8

)
(11.12)

where � = ln(−z). y
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Figure 11.5: y = SuZex(x)

for some fixed integer M , the super-

function F can be expressed through

its Mth asymptotic as sollows:

F (z) = lim
n→∞

zexn
(
FM(z−n)

)
(11.13)

The resulting F does not depend on

the number M of terms taken into ac-

count in the primary approximation.

However, the rate of convergence of the

limit for larger M is higher.

In order to simplify the comparison of

different representations of the super-

function, it is convenient to define the

misplaced function

SuZex(z) = F (z1+z) (11.14)

where z1 ≈ −1.1259817765745026 is

solution of equation F (z1) = 1. This

definition gives a way to evaluate the

superfunction of zex. The complex

double implementation in C++ is loaded as http://mizugadro.mydns.

jp/t/index.php/SuZex.cin

For real values of argument, the explicit plot of function SuZex is shown

in figure 11.5 with thick line. For comparison, the thin line shows the
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Figure 11.6: u+iv = SuZex(x+iy)

zex function, id est, y=z exp(z). These curves cross at point (1, e) and

in vicinity of point (1.4, 6.2).

For real values of argument, SuZexp is positive monotonously growing

function. At −∞, it approaches zero, as the asymptotic representation

(11.10) prescribes.

Then, the curve passes through point (0, 1), and then - through point

(1, e). At this point it grows a little bit slower, than function zex, but

soon overdoes the zex, showing very fast growth; this growth is faster,

than growth of any exponential.

The same behaviour can be seen also at figure 11.6, that represents the

complex map of function SuZex. zex is entire function, id est, holomor-

phic in the whole complex plane. The inverse function, shown in figure

11.6, has cut. This inverse function is considered in the next section.
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Figure 11.7: u+iv = AuZex(x+iy) [auzexmap]

3 AuZex

Complex map of function AuZex = SuZex−1, id est, abelfunction for
the transferfunction zex, is shown in the right hand side of figure 11.7.
This section describes properties of function AuZex.

The asymptotic expansion for the abelfunction for the transfer function

AuZex can be obtained inverting the expansion of function SuZex, de-

scribed in the previous section. However, one may consider as well the

Abel equation for the abelfunction G :

G(zex(z)) = G(z) + 1 [AuZexGeq] (11.15)

The asymptotics of solution G = AuZex can be expressed with

G(z) ≈ −1
z

+
1

2
ln(z) +

N∑
n=0

bnz
n + .. (11.16)
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Coefficients bn for n > 1 can be found substituting this expansion into

the Abel equation (11.15). This asymptotics provides the precise ap-

proximation for small values of z; at large values, the inverse of the

Abel equation should be applied. For some fixed M , let

GM(z) ≈ −1
z

+
1

2
ln(z) +

M∑
m=0

bnz
n [zexGas] (11.17)

and let

AuZex(z) = lim
n→∞

FM

(
zex−n(z)

)
+ n

= lim
n→∞

FM

(
LambertW n(z)

)
+ n (11.18)

Coefficient C0 is chosen in such a way, that AuZex(1) = 0; then, the

relation

SuZex
(
AuZex(z)

)
= z [SuAuZexz] (11.19)

holds in wide range of values of z, except the negative part of the real
axis. With Mathematica software, the coefficients b of the asymptotic
expansion (11.17) can be calculated by the code below.

zex[z_] = z Exp[z];

S[k_, L_] = Sum[a[k, m] L^m, {m, 0, k}]

F[K_, z_, L_] = Sum[S[k, L]/z^(k + 1), {k, 0, K}]

Series[zex[F[4,z,L]] - F[4, z+1,L+Log[1+1/z]], {z,Infinity,3}]

a[0,0] = -1;

Series[zex[F[4, z, L]] - F[4, z+1, L+Log[1+1/z]], {z,Infinity,3}]

a[1, 1] = 1/2; a[1, 0] = 0;

Simplify[Series[zex[F[5,z,L]] - F[5,z+1, L+Log[1+1/z]], {z,Infinity,4}]]

n = 2;

s[n]=Series[zex[F[n+3,z,L]]-F[n+3,z+1,L+Log[1+1/z]],{z,Infinity,n+2}];

For[k = 0, k<=n,k++,m=n-k;

a[n,m] = ReplaceAll[a[n, m],So1[Coefficient[s[n] L,L*L^m] == 0, a[n,m]]];

Print[n, Space, k, Space, m, Space, a[n, m] ] ]

n = 3;

s[n]=Series[zex[F[n+3,z,L]]-F[n+3,z+1,L+Log[1+1/z]],{z,Infinity,n+2}];

For[k = 0, k<=n,k++,m=n-k;

a[n,m] = ReplaceAll[a[n, m],So1[Coefficient[s[n] L,L*L^m] == 0, a[n,m]]];

Print[n, Space, k, Space, m, Space, a[n, m] ] ]

and so on for higher n. The first 9 coefficients are copypasted below:
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n bn approximation of bn

1 −1/6 ≈ −0.1666666666666666667
2 1/16 ≈ 0.0625

3 −19/540 ≈ −0.0351851851851851852
4 1/48 ≈ 0.0208333333333333333

5 −41/4200 ≈ −0.0097619047619047619
6 37/103680 ≈ 0.00035686728395061728

7 18349/3175200 ≈ 0.005778848576467624

8 −443/80640 ≈ −0.005493551587301587
9 55721/21555072 ≈ −0.002585052835824441

(11.20)

The readers are invited to plot maps of ranges of validity of realtions

SuZex(AuZex(z)) = z (11.21)

AuZex(SuZex(z)) = z (11.22)

These maps can be considered as confirmation, verification of the de-

duction above.

4 Iterates of zex

With functions SuZex and AuZex, described in the previous sections,

the iterates of function zex can be expressed as follows:

zexn(z) = SuZex
(
n+AuZex(z)

)
[zexn] (11.23)

As usually, the number n of iterate has no need to be integer; it can be

real or even complex.

Iterates y = zexn(x) versus x for different n are shown in figure 11.8.

The integer iterates are shown with thick lines.

The readers are invited to check the relation

zexn
(
zexm(z)

)
= zexm+n(z) [zexiteran] (11.24)

and describe the range of validty in simple terms. At least, this relation

should hold in some vicinity of the positive part of the real axis for values

of the parameters.
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Figure 11.8: y=zexn(x) by (11.23) versus x for various n [zexiteplo]

Iterates of function zex are shown in figure 11.8. They look similar to

iterates of other fastly growing functions with real fixed point. The

iteration keeps the unity derivative in this point, so, all the curves in

figure 11.8 approach the fixed point (id est, to the origin of coordinates)

with unity derivative. Id est, with angle 45 degrees to the abscisa axis.

This property takes place also for other transfer functions with unity

derivative at the fixed point. One of such functions is considered in the

next chapter.

I hope, the Readers can plot by themselves the complex maps of non-

integer iterates of function zex. The codes supplied to the figures above

have the complex double implementation of SuZex and AuZex.
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Chapter 12

Sin, super sin and iterates of sin

Not all exotic iterations can be constructed with formulas of the previous

sections. In the previous two sections, the transfer functions T with fixed

points L are considered such that T (L)=L, T ′(L)=1, T ′′(L)>0. That
deduction fails, if T ′′(L)=0. One of examples of such a transfer function

is considered here.

This chapter deals with transfer function T =sin. This function is often

used in various applications, so, I think, it deserves a special chapter.

Iterates of sin had been considered since century 19, but the rough ap-

proximations had been suggested only in 2011 [76, 77]. Then in 2014,

the efficient approximation had been reported in the Far East Journal

of Mathematical Science [91]. Below, I retell the key ideas of that pub-

lication.

I hope, the Reader can plot the complex maps of sin and arcsin. I

recommend that Reader does this as an exercise. And also, the explicit

plots of these functions. After to watch the pictures mentioned, one can

understand the sense of superfunction of sin, I call it SuSin. SuSun is

solution of the transfer equation, I repeat is once again,

sin
(
SuSin(z)

)
=SuSin(z+1)

Explicit plot of function SuSin of real argument is shown in figure 12.1.

In the next section, I describe the construction of this function.
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y=
√
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y=SuSin(x)

http://mizugadro.mydns.jp/t/index.php/File:Susinplot.jpg

Figure 12.1: y=SuSin(x) by (12.8) and its asymptotics (12.3) [susinplot]
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1 Super sin

Superfunction of sin, called SuSin, is shown in figure 12.1. It is solution

of the transfer equation with sin as transfer function; I repeat it once

again:

F (z+1) = sin
(
F (z)

)
[Fz1sinFz] (12.1)

In this section, the special solution F = SuSin is constructed with the

following properties:

SuSun(0) = π/2 [susinp2] (12.2)

SuSun(z) =

√
3

z

(
1 +O

(
ln(z)

z

))
[susin1o] (12.3)

The leasing term of the right hand side of (12.3) can be guessed replac-

ing F (z+1) to F (z) + F ′(z) in the left hand side of equation (12.1)

and solving the resulting differential equation. However, there is cer-

tain residual at the substitution of such an approximation into (12.1);

and this residual indicates the form of the the next term in expansion

(12.3). Expression
ln(z)

z
appears as the effective small parameter of the

expansion. The residual at the substitution of representation (12.3) into

the transfer equation (12.1) helps to guess a form of the higher term of

the expansion, and so on. After few such steps, I guess and verify the

following form of the approximation for the superfunction F of sin:

F (z) = FM(z) +O

(
ln(z)M+1

zM+3/2

)
[susinasymf] (12.4)

where

FM(z) =

√
3

z

(
1− 3

10

ln(z)

z
+

M∑
m=2

Pm(ln(z)) z
−m

)
[susinFM] (12.5)

PM(z) =
m∑

n=0

am,n(−z)m [susina] (12.6)

and coefficients a are constants. These constants can be calculated with
the Mathematica code below:
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P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]

F[z_] = Sqrt[3/z] ( 1 + Sum[P[m, Log[z]]/z^m, {m, 1, M}])

M = 9; a[1, 0] = 0;

F1x = F[1 + 1/x];

Ftx = Sin[F[1/x]];

s[1] = Series[(F1x - Ftx)/Sqrt[x], {x, 0, 2}]

t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]

A[1, 1] = ReplaceAll[a[1, 1], t[1]]

su[1] = t[1]

m=2;

s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3 x],{x,0,m+1}], su[m-1]]]

t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]

u[m] = Simplify[Collect[t[m], L]]

v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]

w[m] = Table[a[m, n], {n, 0, m}]

ad[m] = Extract[Solve[v[m], w[m]], 1]

su[m] = Join[su[m - 1], ad[m]]

m=3;

s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3 x],{x,0,m+1}],su[m-1]]]

t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]

u[m] = Simplify[Collect[t[m], L]]

v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]

w[m] = Table[a[m, n], {n, 0, m}]

ad[m] = Extract[Solve[v[m], w[m]], 1]

su[m] = Join[su[m - 1], ad[m]]

. . .

and so on. The resulting coefficients are shown in table 12.1.

For some positive integer M , define function F with

F = lim
k→∞

arcsink(FM(z + k)) [SuSinF] (12.7)

The resulting F does not depend on the number M of terms taken into

account in the expansion (12.5). However, the larger, M , the faster

Table 12.1: Table of coefficients a in equation (12.6)

a1,0
3
10

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7
79
700

9
50

27
200

a2,3 a2,4 a2,5 a2,6 a2,7
411
3500

1941
7000

27
125

27
400

a3,4 a3,5 a3,6 a3,7
1606257
10780000

7227
17500

1683
4000

1917
10000

567
16000

a4,5 a4,6 a4,7
140345627
700700000

70079931
107800000

566973
700000

98739
200000

7533
50000

15309
800000

a5,6 a5,7
137678711441
490490000000

7364523
7007000

305491257
196000000

4155111
3500000

796311
1600000

2218347
20000000

168399
16000000

a6,7
25317035192599
62537475000000

8462569406199
4904900000000

32174780481
10780000000

5367503637
1960000000

407711313
280000000

181900809
400000000

1960281
25000000

938223
160000000
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Figure 12.2: u+iv = SuSin(x+iy) by (12.8)

is convergence of the limit in (12.7). This gives efficient algorithm for

evaluation of superfunction F for the transfer function sin.

For superfunction, declared in the beginning of the section, id est, sat-

isfying equation (12.2), define

SuSin(z) = F (z+x1) (12.8)

where x1≈1.4304553465288 is solution of equation

F (1+x1) = 1 (12.9)

Note that the required value at zero is achieved, because SuSin(0) =

arcsin(SuSin(1))=arcsin(1)=π/2.

Function SuSin is shown as explicit plot and as complex map in figures

12.1 and 12.2. Function SuSin has sqrt-type singularity as zero, and it
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has cut line along the negative part of the real axis. In the rest of the

complex plane, SuSin is holomorphic. At infinity, SuSin slowly decays

to zero, according to its asymptotic (12.3). This asymptotic is shown in

figure 12.1 with thin line.

In this Book, SuSin is first example of superfunction, for which the

transfer function shows growth slower than linear. In this case, for

positive values of the argument (id est, larger than the fixed point), the

superfunction is monotonically decreasing, as it is seen in Figure 12.1.

One could expect the inverse function (Abel sin) to decrease, at least for

some moderate positive values of the argument. This inverse function is

considered in the next section.
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Figure 12.3: y=AuSin(x)

Here, the inverse function of super

sin is called AuSin; its explicit plot

is shown in figure (12.3). In this

chapter, I describe evaluation of

this function.

For the sinusoidal transfer func-

tion, for superfunction F , the

Abel function G = F−1 satisfies

the Abel equation

G(sin(x)) = G(z)+1 (12.10)

From the properties of SuSin, the

properties of the inverse function

can be guessed. In particular, for

large values of the argument, the

asymptotic below should hold:

G(z) =
2

z2
+O(ln(z)) [AbelsinGas] (12.11)

Abel sin can be constructed in analogy with super sin. The solution G

of the Abel equation (12.10) with the asymptotic representation (12.11)

can be constructed, inverting function F by (12.7), id est, G = F−1.

Then, the constant x1 should be added,

AuSin(z) = G(z) + x1 (12.12)
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in order to satisfy relation

AuSin(π/2) = 0 [ausinp2] (12.13)

First, construct the approximation of function G; let

GM(z)=
3

z2
+
5

6
ln(z)+

M∑
m=1

cmz
2m (12.14)

Subsitution of g(z) = GM + O(z2M+2) into the Abel equation (12.10)

gives the coefficients c. In particular,

c1 =
79

1050
(12.15)

c2 =
29

2625
(12.16)

c3 =
91543

36382500
(12.17)

c4 =
18222899

28378350000
(12.18)

Then, for some fixed M , function G can be expressed as limit

G(z)= lim
k→∞

GM(sink(z))− k [singlim] (12.19)

and AuSin=SuSin−1 appears as

AuSin(z) = G(z)−G(π/2) [AuSinDe] (12.20)

Term G(π/2)≈2.089622719729524 in equation (12.20) provides condi-

tion (12.13).

Complex map of abelsinus AuSin by (12.20) is shown in fgure 12.4. As

for other real-holomorphic functions, this map is symmetric with respect

to reflection from the real axis, id est, with respect to flipping upside-

down. In addition, the map is symmetric with repeat to reflections from

the axis x=π/2; the first evaluation of function sin in formula (12.19)

provides this symmetry.

For the central part of figure 12.4, the limit (12.19) converges and de-

fines the holomorphic function in a pretty regular way. At lateral parts

of figure 12.4, the lines of level of the real part and those of the imagi-

nary part form the fractal-like structures. There, the AuSin cannot be

considered as inverse function of SuSin. Actually, the range of validity

of the inverse function is even narrower.
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Figure 12.5: u+iv = h(x+iy) and lines 
(AuSin(x+iy)=0

Technically, the shading in figure 12.5 is built up as the complex map

of function

h(z) = SuSin
(
AuSin(z)

)
(12.22)

In addition, in figure 12.5, lines of level 
(AuSin(x + iy)) are shown;

they are borrowed from figure 12.4. These lines bound the range of

validity of relation h(z) = z.
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The readers are cordially invited to download the generator of the figure

and modify it, to plot the map of the agreement function

A(z) = − lg

(
|h(z)− z|
|h(z)|+ |z|

)
[aausinsu] (12.23)

and to verify, that in the shaded part, relation AuSin = SuSin−1 holds
with at least 14 decimal digits. At the right hans side of the figure 12.5,

relation AuSin = SuSin−1 is not valid; AuSin(x+iy) is symmetric with

respect to line x = π/2; so, it cannot distinguish values for the right

hand side in figure 12.3 from those at the left hand side.

Table 12.2:

n bn

1 2.29163807440958

2 1.96043852439688

3 1.07862851256147

4 0.59622997993395

5 0.28333997139829

6 0.14193261194548

7 0.06423734271234

8 0.03026687705508

9 0.01351721250427

For the efficient (fast and precise) numerical

implementation of AuSin, various expansions

can be used. The Taylor expansion at π/2 can
be written as follows:

AuSin
(π
2
+ t

)
=

∞∑
n=1

bnt
2n (12.24)

Coefficients b in the expansion (12.24) are eval-

uated with the Cauchy integral, using the rep-

resentation of AuSin through function G by

(12.14), (12.19), (12.20). Approximations of

first nine of these coefficients are shown in Ta-

ble 12.2.

Series in the expansion (12.24) converges at |t|<π/2. It is sufficient to

take few terms of this expansion in order to reproduce the most of map

in figure 12.4. Readers are invited to plot this map (or, at least, to look

for it in the Appendix, figure 22.2 at page 300).

Taking into account some tens of coefficients in series (12.24), the numer-

ical approximations of AuSin provides the precision at least not worse,

than the precision of the original representation through the asymptotic

formulas (12.14), (12.19), (12.20). However the original representation is

still necessary to calculate the coefficients of the secondary expansions,

and, in particular, those of the Taylor expansion (12.24). Optimisation

of such representations may have sense before to include them to some

software as built-in functions, while the each microsecond at the evalua-

tion is important for the resulting efficiency at the multiple evaluations.

However, even with the primitive approximations described above, the

functions are evaluated with approximately 14 decimal digits and allow

to plot complex maps in real time. This indicates the good efficiency of

the representations suggested.
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Figure 12.6: y=sinn(x) by (12.25) versus x for various n [sinite]

3 Iterated sin

With functions SuSin and AuSin = SuSin−1, defined above, the iterates
of sin can be expressed as follows:

sinn(z) = SuSin
(
n+AuSin(z)

)
[sinn] (12.25)

This formula looks pretty similar to representations of iterates of any
other function with determined superfunction and the corresponding
Abel function. In this representation, number n of iterates has no need
to be integer; it can be real and even complex. For real values of number
n of iterates, sinn(x) is plotted versus x in figure 12.6.

For positive number n of iterate, graphics of y = sinn(x) are symmetric
with respect to line x = π/2. The larger is n, the closer the curve
approaches the abscissa axis.

For negative n, the graphic reaches the branch point at y = π/2 and
cannont be continued be continued above, as the iterates get complex
values. A usually, the 0th iterate corresponds to the identity function,
sin0(x) = x, and this relation holds while x < π/2.

Through the iterates (12.25) of sin, the SuSin can be expressed as follows:

SuSin(z) = sinz(π/2) [susinzsin] (12.26)

From the point of view of computation, representation (12.26) does not
have much sense. Anyway, for the evaluation of the right hand side of
(12.26), the approximations of SuSin should be used. However, such a
representation may have sense at the building-in of superfunctions (and
non-integer iterates) into the programming languages.
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4 Application

In this section, I discuss applications of multiple iterates of sin. However,

I assume, that the Readers can freely use SuSin and AuSin, described

above, to plot new graphics. I load the complex double implementations

of these functions as

http://mizugadro.mydns.jp/t/index.php/Susin.cin and

http://mizugadro.mydns.jp/t/index.php/Ausin.cinPerhaps, many

beautiful figures can be plotted playing with SuSin and AuSin.

For the physical applications, the real number of iterate is simpler to

interpret, than the complex iterate. Keeping in mind the application, I

suggest the example of parameterisation of the shape of the sled runner

with high iterate of sin. This example is shown in figure 12.7, that shows

y = sinn(π/2)−sinn(x) (12.27)

plotted over the photo of the sled (with a boy in it) is taken from Wiki-

media Common [9].

The curve, that overlaps wight he sled runner, is the 100th iterate of sin;

the number of iterate n= 100 is the only adjusted parameter used for

the fitting. However, the photo is shifted, scaled and rotated, in order to

have the tip at x = 0 and the last support of the sled runner at x=π/2,

y=0; in this point the sled runner is horizontal, this is provided by the

slight rotation of the photo.

y
0.1
0 0 1 π/2 2 x

http://mizugadro.mydns.jp/t/index.php/File:Boyt100.jpg

Figure 12.7: Boy at the sledge and y=sinn(π/2)−sinn(x) for n=100
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Chapter 13

Nemtsov function
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Figure 13.1: y =Nemq(x)

for various q

This chapter represents the last (for this book)

example of exotic iteration, and deal with the

specific polynomial

T (z) = Nemq(z) = z + z3 + qz4 (13.1)

I assume, that q is positive real parameter. For

various values of q, the explicit plot of this func-

tion is shown in figure 13.1. This is simple, but

still non-trivial case of the transfer function T , for which

T (L)=L , T ′(L)=1 , T ′′(L)=0 , T ′′′(L)>0 , T ′′′′(L)>0 (13.2)

Note, that for T = sin, considered in the previous section, L = 0 and

T ′′′′(L) = 0; function sin is antisymmetric T (−z) =−T (z), and in this

sense, simpler, than T =Nemq.

Historically, consideration of the Nemtsov function is one of the last

attempts to write an elementary function, for which I would not be

able construct superfunction, abelfunction and the non-integer iterates.

I found, that I need the special name for function by (13.1). That

happened 2015.01.28, in the same day, as the murder of Boris Nemtsov

had been reported 1; so I pick up the first three letters of his last name

to create the name the function.

In this Book, I do not follow the historical timeline of events, so, I put

chapter about the Nemtsov function here, in order to have the exotic it-

erations in one bunch. For real argument, graphics of the Nemtsov func-

tion for various values of parameter q are shown in figure 13.1. Complex

maps of function Nemq and its inverse function ArqNemq=Nem−1
q are

shown in figure 13.2 for q = 0, q = 1 and q = 2. Function ArqNem is

described in the following section.

1http://mizugadro.mydns.jp/t/index.php/Putin_killed_Nemtsov
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Figure 13.2: Maps u+iv = Nemq(x+iy) for q = 0, 1, 2, left column, and maps

u+iv = ArqNemq(x+iy), right column, for the same q
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Figure 13.3: y=ArqNemq(x) for q=0, 1, 2 [arqnemplo]

1 ArqNem

For the efficient evaluation of iterates of a function, we need both, its
supedfunction and the abelfunction. For implementations of these func-
tions, we need both the transfer function T = Nemq and its inverse
ArqNemq=T−1. For real values of the argument, plot y = ArqNemq(x)
for q = 0, q = 1, q = 2, q = 4, q = 10 is shown in figure 13.3. Inversion
of the Nemtsov function happens to be not trivial, and its description
deserves the special section.

The Nemtsov function Nemq by (13.1) is the 4th order polynomial; for
q>0, equation

Nemq(x) = z [Nemqxz] (13.3)

at given z has four solutions x. Any of original solutions (suggested, for
example, by Mathematica routine Solve) happen to be ugly at the com-
plex map, and even worse at evaluation of abelfunction for the Nemtsov
function. The reader can plot the complex maps for the four roots
of equation (13.3) and see the root of my discontent with them. But
these solutions can be used to construct the inverse function shown the
right hand column of figure 13.2. I have implemented several combina-
tions of the “primary” solutions, giving special name to each resulting
inverse function: ArcNemq, ArkNemq, ArqNemq. The third of them,
ArqNemq, happened to be satisfactory; so, I use it as Nem−1. The cut
lines of function ArqNemq go from −∞ to zero, and then to each of the
branch points, seen at the maps in the right column of Figure 13.2.

For the positive values of the argument, there is no need to make any
difference between three functions mentioned above; for x>0, relations
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ArcNemq(x) = ArkNemq(x) = ArqNemq(x) hold. Graphics of these
functions are shown in figure 13.3.
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Figure 13.4: Parametric

plot: x+iy = NemBran(q)

For handling of cuts of function ArqNemq, the
branch points should be calculated. These
branch points are shown in figure 13.4. It refers
to functionNemBran, that expresses the upper
branch point of function ArqNemq as function
of q. Below I describe, how to evaluate this
function.

Assume, some q is given. We need to find so-
lutions of equation Nem ′

q (z) = 0. This solu-
tion can be expressed in Mathematica language
with code

T[z_]=z+z^3+q z^4

s = Solve[T’[z]==0,z]

ReplaceAll[z,Extract[s,1]]

The output indicates, how to program function
NemBran, shown in figure 13.4:

z_type nembra(DB q){ z_type Q,v,V;

Q=q*q;

v=-1.-8.*Q+4.*sqrt(Q+4.*Q*Q);

V=pow(v,1./3.);

return (.25/q)*(-1.+1./V+V); }

z_type NemBran(DB q){ z_type z,zz=z*z;

z=nembra(q); return z*(1.+zz*(1.+q*z)); }

Here DB denotes <double> and z_type de-
notes complex<double> ; NemBran appears as combination of functions
Nem and nembra.

Assume, some q > 0 is given; let x0+iy0 =NemBran(q). For function
ArqNemq, I draw the cut lines form −∞ to zero, and from zero to point
(x0, y0) and to point (x0,−y0). As the cut lines are specified, it is easy to
program evaluation of ArqNemq, picking up the corresponding branch
of the solution. The C++ code is shown in Table 13.1. One can extract
the code also from the URL marked in figure 13.4. The readers are
invited to check numerically relations

Nemq

(
ArqNemq(z)

)
= z (13.4)

ArcNemq

(
Nemq(z)

)
= z (13.5)

and investigate the range of validity of each of these equation.
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Table 13.1: C++ implementation of function ArqNemq. Values of q and corre-

sponding x0, y0 should be already calculated and stored in global variables Q, tr, ti

z_type arnemU(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=-I*sqrt(-r);
z_type s=27.*a + 3.*R; z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=I*sqrt(-h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=I*sqrt(-g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arnemD(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=I*sqrt(-r);
z_type s=27.*a + 3.*R; z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=-I*sqrt(-h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=-I*sqrt(-g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arnemR(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=sqrt(r); z_type s=27.*a + 3.*R;
z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=sqrt(h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=sqrt(g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arnemL(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=-sqrt(r);
z_type s=27.*a + 3.*R; z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=sqrt(h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=sqrt(g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arqnem(z_type z){ DB x,y; x=Re(z);y=Im(z);
if( y>ti || (x<0 && y>=0)) return arnemU(z);
//if(y<0) return conj(arnemU(conj(z)));
if(y<-ti || (x<0 && y<=0)) return arnemD(z);
if(x*ti>fabs(y)*tr) return arnemR(z);
return arnemL(z);}
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Figure 13.5: y=SuNemq(x)

Functions Nemq and ArqNemq = Nem−1
q

are defined, implemented, tested and de-

scribed above; they can be used for construc-

tion of superfunction SuNemq, abelfunction

AuNemq=SuNem−1
q and corresponding non-

integer iterates of the Nemtsov function. I

begin with function SuNemq. It is shown in

figure 13.5 dor vvarious values of q. In this

section, I describe, how is it constructed.

For the Nemtsov function Nemq, the super-

function is solution F of the transfer equation

F (z+1) = Nemq(F (z)) [Feq] (13.6)

In analogy with approach of the previous

chapter, I look for solution F with the certain

asymptotic behaviour,

Fq(z)=
1√
−2z

(
1− q√

−2z
+O

( ln(−z)
z

))
[F] (13.7)

In order to construct the computationally-efficient asymptotic approxi-

mation of superfunction Fq, define set of polynomials

Pm(z) =

IntegerPart[m/2]∑
n=0

am,nz
n [P] (13.8)

where a are constant coefficients. Then, I set

Fq,M(z) = ε

(
1− qε+

M∑
m=2

P (ln(−z))εm
)

[FqM] (13.9)

where

ε =
1√
−2z

[epsilon] (13.10)

I substitute the approximation (13.9) into the transfer equation (13.6).

The asymptotic analysis of the residual (id est, its asymptotic min-

imisation) determines coefficients a. The asymptotic representation

(13.8),(13.9),(13.10) should approximate superfunction F at least for

large negative values of the argument.
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Table 13.2: Computation of coefficients a in equation (13.8) [T2]

T[z_] = z + z^3 + q z^4
P[m_, L_] := Sum[a[m, n] L^n, {n, 0, IntegerPart[m/2]}]
A[1, 0] = -q; A[1, 1] = 0;
a[2, 0] = 0; A[2, 0] = 0;
F[m_,z_]:=1/(-2z)^(1/2)(1-q/(-2z)^(1/2)+
Sum[P[n,Log[-z]]/(-2z)^(n/2),{n,2,m}])

m = 2;
s[m] =Numerator[Normal[Series[

(T[F[m,-1/x^2]]-F[m,-1/x^2+1])2^((m+1)/2)/x^(m+2),{x,0,1}]]]
t[m] = Numerator[Coefficient[Normal[s[m]], x] ]
sub[m] = Extract[Solve[t[m] == 0, a[m, 1]], 1]
SUB[m] = Simplify[sub[m]]
f[m, z_] = ReplaceAll[F[m, z], SUB[m]]

m = 3
s[m] =Simplify[ReplaceAll[Series[
(T[F[m,-1/x^2]]-F[m,-1/x^2+1])2^((m+3)/2)/x^(m+3),{x,0,0}],SUB[m-1]]];
t[m] = ReplaceAll[Normal[s[m]], Log[x] -> L];
u[m] = Table[Coefficient[t[m] L, L^n]==0, {n,1,1+IntegerPart[m/2]}];
tab[m] = Table[a[m, n], {n, 0, IntegerPart[m/2]}];
sub[m] = Extract[Solve[u[m], tab[m]], 1]
SUB[m] = Join[SUB[m-1], sub[m]];

(* and so on for m=4, m=5, etc. *)

The original (and non-trivial) part of this research is guessing of repre-

sentation (13.8),(13.9),(13.10). This representation is a little bit more

complicated, that the similar representation (12.4), (12.5), (12.6) for

function SuSin, described in the precious section.

Once representation (13.8),(13.9),(13.10) is written out, the following

construction is straightforward. This analysis can be performed with

the Mathematica code shown in Table 13.2.

Coefficients a are chosen in such a way, that

Fq,M(z) = Fq(z) +O
(
εM+1

)
(13.11)

Tens of coefficients a in equation (13.8) can be computed in such a way.

The first coefficients are:

a2,0 = 0 , a2,1 =
1
4(3 + 2q2)

a3,0 = q + 3q3 , a3,1 = −(3q)/2− q3

a4,0=
1
8(5−4q2−44q4), a4,1=

1
8(−9−12q2−4q4), a4,2=

3
32(9+12q2+4q4)

a5,0=
1
12(−39q−104q3−4q5), a5,1=

7
4(3q+8q

3+4q5), a5,2=−9q
4 −3q3−q5
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Coefficients a happen to be polynomials with respect to parameter q.

For the following numerical implementation of superfunction, they are

expressed through the Horner rule. The C++ implementation is loaded

together with generators of figures of this chapter.

Assume given number M of terms of sum in the asymptotic expansion

(13.9). Then, the superfunction Fq can be defined as limit

Fq(z) = lim
n→∞

Nemn
q

(
Fq,M(z − n)

)
[Flim] (13.12)

I remind, the upper index after the name of the function indicates the

number of its iterate. The limit does not depend on the number M .

However, for large M , the limit converges faster. For q of order of

unity, and argument z of order of unity, with M =30, it is sufficient to

make n=20 iterates in order to approximate limit in equation (13.12)

with 14 decimal digits. That greatly exceeds the precision, required to

plot the camera-ready copies of all the figures presented. However, the

extra digits help to reveal faults of the representation of function, if any

mistake takes place.

The transfer equation has translational invariance. If some z → F (z)

is the solution, then, for a constant C, function z → F (z+C) is also

solution, id est, also superfiunction of the same transfer function. In

order to make figures more beautiful it is convenient, that at zero, the

superfunction has value unity. For this reason, I define superfunction

SuNemq as superfunction F with displaced argument:

SuNemq(z) = Fq(x1+z) [SuNem] (13.13)

where x1 = x1(q) is real solution of equation

Fq(x1) = 1 (13.14)

This provides condition

SuNemq(0) = 1 (13.15)

This condition is not so important to evaluate iterates of the Nemtsov

function, but it helps to compare different superfunctions. Many super-

functions, described in this Book, have value unity at zero.

Definition (13.13) of function SuNem is used to generate the explicit plot

in figure 13.5 and also the complex maps of SuNemq for q=0, q=1 and

q=2 in figure 13.6. These maps are symmetric with respect to reflection

from the real axis, so, the only upper half of the complex plane is shown.
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Maps in figure 13.6 demonstrate the asymptotic behaviour of function

SuNem. In the most of the complex plane, the function slowly decays

to zero. This decay is determined by the leading term of the asymptotic

expansion (13.9). However, this asymptotic expansion is not valid in

vicinity of the origin of coordinate, nor in vicinity of the the positive

part of the real axis. In the half-strips x>2, 1< |y|<2, the maps show

complicated, oscillating behaviour of the function. For positive values

of the argument, function SuNemq shows fast growth. This growth is

seen both, in the explicit plot at the right hand side picture of figure

13.5 and in the complex maps in figure 13.6.

For computation of iterates of the Nemtsov function Nemq, the Abel

function AuNemq = SuNem−1
q is also required. Function AuNemq is

described in the next section.

3 AuNem

In this section, I construct abelfunction for the Nemtsov function Nemq

by (13.1). This abeldunction is inverse of the superfunction, id est,

AuNemq=SuNem−1
q .

First, consider inverse function of the superfunction F by (13.7); let

Gq=G=F−1. It can be expanded as follows:

Gq,M(z) = − 1

2z2
+

q

z
+

1

2

(
2q2+3

)
log(z) +

q2

2
+

1

4

(
2q2+3

)
log(2)

+
M∑
n=1

cnz
n [auneqm] (13.16)

Gq(z) = Gq,M(z) +O(zM+1) [G] (13.17)

This form can be obtained, inverting expansions (13.7), (13.9) for su-

perfunction Fq.

Coefficients c depend on q; these coefficients can be computed either

with asymptotic analysis of equation

Gq,M(Fq,M(x)) = z (13.18)

or from the Abel equation

Gq(Nemq(z)) = Gq(z) + 1 (13.19)

Coefficients c in equation (13.16) can be calculated in Mathematica with

the code shown in Table 13.3.
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Table 13.3: Mathematica code for calculation of coefficients c in equation (13.16)

T[z_] = z + z^3 + q z^4
P[m_,L_]:= Sum[a[m, n] L^n, {n, 0, IntegerPart[m/2]}]
F[m_,z_]:=1/(-2z)^(1/2)(1-q/(-2z)^(1/2)+

Sum[P[n,Log[-z]]/(-2z)^(n/2),{n,2,m}])
G[m_,x_]:=-1/(2x^2)+q/x+q^2/2+1/4(3+2q^2)Log[2]+1/2 (3+2q^2)Log[x]+

Sum[c[n]x^n,{n,1,m}]
Series[ReplaceAll[F[3,h+G[3, z]], a[2,1]-> 1/4 (3+2 q^2)], {z,0,4}]
(*The line above is just test *)
m=1;
sg[m]=Coefficient[Series[G[m+3,T[z]]-G[m+3,z]-1,{z,0,3}], z^(m+2)]
st[m]=Solve[sg[m] == 0, c[m]]
su[m]=Extract[st[m], 1]
SU[m]= su[m];

m= 2;
sf[m]=Series[ ReplaceAll[G[m+3,T[z]]-G[m+3,z]-1,SU[m-1]],{z,0,m+2}]
sg[m]=Simplify[Coefficient[sf[m] 2^m, z^(m+2)]]
st[m]= Solve[sg[m] == 0, c[m]]
SU[m]= Join[SU[m - 1], su[m]]

m = 3;
sf[m]=Series[ ReplaceAll[G[m+3,T[z]]-G[m+3,z]-1,SU[m-1]],{z,0,m+2}]
sg[m]=Simplify[Coefficient[sf[m] 2^m, z^(m+2)]]
st[m]= Solve[sg[m] == 0, c[m]]
su[m]= Extract[st[m], 1]
SU[m]= Join[SU[m-1], su[m]]

(*and so on for m=4, m-5, etc... *)

For an integer M>0, the abelfunction Gq can be evaluated through the

asymptotic approximation Gq,M as the limit

Gq(z) = lim
n→∞

(
Gq,M

(
ArqNem n

q (z)
)
+ n

)
[AuNemLim](13.20)

Then, the function AuNem is expressed through function G with addi-

tion of the constant,

AuNemq(z) = Gq(z)−Gq(1) (13.21)

in such a way, that AuNem(1) = 0. The readers are invited to check

numerically the ranges of validity of relation

SuNemq

(
AuNemq(z)

)
= z (13.22)

AuNemq

(
SuNemq(z)

)
= z (13.23)

and also estimate the residuals at the substitution of the numerical im-

plementations into these relations.
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Complex maps of u+iv = AuNemq(x+iy) for q=0, q=1 and q=2 are

shown in the x, y plane in figure 13.7.

The Readed is invited to compare the cut lines in figure 13.7 with cuts

in maps at the right hand side column of figure suma. The cut lines of

function AuNemq are the same, as those of function ArqNemq; because

it is the first function to evaluate while computing through the asymp-

totic representation Gq,M by equation (13.20). The branch points are

determined by function NemBran(q) shown in figure 13.4.

Lines v=const in maps of figure 13.7 approach the cut lines in pretty

specific way, that corresponds to decrease of u, which represents the

real part of the function. This means, that, if one goes along any line

v = const, increasing u, one approaches to the origin of coordinates,

where the asymptotic representation is accurate, without to cross the

cut lines. This happens due to the specific choice of the inverse function

ArqNemq, with this goal, the cut lines of function ArqNemq are chosen

in the function ArqNem. (The default choice of the inverse function,

provided by the routine “Solve” in Mathematica, does not provide this.)

In such a way, the Abel function AuNem for the Nemtsov function is

constructed and implemented. With functions SuNemq and AuNemq,

the iterates of function Nemq can be calculated. They are shown in

figures 13.8, 13.9 and described in the next section.
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4 Iterates of the Nemtsov function

With functions Nemq and SuNemq from the previous sections, the iter-

ates of the Nemtsov function can be defined,

Nemn
q (z) = SuNemq

(
n+AuNemq(z)

)
[Nqn] (13.24)

Figure 13.8 shows the explicit plot y = Nemq(x) for q→ 0 in the left

hand side picture and for q=2 in the right hand side picture, for various

values of the number n of iterate. The integer values of n correspond to

the thick lines.

For q=1, complex maps of iterates Nemn
1 are shown in figure 13.9. The

figure shows, how, at the increase of number n of iterate from −1 to

1, function ArqNem1 gradually changes to the identity function (with

rectangular grid as the complex map) and then to the Nemtsov function

Nem1.

Iterates in figure 13.8 look similar to iterates of other quickly growing

holomorphic functions [54, 64, 61, 65, 88]. In particular, at n≈ 0, the
iterate Nemn

q looks similar to identical function; at n = 1, it is just

Nemtsov function Nemq, and at n = −1, it is the inverse function, id

est, ArqNemq.

Iterates of a growing real-holomorphic function are also real-holomorphic;

the complex maps are symmetric with respect to reflection from the real

axis, so, the only upper half of the complex plane is shown shown in

figure 13.9. The left column shows maps for the positive iterates; the

number n varies from 0.6 at the top map with step −0.1 to −0.1 at the

bottom map. In the similar way, the right hand side column represents

maps for n from −0.6 at the top to −0.1 at the bottom. Only case with

q=1 is presented, but one can download the generator of the figure and

plot similar maps for other values of q, and, of course, other values of

number n of iterate; this number can be even complex.

Iterates by 13.24 shown in figures 13.8, 13.9 provide the smooth (holo-

morphis) transition from the Nemtsov function Nemq to the identity

function and then to the inverse function ArqNem. Iterates have the

group property,

Tm+n(z) = Tm(T n(z)) [Tmn] (13.25)

This ratio holds only for certain range of values of parameters, that

includes the positive part of the real axis for z. In order to keep the

Book of reasonable thickness, I skip out this analysis and suggest the

Readers to do it as an excersise.
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5 End of exotic iteration
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B.Nemtsov

The 4th order polynomial of special kind (13.1) is con-

sidered in this section. I call it Nemtsov function after

Boris Nemtsov, see fig. 13.10; the need to denote this

function coincided with the tragic event. This polyno-

mial is treated as transfer function: the inverse function

ArqNem, the superfunction SuNem and the abelfunction

AuNem are constructed.

Construction of function ArqNem happend to be non-trivial; so, its map

is shown in the right hand side column of figure 13.2 for various values

of parameter. Choice of the cut lines of this function is important. The

readers are invited to try to construct abelfunction with other choice of

the cut lines and plot the complex maps of the result. And compare the

resulting complex maps to those in figure 13.7. And the same for the

iterates in figure 13.9.

Function Nem is my last attempt to construct a difficult-to-iterate grow-

ing real-holomomorphic function with real fixed point. The fixed point is

chosen at zero, because the update to the more general case is straight-

forward, it is specified in the las row of table 3.1.

For the real-holomorphic growing transfer function with real fixed point,

the suprfunction can be constructed with regular iteration considered in

chapter 6, if the derivative at fixed point is not unity, or with exotic

iteration, if this derivative is unity. Then, one can guess the heuristic

“solution” with correct asymptotic behaviour of the superfunction, using

analogy with the differential equation, discussed in the previous chapter;

the same analogy works for the Nemtov function too. This leads to

iterates that I call “exotic”. The exotic iterates lead to pretty regular

and real-holomorphic superfunctions, abelfunctions and correspondingly

regular non-integer iterates of the transfer function.

In the next chapter, I consider, in some sense, even more exotic case,

when the transfer function has no real fixed point. The example of

such a function without real fixed point is just natural exponent, T =

exp. Historically, namely this transfer function had been considered and

iterated (it can be iterated any real or even complex number of times)

[54].
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Chapter 14

Natural tetration tet
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Figure 14.1: y=tet(x) , y=exp(x) , and

y=10
(
tet(x)− (x+1)

)
[TetPlot]

Here, I consider the exponen-

tial transfer function, T =exp.

For this transfer function, the

transfer equation can be writ-

ten as follows:

f(z+1) = exp(f(z)) (14.1)

In order to narrow the set of

solutions, the additional con-

dition is assumed:

f(0) = 1 (14.2)

In order to provide the unique-

ness, in addition, I require,

that the solution f(z) is holo-

morphic at the whole complex

plane except z≤−2, and also

limited at least in the strip

	(z) ≤ 1. I refer the solution

f as “tetration” (or “natural

tetration”) and denote it with

symbol tet. In this chapter I

tell, how this function is con-

structed; I use the main formu-

las and pictures from publica-

tions [54, 64].
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Colleagues often ask questions not only about superfunctions and way

of the evaluation, but also about guessing of properties of these func-

tions. In particular, these questions refer to the properties of the natural

tetration: “How did you guess?”

The questions about guessing are important not only for the history, but

also for the colleagues, who want to use the similar way for other transfer

functions, superfunctions and, perhaps, even to some more complicated

objects. So, I consider these questions seriously. Especially, this apply to

the natural exponent and the natural tetration, as the natural tetration

is first non-trivial superfunction, for which the efficient algorithms of

evaluation had been suggested and described [54, 64].

In this chapter, I provide not only the formulas and pictures for the

natural exponental and the natural tetration, but also explanations, why

namely this tetration should be considered and recognised as the most

“true” and the “most natural” among various possible superfunctions;

and why any researcher, following the same idea, should come to the

same tetration.

1 Exponent

Before to deal with solution f of equations (14.1), (14.2), it worth to

remind properties of exponent. For the real argument, graphic of expo-

nent is shown in figure 14.1 with thin line. Complex map of the transfer

function T = exp is shown in figure 14.2.

I hope to be not condemned for drawing so elementary functions as

exponent. (I did not do it in the previous section about sin; but for some

elementary functions I provide the maps. The Book should allow the

understanding, even if it happens to be in hand of a pure experimentalist.

With the detailed descriptions of the elementary things, I hope, that

even Aleksander Kaminskii, or Akira Shirakawa, or Yulya Kuznetsova

can understand at least the main idea of the Book. The Book must

allow the reading even by the least-educated academician [16] 1.

1http://royallib.com/read/Strugatsky_Arkady/Tale_of_the_Troika.html Tale of the

Troika by Arkady and Boris Strugatsky. PROLOG. "..Our slogan is ‘elevators for everyone.’

No matter who. The elevator must be able to withstand the entrance of the least-educated academi-

cian.”
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Figure 14.2: u+iv = exp(x+iy) [expMap]

The exponent can be considered as superfunction of function “multipli-

cation by constant number e”; e = exp(1)≈ 2.71828182846 . In such a

way, exp is superfunction for the transfer function T by

T (z) = e z [Tez] (14.3)

I repeat the formula from the school course of algebra:

f(z+1) = e f(z) [expz1ez] (14.4)

The solution of this equation can be constructed with regular iteration,

in vicinity of the fixed point L=0 of the transfer function T by (14.3).

The Reader is invited to make this exercise and check, that the primary

expansion stops a the first term, giving the exact solution f = exp at

the first iteration.
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For the transfer function z �→ e z, I write also the Abel equation:

g(e z) = 1 + g(z) [abelog] (14.5)

Equation (14.5) is considered by Henryk Trappmann [86]. The Reader

can guess, that Henryk got the natural logarithm as the solution, id

est, g=ln. Readers are invited to think, what additional requirements

should be associated with equation (14.5), in addition to equation

g(1) = 0 (14.6)

in order to provide the uniqueness of the solution g=ln.

Explicit plot of exp is shown in figure 14.3. (The same dependence is

shown with thin curve in figure 14.1.) It worths to compare the graphic

of the natural exponent to that of the exponent to base b=
√
2, which

crosses the straight line y = x. This line is also shown in figure 14.3.

The graphic of the natural exponent y=exp(x) does not cross the line

y=x. The natural exponent has no real fixed point.

Fixed point L of exponential and logarithm to base b=exp(a) is solution

of equation L = logb(L). This solution can be expressed through the

Tania function, considered in chapter 4:
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L=filog(a)=
Tania(ln(a)−1−πi)

−a =
WrightOmega(ln(a)−πi)

−a (14.7)

The second equality in formula (14.7) can be considered as definition of

the new function filog. This function is described also in TORI,

http://mizugadro.mydns.jp/t/index.php/Filog.

Function filog is considered in details below, in chapter 18. Here, we

need this function only for the single value of the argument, namely, L =

filog(1). As function Tania is already described, it should be considered

as special function. In this sense, quantity L should is exact:

L = −Tania(−1−πi)

≈ 0.3181315052047641353 + 1.3372357014306894089 i (14.8)

The rough approximation (with two significant figures) for L by (14.8)

can be found even from figure 5.2, counting isolines with finger.

Function Tania is used in this Book already twice: first, in chapter 2,

as realistic superfunction for the transfer function Doya (that describes

increase of the intensity of light in a laser amplifier with simple model

of continuously pumped of active medium. and, second time, here, as

exact representation for the fixed point of exponent. This is the same

function. Recycling, reusing of the results is base of any science, and

the physical mathematics (see the Introduction) is not exception.

Exponent is real-holomorphic function, exp(z∗) = exp(z)∗; hence L∗≈
0.1−1.3 i is also the fixed point. In principle, each of these fixed points

can be used for the regular iteration, considered in chapter 6. However,

such iteration does not lead to the real-holomorphic superfunction. I

wanted to suggest a way of evaluation of the real-holomorphic tetration,

that could be used as the definition. In order to specify it, I assume, that

there exist some special superfunction of the natural exponent, and this

superfunction is characterised with specific behaviour. As the real part

of the argument goes to −∞, the superfunction approaches L in the

upper part of the complex half plane, and L∗ in the loser part. At the

beginning, this is nothing more, but just guess. In the next section, this

guess is used to construct both, the definition and the way of evaluation.
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2 Heuristic tetration

Since publication of the first article about real-holomorphic tetration,

the colleague ask me similar questions:

“Why did you interested in holomorphic tetration?"

“How did you guess the asymptotic behaviour to tetration at ±i∞?”

“How did you guess the initial approximation fit3?” [87].

In order not to be like Rip van Winkle 2, revealing new and new details,

here I mention the only one of motivations, that is related to physics.

Initially, I wanted to use some fast-growing function in order to represent

the factorial of the number of particles in the Bose-Einstein condensate,

this factorial appears at the attempt to write-out the first approxima-

tion for the normalised multi-particle wave function. The fastly-growing

function is described in the article by Hooshmand [49], but it happened

to be not suitable for the asymptotic analysis, because it is not holo-

morphic. The corresponding extension

f(z) = uxp(z) =

⎧⎪⎨
⎪⎩

ln
(
uxp(z+1)

)
at 	(z) ≤ −1

z + 1 at −1 < 	(z) ≤ 0

exp
(
uxp(z−1)

)
at 0 < 	(z)

(14.9)

has many cut lines, they divide the complex plane to almost separated

strips. Complex map of function uxp by (14.9) is shown in the upper

picture of figure 14.4 with lines of constant log amplitude u and lines of

constant phase v,

exp(u+iv) = f(x+iy) (14.10)

This representation is different from that, usef for the most of complex

maps in this Book; usually, the lines of constant real part and those

of constant imaginary part are drawn. While I explain, how did I get

the holomorphic tetration, I represent maps in the same form, as they

appear in the original paper [54].

As I already mention above, the vertical cuts of the range of holomor-

phism of function uxp divide the complex plane to almost independent

strips seen in the top map in figure 14.4. These strips raise the question:

Is it possible to suggest a “more holomorphic” (id est, with less cuts) so-

lution of the transfer equation (14.1)? Or no solution f of the equation

(14.1) may have wide range of holomorphism?

2 http://classiclit.about.com/library/bl-etexts/wirving/bl-wirving-rip.htm Rip

Van Winkle by Washington Irving. (1783-1859)
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At the first look into results by Hooshand [49], construction of the real-

holomorphic solution seemed to be impossible. On the other hand, the

initial assumption used there, about monotonous derivative (for the real

argument) of the superfunction of exp, looks doubtful. I tried to con-

struct some alternative proof, that the cuts are unavoidable, without to

use the strange assumption. I begun to investigate the case, assuming

existence to the holomorphic solution. I expected to get some contra-

diction, and to use the contradiction for the proof. The holomorphic

solution had been constructed, and no contradiction had been detected

[54]; so, I had to accept the existence.

Historically, the construction of this solution begun with approxima-

tions. I had considered several real-holomorphic elementary functions,

that have logarithmic singularity at −2 and take the same values, as

tetration, at few integer values of the argument. One of them (that

happened to be better than some others) is

fit2(z)=ln(2+z)

+(1+z)
(
1 + z

2 exp
(
(z−1)s2(z)

)(
e− 2+ln 4

3

)
− ln 2

)
(14.11)

where

s2(z) = exp
(
exp(z − 2.51)

)
− 0.6 + 0.08(z+1) [fit2s] (14.12)

Constants in the expression (14.12) are chosen in order to minimise the

residual at the substitution f = fit2 into the transfer equation (14.1).

This approximation could be improved, comparing (14.12) with the

precise approximation through the Cauchy integral, considered below.

However, at the heuristic search for the rough approximations, the rep-

resentation through the Cauchy Integral had not yet been written; so,

choosing the approximation, I had to use the residual as the criterion.

After construction of function fit2, it happened, that the linear combi-

nation of functions z �→fit2(z) and z �→ ln(fit2(z+1)) gives the residual
even smaller; in such a way, the approximation fit3 appeared:

fit3(z)=0.6fit2(z) + 0.4 ln
(
fit2(z + 1)

)
(14.13)

The range of approximation of tetration can be extended. Let

Fit3(z)=

⎧⎪⎨
⎪⎩

ln
(
Fit3(z+1)

)
at 	(z) ≤ −1

fit3(z) at −1 < 	(z) ≤ 0

exp
(
Fit3(z−1)

)
at 0 < 	(z)

[Fit3] (14.14)

Logampliture and phase of this function are show in figure 14.4b.
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For comparison, two more maps are shown in figure 14.4, they are

numbered as c and d. There represent the asymptotic approximation,

f = Fit6 and tetration f = tet, described below in section 4; namely

this tetration is goal of this chapter.

The asymptotic approximation

Fit6(z) =

{
L+ exp(k(z+r)) , 	(z) < −8
exp

(
fit6(z−1)

)
, 	(z) ≥ −8

[Fit6] (14.15)

is good at large values of imaginary part of the argument. For natural

tetration, the increment k=L. This looks as just coincidence. However,

everyone can check it with the asymptotic analysis, substituting the

primary expression of fit6 into the transfer equation (14.1). Value of

constant r≈ 1.075820830781−0.9466419207254 i appears as adjusting
parameter of this approximation. On the other hand, it seems to be

approximation of the important mathematical constant. I would call this

r with name “The Kneser constant”. This is one of constants, required

for the expansion of iterates of exponent discussed in [10] and used for

the approximation of tetration [64].

Function Fit6(z) approximates tetration tet(z) at 
(z) > 0.4; function
Fit6(z

∗)∗ approximates tet(z) at 
(z) < −0.4; combination of these

functions is shown in map “c” in figure 14.4. In vicinity of the real axis,

roughly, in the strip |
(z)| < 0.4, both these functions Fit6(z) and

Fit6(z
∗)∗ look ugly, and this strip in the map is left white.

Approximations f = Fit3 and f = Fit6 by (14.14) (14.15) are already

sufficient to plot the complex maps and explicit plots of tertration; to-

gether, they provide of order of 3 decimal digits in the range of maps

shown in figure 14.4. The last map "d" in figure 14.4 visually looks as

superposition of the maps "b" and "c" above; this gave the general view

of tetration that had to be constructed.

The approximations above (even Fit3) allow to guess the asymptotic

behaviour of tetration. It should approach the fixed points L or L∗

of logarithm, while the imaginary part of the argument approaches the

plus or minus infinity. These values are indicated in maps “c” and “d” of

figure 14.4.

In such a way, this section explains, how did I guess, which the asymp-

totic behaviour should the tetration have. Postulating this behaviour,

one can construct the algorithm for evaluation of tetration with any re-

quired precision. The postulated properties of tetration are collected in

the next section.
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3 Properties of tetration

Following recommendations by colleagues, friends and relatives, this con-

tent of this Book gradually goes from the simple examples to the more

general formulas. In order to follow this way, here I define only the nat-

ural tetration. This section continues the following article [54] of year

2009. .

Since the two upper maps in figure 14.4 were plotted, the main properties

of this function are clear. I postulate them below.

Solution F of the transfer equation (14.1) with additional condition

F (0) = 0 is called natural tetration, or simply tetration tet, if the fol-

lowing conditions are satisfied:

Т1. Function F (z) is real-holomorphic in the whole complex plane

except the halfline z ≤ −2. Id est, F (z∗)=F (x)∗. At z=−2, function
F (z) has logarithmic singularity, id est, the branch point.

Т2. Function F (z) is bounded in the strip |	(z)| ≤ 1.

T3. Function F (x) asymptotically approaches the fixed point L in the

upper half plane: for any real x, the relation below holds:

lim
y→+∞

f(z + iy) = L [T715] (14.16)

In addition, for positive y, the relation below holds:

lim
x→−∞

f(z + iy) = L [T716] (14.17)

T4. In the strip −1 ≤ 	(z) ≤ 2 , the following condition holds:

arg(F (z)) < 2 [argF] (14.18)

Conditions T1-T4 above are a little bit redundant. The following devel-

opment of the formalism of superfunctions is expected to indicate, which

of these properties should be kept as definition of tetration, and which

should appear as theorems, following from the shortened definition.

From postulates (14.16), (14.17) and real holomorphism f(z∗) = f(z)∗,
it follows, that

lim
y→−∞

f(z + iy) = L∗ [T717] (14.19)

and for negative y, the relation below holds

lim
x→−∞

f(z + iy) = L∗ [T718] (14.20)

These conditions are used in the next section for construction and eval-

uation of tetration through the Cauchy integral.
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4 Cauchy integral

For holomorphic function F , the Cauchy formula takes place [103]:

F (z) =
1

2πi

∮
Ω

F (t)

t−z
dt [Cauchy] (14.21)

where contour Ω belongs to the simply connected range of holomor-

phism of function F and only once passes around point z in the counter

clock wise direction. With equation (14.21), the transfer equation (14.1)

leads to the integral equation for the values of superfunction along the

imaginary axis [54]. The description is repeated below.

Engineer, physicist or mathematician, using formula (14.21), has certain

freedom in choice of the contour of integration. The researcher acts in

a way, similar to that of an Engineer, who makes a project of the loop

railroad for the rocky semi-island.

The smart engineer takes into account the locations of ports, cities,

farms, industries, in order to help the people to reach the places of

their destination. Also, the engineer tries to avoid swamps, steep slops,

narrow curvy canyons, to make the railroad fast, cheap and safe.

Vainglorious tyrant, dictator, already famous in sports, war, art, arche-

ology and ornithology, who wants to show himself also as a powerful

all-mighty engineer, may draw a rectangle on the map, and promote it

as a project of the trace of the railway. Such a “ project ” will require a

lot of bridges, ramps, excavations and tunnels, makes him famous also

as vain waster of the state budget and may bring him to the situation

"no money" 3.

Sorry, in the choice of the contour of integration, described in [54], I look

like as a tyrant, rather than as a smart engineer: I choose the contour of

integration in the shape of rectangle. The only excuse is, that the this

contour leads to efficient way of evaluation of tetration.

Let F be real-holomorphic of equation (14.1);

Let A be real positive number, so big, that F (iA)≈L

Let the range of hlomorphizm of function F (z) includes the domain

−1≤	(z)≤1 and, in this range, let | argF (z)| < π.

3 http://weirdrussia.com/2016/05/28/meme-medvedev-says-we-have-no-money-but-you-hang-in-there/

Medvedev Says “We have no money, but you hang in there” (2016).

http://www.bbc.com/news/blogs-trending-36482124 Russian PM: ’No money for pensions,

but have a good day!’ 2016.06.09

http://www.cnbc.com/2016/06/09/there-is-no-money-left-bye-russian-pm-causes-social-media-storm.html

Holly Ellyatt. ’There is no money left, bye!’: Russian PM causes social media storm. .. "no

money left" in Russia’s budget.. "There just isn’t any money now. .."
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These conditions allow to convert the contour integral into the “solvable”

integral equation; of course, at the appropriate choice of the contour of

integration. Let contour Ω consists of the four segments:

A. Segment along line 	(t)=1 from t = 1−iA to t = 1+iA.
B. Segment from point t = 1+iA to t = −1+ iA, passing above point z.
C. Segment along line 	(t) = −1 from t = −1+ iA to t = −1−iA.
D. Segment from point t = −1−iA to t = 1−iA, passing below point z.

For this contour Ω, the Cauchy integral can be written as follows:

F (z) =
1

2π

∫ A

−A

F (1+ip) dp

1 + ip− z
− 1

2π

∫ A

−A

F (−1+ip) dp

−1 + ip− z

(14.22)

− Fup

2πi

∫ 1−iA

−1−iA

dt

t−z
+

Fdown

2πi

∫ −1−iA

−1−iA

dt

t−z

where Fup и Fdown are some mean values of function F in vicinity of the

segments B and D of the contour Ω.

Taking into account the transfer equation 2.12, and assuming holomor-

phism of function T−1, equation (14.22) can be rewritten as follows:

F (z)=
1

2π

∫ A

−A

exp
(
F (ip)

)
dp

1 + ip− z
− 1

2π

∫ A

−A

ln
(
F (ip)

)
dp

−1 + ip− z
+K(z) (14.23)

where

K(z) = Fup ·
(
1

2
− 1

2πi
ln

1− iA+ z

1− iA− z

)
+ Fdown ·

(
1

2
− 1

2πi
ln

1− iA− z

1− iA+ z

)
[K] (14.24)

This representation implies that the modulus of phase of function F

along the imaginary axis remains less than π, so, the contour of integra-

tion does not cross the cut line of the logarithmic function in (14.24).

Equations (14.23),(14.24) are still exact. However, they become approx-

imations, if we replace e Fup→ L and Fdown→ L∗. This replacement

leads to the closed representation for K. We get the “solvable” inte-

gral equation for the approximation FA(iy) of superfunction F along

the imaginary axis:

FA(iy) =
1

2π

∫ A

−A

exp
(
FA(ip)

)
dp

1 + ip− iy
− 1

2π

∫ A

−A

ln
(
FA(ip)

)
dp

−1 + ip− iy
+KA(iy)

(14.25)
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Figure 14.5: exp(ρ+iϕ)=KA(x+ iy) by (14.26) for A=3, 5, 10

where

KA(z) = L ·
(
1

2
− 1

2πi
ln

1−iA+z

1+iA−z

)
+ L∗ ·

(
1

2
− 1

2πi
ln

1−iA−z

1+iA+z

)
(14.26)

Equations (14.25) и (14.26) include no unknown parameters; neither Fup

not Fdown appear there. In such a way, equations (14.25) and (14.26)

can be used to calculate FA.

Representation of the integral by the uppest and lowest pars of the

contour Ω through function KA by (14.26) is not trivial. The first look

at the expression causes the seduction to rewrite each logatightm as

difference of two logarithms, in order to simplify the expression in the

argument. However, in other to get a robust representation for tetration,

this is not a good idea. On the representation (14.26), the cuts are

directed away from the imaginary axis; they go horizontally, parallel to

the abscissa axis. This helps to avoid approaching of the argument of the

primary approximation of tetration to the boundaries of holomorphism

of function KA. Complex map of function KA is shown in figure 14.5

for A=3, A=5 and A=10 with lines of constant logamplitude ρ and

constant phase φ such that exp(ρ+iϕ)=KA(x+ iy) in the x, y plane.

Solution FA of equation (14.25) can be approximated with the iterates,

described below. At A
 1, solution FA provides the good approxima-

tion for the superfunction F ≈ FA;

F (z) = lim
A→∞

FA(z) [tetF] (14.27)

In order to get tetration tet, the additional consition tet(0)=1. should
be satisfied. So, I define

tet(z) = F (x0 + z) [tet] (14.28)
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where x0 is solution of equation F (x0) = 1. Value x0 depends on the

initial condition at the iterations, and also on the order of update of

the values of the discrete approximation of function FA. For the initial

approximation by (14.15), the resulting x0 happens to be or order of

0.1 ; and it is important, that it remains smaller than unity.

Formula (14.28) can be considered as “constructive definition” of tetra-

tion tet, with all reverences about the existence and the uniqueness of

the limit, at A → ∞ and the limit of inifinite increase of the num-

ber of points for the discrete approximation of the integrals. From the

point of view of the “pure” mathematics, such a “definition" deserves

critics, but I expect, that with time, the “pure mathematicians” present

a more efficient and elegant way of constructive definition of tetration.

For a while, tetration may remain as solution f of the transfer equation

ef(z)=f(z+1) bounded in the strip |	(z)| < 1 with additional condition

f(0)=1.

For the approximation of limit in equation (14.27), some finite value

of A should be chosen. Value of increment k = L≈ 0.318+1.337 i in

approximation (14.15) indicates, that for the complex double implemen-

tation, the reasonable value of constant A should be of order of 20. It

happened, that for A=24, the residual is a little bit smaller, and this

value is used for the primary numerical implementation 4.

For the numerical implementation of equation (14.25), the integrals are

replaced to their approximations with the Gauss-Legendre quadrature

formula. Then, the resulting equation can be solved with iterations,

updating values of the function one by one.

The attempt of the parallel assignment of the new values (that is easy

to program with the high-level programming languages) leaded to the

diverging algorithm. In order to get the convergence, I update first the

odd nodes, and then the even ones. Then, after some teens of iterates,

the procedure provides the accurate solution with 14 significant figures;

this precision is estimated, evaluating the residual in various tests of the

internal self-consistency. 5

Solution of equation (14.25) approximates values of superfunction F

4Using the numerical implementation of the Cauchy integral for the first time, I did not guess

the simple estimate through the increment k; so I had to increase value of A until the residual at

the substitution of the primary approximation into the transfer equation (14.1) became of order

of the rounding errors of the complex double arithmetics
5following Axiom 4 (see Introduction), I made certain efforts trying to refute, negate the con-

cepts of existence and uniqueness of tetration.
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along the imaginary axis. Then, equation (14.23) extends this approxi-

mation to the strip

−1 < 	(z) < 1 [strip1] (14.29)

Accuracy of this primary approximation is poor in vicinity of the edges

of the strip. Therefore, for the numerical implementation of tetration,

the narrower strip is used,

−1

2
≤ 	(z) ≤ 1

2
[striphalf] (14.30)

applying formula

F (z) = T n
(
F (z−n)

)
[Tn] (14.31)

for some appropriate integer n, positive or negative, dependently on the

sign of 	(z).
At the increasing of value of parameter A in equation (14.22), function

F approaches to the solution of the transfer equation (14.1). This solu-

tion does not yet satisfy the condition F (0)= 1, but, and the required

tetration appears as the appropriate displacement of the argument with

equation (14.28).

In figure 14.5, the strip |x| ≤ 0.5, |y| ≤ 4.5 is shaded; roughy, this is

region, where the function KA is used at the evaluation of superfunction

F at the calculation of map in figure 14.4d. The complex maps verify,

that the phase of reconstructed function does not exceed 2; and there-

fore, does not exceed π. This justifies use of logarithm in formula (14.23).

However, this cannot be considered as a rigorous proof of existence and

the uniqueness of the resulting function. I hope, the rigorous proof will

be reported soon by the “pure” mathematicians. While I present only

the computational evidence of the existence and the uniqueness.

In general case, applying this method to general transfer function T with

complex fixed points, F (z−n) could happen at the point of singularity

of at the cut line of function T or T−1. This would indicate that the

resulting superfunction is also singular. (For tetration, this happens at

the real argument, equal to or smaller than −2.) This may limit the

range of applicability of the method suggested here.

In the first calculus, the approximation fit3 had been used as the initial

probe function for the iterational solution of equation (14.25). Then

it happened, that the iterates with other (more primitive) probe func-

tions lead to the same result, providing the same tetration. With the
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algorithm above, in 2008, the natural tetration had been constricted

[54]. For A = 24, the Gauss-Legendre quadrature formula with 2048

nodes gives the accurate approximation: at the substitution into equa-

tion (2.12), it gives the residual of order of 10−14, while the variables

complex(double) are used. Of order of 14 significant figures of the solu-

tion can be evaluated in real time. This indicates stability of evaluation

of tetration through the Cauchy integral.

The algorithm above had been used to plot first naps and explicit plots

of tetration to base b > exp(1/e) [104, 105]. In particular, this algo-

rithm is used to plot the map at the bottom of figure 14.4. The direct

representation through the Cauchy integral is fast enough to plot the

maps and the explicit plots of tetration in real time. However, it be-

comes slow, if the tetration is used for evaluation of other function, for

example, its superfunction (pentation) considered below in chapter 19.

For the application of tetration, even faster approximations may have

sense. One of them is considered in the next section.

5 Taylor expansion at zero

I wanted the check the claim, that solution f = tet of equations (14.1)

and (14.1), that satisfies properties T1-T4, exists and is unique. As it

is declared above, the numerical test does not substitute the rigorous

proof, in the similar way, as the rigorous proof does not substitute the

numerical tests. For the serious tests, it is important, that the function

is fast to evaluate. In order to boost the evaluation, the approximations

through the elementary functions had been suggested [64]. One of them

refers to the Taylor expansion at zero. It is considered in this section.

Derivatives of tetration can be calculated by differentiation of the pri-

mary representation by (14.25). More accurate values can be obtained

with the Cauchy integral formula with the circular contour of integration

(assuming, that the primary representation is already implemented).

Radius of this circle should be less than 2, and can be slightly larger

than unity; then, the error of the result reduces due to denominator in

the fraction under the integral in the right hand sidle of equation (14.21).

In such a way, the coefficients in the expansion below are evaluated.

naiv(z) =
N−1∑
n=0

cnz
n [vladinaiv] (14.32)

tet(z) = naiv(z) +O(zN) [vladinaiv2] (14.33)
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Table 14.1: Coefficients in expansions (14.32), (14.36) and (14.40)

n cn sn 	(tn) 
(tn)
0 1.00000000000000 0.30685281944005 0.37090658903229 1.33682167078891

1 1.09176735125832 0.59176735125832 0.01830048268799 0.06961107694975

2 0.27148321290170 0.39648321290170 −0.04222107960160 0.02429633404907

3 0.21245324817626 0.17078658150959 −0.01585164381085 −0.01478953595879
4 0.06954037613999 0.08516537613999 0.00264738081895 −0.00657558130520
5 0.04429195209047 0.03804195209047 0.00182759574799 −0.00025319516391
6 0.01473674209639 0.01734090876306 0.00036562994770 0.00028246515810

7 0.00866878181723 0.00755271038865 0.00002689538943 0.00014180498091

8 0.00279647939839 0.00328476064839 −0.00003139436775 0.00003583704949

9 0.00161063129058 0.00139361740170 −0.00001376358453 −0.00000183512708
10 0.00048992723148 0.00058758348148 −0.00000180290980 −0.00000314787679
11 0.00028818107115 0.00024379186661 0.00000026398870 −0.00000092613311
12 0.00008009461254 0.00010043966462 0.00000024961828 −0.00000013664223
13 0.00005029114179 0.00004090111776 0.00000007899707 0.00000003171468

14 0.00001218379034 0.00001654344436 0.00000000637479 0.00000002270476

15 0.00000866553367 0.00000663102846 −0.00000000341142 0.00000000512289

16 0.00000168778232 0.00000264145664 −0.00000000162203 0.00000000031619

17 0.00000149325325 0.00000104446533 −0.00000000038743 −0.00000000027282
18 0.00000019876076 0.00000041068839 −0.00000000001201 −0.00000000013440
19 0.00000026086736 0.00000016048059 0.00000000002570 −0.00000000002543
20 0.00000001470995 0.00000006239367 0.00000000000935 0.00000000000045

21 0.00000004683450 0.00000002412797 0.00000000000170 0.00000000000186

22 −0.00000000154924 0.00000000928797 −0.00000000000005 0.00000000000071

23 0.00000000874151 0.00000000355850 −0.00000000000016 0.00000000000012

24 −0.00000000112579 0.00000000135774 −0.00000000000005 −0.00000000000001
25 0.00000000170796 0.00000000051587 −0.00000000000001 −0.00000000000001

Evaluations of coefficients c are shown in the first column of table 14.1.

The Taylor expansion tet(z) at z=0 converges for |z|<2. The radius of

convergence is determined by the distance from the point of expansion

(id est, from zero) to the nearest singularity, which is −2.
For the numerical implementation, the number of terms chosen N=50.

Complex map of the resulting naive approximation by (14.32) is shown

in the left hand side of figure 14.6 with lines of constant real part and

content imaginary part, u+iv = naiv(x+iy). The thick lines show levels

u=	(L) and v=±
(L).
In order to verify the precision of the approximation f = naiv, the

central and the right hand side pictures of figure 14.6 show the maps of
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Figure 14.6: u+iv = naiv(x+iy) by (14.32) for N = 50, left; agreements D1 =

Dnaiv1(x+ iy) and D2=Dnaiv2(x+ iy) by (14.34) and (14.35), central and right hand

side maps. [vladi04]

agreements

Dnaiv1(z) = − lg

(
| ln(naiv(z+1)− naiv(z)|
| ln(naiv(z+1)|+ |naiv(z)|

)
(14.34)

Dnaiv2(z) = − lg

(
| exp(naiv(z−1)− naiv(z)|
| exp(naiv(z−1)|+ |naiv(z)|

)
(14.35)

Functions of agreementD indicate, how many significant figures of tetra-

tion can be expected to appear at evaluation of tetration with approx-

imation “naive” by (14.32). Levels D=1, 2, 4, 6, 8, 10, 12, 14 are shown.

LevelD=1 is shown with thick lines. Symbol “15” indicates the domain,

where the agreement is better than 14. We may expect, at |z|< 1, the

polynomial by (14.32) provides of order of 14 significant figures; this is

close to the maximal precision for variables complex double.

Evaluations with 50 terms is considered for verifiertion of the expansion.

At the evaluation of tetration, for example, at the implementation for

real argument, the number of terms can be significantly reduced without

loss of precision.

The polynomial approximation naiv by (14.32) can be used for the pre-

cise and fast evaluation of tetration, while the modulus of its argument

is smaller or of order of unity. For the efficient implementation, this is

good, but it is not sufficient. In the next section, the advanced expan-

sion is considered, that allows to extend the range of the approximation

of tetration for moderate values of the argument.
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Figure 14.7: u+iv=maclo(x+iy) by (14.36) at N=101, left; agreements

D3 и D4 by (14.38) и (14.39), centre and right

6 Improved approximation

The range of the accurate approximation of tetration can be extended, if

we take into account the logarithmic singularity of tetration. I “switch-

out” the singularity at −2, expanding function tet(z) − log(z+2) in-

stead of tet(z). This expansion gives the approximation below, I call it

“maclo”:

maclo(z) = ln(z+2) +
N−1∑
n=0

snz
n ; [maclo] (14.36)

tet(z) = maclo(z) +O(zN) . [macloN] (14.37)

For n = 101, function maclo is shown in the left map of figure 14.7.

The series, used for approximation (14.36) converges at |z| < 3; the

function reproduces the logarithmic branch point and even part of the

cut at z <−2. Approximate values of first coefficients s are shown in

the second column of table 14.1.

The range of approximation of tetration tet with functionmaclo is wider,

than that by the Taylor expansion of tetration at zero; compare figure

14.6 and figure 14.7. The central and right hand side maps of figure 14.7

show agreements

D3(z) = − lg

⎛
⎝

∣∣∣ ln(maclo(z+1)
)
−maclo(z)

∣∣∣∣∣∣ ln(maclo(z+1)
)∣∣∣+ ∣∣∣maclo(z)

∣∣∣
⎞
⎠ (14.38)

D4(z) = − lg

⎛
⎝

∣∣∣ exp(maclo(z−1)
)
−maclo(z)

∣∣∣∣∣∣ exp(maclo(z−1)
)∣∣∣+ ∣∣∣maclo(z)

∣∣∣
⎞
⎠ (14.39)
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Within the central loop, the residuals at the substitution f →maclo

into equations (14.1) are of order of 10−15.

While |z|< 2, the approximation maclo(z) with a hundred terms pro-

vides of order to 14 significant figures of tetration tet(z).However, while

the module of the argument increases and becomes larger than two, the

accuracy of this approximation quickly drops down. In order to even ex-

tend the range of the fast approximation, the Taylor expansion at some

point at the imaginary axis can be used. In the next section, the Taylor

expansion at point 3 i is described.

7 Expansion of tet(z) at z=3 i

For evaluation of tetration, we should cover some strip of unity width

along the imaginary axis with good (fast and precise) approximations.

The approximation maclo from the previous section does not approxi-

mate tetration at point 3 i. For me, this is sufficient reason (or, may be,

a pretext) to prepare the Taylor expansion of tetration namely in this

point 6. This expansion is described below.

The truncated Taylor expansion of tet(z) at point z=3 i is denoted with

name “tai” (TAylor expansion centered at the Imaginary axis):

tai(z) =
N−1∑
n=0

tn (z−3 i)n [vladitai] (14.40)

Approximations of the coefficients t are calculated with the Cauchy in-

tegral. The real and imaginary parts of the first coefficients are pre-

sented in the last two columns of table 14.1. The series converges at

|z−3i| <
√
22+32 =

√
13 ≈ 3.6 . For the numerical implementation I

choose value N=51; then, at |z−3 i| < 2, approximation tai by (14.40)

provides of order of 14 significant figures. The complex map or this

approximation is shown in the left hand side of figure 14.8.

The right hand side map in figure 14.8 shows the ageement

D5(z) = − lg

⎛
⎝

∣∣∣ ln(tai(z+1)
)
− tai(z)

∣∣∣∣∣∣ ln(tai(z+1)
)∣∣∣+ ∣∣∣tai(z)∣∣∣

⎞
⎠ [vladiD5] (14.41)

6Constant 3 appears as minimal integer number for which (with coefficient i) approximation

maclo by (14.36) fails.
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Figure 14.8: u+iv=tai(x+iy) by (14.40) at N=51 and agreement D5(x+iy)

As in figures 14.6, 14.7, and 14.8, the levels for the agreement are drown

with increment 2, beginning with 2; one additional level D5=1 is shown

with thick line. Inside the inner loop, the agreement with at least 14

digits takes place.

Approximation tai by (14.40) significantly extends the domain, where

the tetration can be precisely evaluated through elementary functions.

For positive values of 
(z), tetration tet(z) can be approximated with

tet(z) ≈ tai(z) (14.42)

For negative 
(z), tertian can be approximated with

tet(z) ≈ tai(z∗)∗ (14.43)

These representations are sufficient to plot map in figure 14.4d. I as-

sume, that the transfer equation (14.1) is applied some integer number of

times, in order use tai(z) with the argument from the strip |	(z)|≤1/2.

However, the expansions above do not provide the accurate approxima-

tion of tet(z) at |
(z)|>5.

One could extend the range of approximation, using the truncated Tay-

lor expansions at point 5 i (or even 6 i), this would significantly extend

the range of approximation, and continue such an exercise with new and

new points along the imaginary axis. However, there exist more intel-

ligent and elegant way to deal with cases, when the imaginary part of

the argument is large. This way is described in the next section.
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8 Asymptotic expansion

The approximation of tet at large values of its argument can be build

up using the asymptotic representation

tetA(z) = L+
∑
n,m

Am,n exp (Lnz + αmz) [fimao] (14.44)

L≈0.31813150520476413+1.3372357014306895 i is, as before, the fixed
point of logarithm, L=ln(L), and A are constant coefficients.

Substitution f = tetA into the transfer equation (14.1) gives the chain of

equations for coefficients A. These equations do not determine Am,0; so,

the solution still has the countable set of “free” parameters for natural

m. Difficulty of determination of these parameters had been discussed in

1950 by Helmuth Kneser [10]. However, even a relatively small amount

of terms taken into account in expansion (14.44) can be used for the

precise approximation and evaluation of tetration at large values of the

imaginary part of the argument.

Looking at the general (and a little bit ugly) expansion (14.44), I suggest

the approximate, but more beautiful formula

fima(z) =
N∑
n=0

anε
n + βε exp(2πiz) , [fima] (14.45)

where the small parameter

ε=exp(Lz+Lr) [fimave] (14.46)

Mnemonics of name fima is following: Functional expansion for large

IMAginary part of the argument. Substitution of f(z) = fima(z)+
O(εN+1) into the transfer equation (14.1) gives the coefficients

a0 = L ≈ 0.31813150520 + 1.33723570143 i (14.47)

a1 = 1 (14.48)

a2 =
1/2

L− 1
≈ −0.1513148971− 0.2967488367 i (14.49)

a3 =
a2 + 1/6

L2 − 1
=

2 + L

6(L−1)(L2−1)
≈−0.036976+0.098730 i (14.50)

a4 =
6 + 6L+ 5L2 + L3

24(L−1)3(L+1)(L2+L+1)
≈ 0.02581−0.01738 i (14.51)

a5 =
24+36L+46L2+40L3+24L4+9L5+L6

120(L−1)4(L+1)2(1+L+2L2+L3+L4)

≈ −0.0079444196+0.00057925018 i (14.52)
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Figure 14.9: Top: u+iv=fima(x+iy) by (14.45); bottom: map of Dfifi = Dfifi(x+iy)

by (14.55) [figfima]

It is not difficult to take into account more terms, but N = 5 already

allows to cover the rest of the complex plane (not covered with approx-

imations “maclo” and “tai”) with accurate approximations of natural

tetration.

Coefficients R and β in the right hand sides of formulas (14.45) and

(14.46) remain as “adjusting parameters”. Their values are chosen in

order to approximate tetration, evaluated with a little bit slower Cauchy

integral:

r ≈ 1.0779614375280− 0.94654096394782 i [fimaR] (14.53)

β ≈ 0.12233176− 0.02366108 i [fimaB] (14.54)

These values can be interpreted as approximations of the fundamental

mathematical constants. I suggest to call them “the Kneser constants”,

as the expansion with these coefficients had been suggested in 1950

by H.Kneser [10]. Many digits in approximations of these constants

can be calculated, in a way, similar to that in centuries 19 and 20 the

mathematicians competed in precision of evaluation of number π.

Complex map of function fima is shown in the top picture of figure

14.9; the upper half of the complex plane is shown. This map should

be compared to the map of tetration in figure 14.4 (although the levels
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	(L) and 
(L) are not drawn in figure 14.4) and to maps of other

approximations in figures 14.6, 14.7 and 14.8

There is no fundamental limit on the precision of evaluation of tetration

(for example, through the Cauchy integral), so, parameters β and r

in should be considered as fundamental mathematical constants. The

numerical computations, described in this book, have precision of order

of 14 decimal digits (that is close to the best precision achievable with

variable complex double), and parameter r is evaluated with the similar

precision. Precision of evaluation of parameter β is not so high; perhaps,

calculus with variables “long complex double” are necessary to improve

the precision of evaluation of β and add more digits in the right hand

side of equation (14.54).

In order to show the residual at the substitution f = fima into the

transfer equation (14.1), figure (14.9) shows the agreement

Dfifi(z) = − lg

(
|fima(z)− exp(fima(z−1))|
|fima(z)|+ | exp(fima(z−1))|

)
[fifi] (14.55)

This agreement can be considered as an estimate, for how many or-

ders of magnitude the value of the function is larger, than the error

of its evaluation with approximation fima. As in the previous maps of

agreement, the levels are drown with interval two orders of magnitude;

only for level Dfifi = 1, the exception is done; this level is shown with

thick line. Below this level, the approximation fima does not reproduce

even the qualitative behaviour of natural tetration. In the upper region,

above the highest level, contrary, the approximation provides at least

14 significant figures, that is close to the maximal precision, achievable

with variables complex double.

This section suggests the asymptotic approximation denoted with name

“fima” by (14.45). Approximation fima is valid in the most of the upper

part of the complex plane. Its conjugation z �→ fima(z∗)∗ provides

the approximation for the most of the lower part of the complex plane.

With the transfer equation, these approximations can be extended also

to the larger values of the real part of the argument. Together with

approximations “maclo” and “tai”, the whole complex plane happens

to be covered with overlapping regions, and for each of these region,

the efficient approximation based on the series expansion, is described.

Now it would be methodically correct to analyse, verify the overlappings,

agreement of these approximations. This overlapping is considered in

the next section.
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Figure 14.10: Comparison of approximations tai by (14.40) to fima by (14.45) and

to maclo by (14.36): agreements D=D6(x+iy) and D=D7(x+iy) by (14.56),(14.57)

in the complex z-plane. [figco] [vladi07]

9 Comparison of approximations

On the base of representation of natural tetration through the Cauchy

integral, the coefficients of various expansions of tetration are evaluated

and the approximations with elementary functions are suggested. In

this section, the mutual agreement or these representations is analysed.

The left hand side of figure 14.10 shows the agreement of approximation

tai by (14.40) with approximation fima by (14.45):

D6(z) = − ln

(
|tai(z)− fima(z)|
|tai(z)|+ |fima(z)|

)
[vladiD6] (14.56)

The right hand side of figure 14.10 shows agreement of approximation

tai by (14.40) with approximation maclo by (14.36)"

D7(z) = − ln

(
|tai(z)−maclo(z)|
|tai(z)|+ |maclo(z)|

)
[vladiD7] (14.57)

Figure 14.10 indicates, how to choose the appropriate approximation

of tetration dependently on the imaginary part of the argument z at

moderated values of |	(z)|<1. The boundary between the domains of

the approximations should go through the loops, where D > 14. While

|
(z)| ≤ 1.5, let approximation maclo be used; At 1.5 < 
(z) ≤ 4.5,

let the approximation tai be used, and, at even larger values, let the

evaluation be performed with approximation fima.
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Figure 14.11: Agreement D =D8 by (14.59), left; the similar agreement for the

contour integral with base domain shifted for −0.5 . [vladi08]

Looking at figure 14.10, I suggest the following approximation:

fse(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fima(z) , 4.5 < 
(z)
tai(z) , 1.5 < 
(z) ≤ 4.5

maclo(z) , −1.5 ≤ 
(z) ≤ 1.5

tai(z∗)∗ , −4.5 ≤ 
(z) <−1.5
fima(z∗)∗ , 
(z) <−4.5

[fsexp] (14.58)

This approximation can be compared to previous results. The left hand

picture of figure 14.11 shows the agreement

D8(z) = − lg

(
|fse(z)− F4(z)|
|fse(z)|+ |F4(z)|

)
[DfseF4] (14.59)

of approximation fse with the approximation F4 obtained through the

direct implementation of the contour integral.

Figure 14.11 reveals the defects of each approximation. The jumps at


(z)=1.5 and at 
(z)=2.5 should be attributed to the transition from

function maclo to function tai and from function tai to function fima

in the combination FSE. Jumps at half-integer values of 	(z) should
be attributed to the discontinuities of function F4, which extends the

approximation with the contour integral, valid for |	(z)| < 1, from

the interval |	(z)| ≤ 1/2. The rounding errors appear as irregular

dots. Within the strip |	(z)| < 1.5, the irregularities of all three

approximations are of order of 10−14.

The goal is to cover with efficient (fast and accurate) approximations at

least the strip 	(z) ≤ 0.5; then, values of natural tetration for the whole
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complex plane can be expressed through the transfer equation (14.1) in

the right hand side of the complex plane, and through the ‘inverted”

equation

ln(tet(z)) = tet(z−1) [rtanexp] (14.60)

in the right hand side. The left map in figure (14.11) indicates, that the

goal is achieved; agreement with approximately 14 decimal digits takes

place in significantly wider part of the complex plane. The approxima-

tions above are used for the fast implementation.

After to see the agreement discussed above, I had declared, that since

now, the natural tetration can be evaluated so fast and so precisely, as

other special functions, known since century 20. Then Henryk Trapp-

mann asked me to make one additional numerical test. He vanted to see,

wether the same tetration can be evaluated, if I misplpace the contour

Ω in the Cauchy integral [103], moving it to the right. I recognised this

as a trap (which would correspond to the last name of Henryk): if we

displace the contour to the right, the derivatives of tetration becomes

larger, and, with the same algorithm, we get lower precision. But I

agreed to displace the contour for 1/2 to the left.

With the displaced contour, the same ab initio evaluation of tetration

had been performed. Tetration tet(−1/2+iy) for real y had been eval-

uated; then, with the Cauchy integral and equations (14.1),(14.60), the

approximation had been extended to the whole complex plane, in the

similar way as with the first algorithm of evaluation of tetration [54].

The result is compared to the approximations with expansions in the

way, similar to that of by (14.59); the new approximation is used in-

stead of F4. The resulting agreement is shown in the right hand side

map in figure (14.11).

Figure 14.11 reveals defects of approximations mentioned above. The

discontinuities in formula (14.58) are seen with horizontal jumps along

lines 
(z) = 1.5 and 
(z) = 4.5 , that are clearly shown with con-

centrated levels. Discontinuities of the initial, “primary” approximation

appear with the vertical jumps along half-integer values of 	(z). The

similar discontinuities are seen also for the evaluation with displaced

contour at integer values of 	(z). All these jumps of the compared ap-

proximations are at the level of 10−14, and this confirms the declared

estimate of the precision of the evaluation of the natural tetration.

The agreement in the right hand side of figure 14.11 happened to be
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even better, than that in the left hand side. Henryk had been satisfied

with that test. For the natural tetration, the new contour of integration

happened to be a little bit better, than the initial choice. In such a way,

the analogy with lazy engineer (or with stupid selfish tyrant), mentioned

above, gets the confirmation: the initial contour of integration in the

original publication [54] is not best. However, I still think, that the

simplicity of that contour and the good agreement (figure 14.11) should

be considered as some kind of excuse for the voluntaristic choice of the

contour.

10 Implementation

After the tests, described in the previous section, for the numerical im-

plementation, the following approximation is used: tet(z) ≈ FSE(z),

with

FSE(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FIMA(z) , 4.5 < 
(z)
TAI(z) , 1.5 < 
(z) ≤ 4.5

MACLO(z) , −1.5 ≤ 
(z) ≤ 1.5

TAI(z∗)∗ , −4.5 ≤ 
(z) < −1.5
FIMA(z∗)∗ , 
(z) < −4.5

[FSE](14.61)

where

FIMA =

{
fima(z) , 
(z) > 4+0.2379	(z)

exp(FIMA(z−1)), 
(z) ≤ 4+0.2379	(z)
(14.62)

TAI =

⎧⎪⎨
⎪⎩

tai(z) , |	(z)| ≤ 0.5

log(TAI(z+1)) , 	(z) < −0.5
exp(TAI(z−1)) , 	(z) > 0.5

[TAI] (14.63)

MACLO =

⎧⎪⎨
⎪⎩

tai(z) , |	(z)| ≤ 0.5

log(MACLO(z+1)) , 	(z) < −0.5
exp(MACLO(z−1)), 	(z) > 0.5

(14.64)

This approximation provides of order of 14 correct significant figures

of the holomorphic tetration tet and agrees with the previous results

[54]. Up to my knowledge, up to year 2016, function FSE above is

the most precise and the fastest among ever reported approximations

of the tetrational. Mnemonics of the name FSE is obvious: Fast Su-

per Exponent. The C++ implementation of this algorithm is loaded as
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Figure 14.12: u+iv=tet(x+iy) [tetmap]

http://mizugadro.mydns.jp/t/index.php/Fsexp.cin ; this approx-

imation is used to plot the detailed map of tetration in figure 14.12, used

also for the cover of this Book.

Many terms are kept in the approximations (14.40) and (14.36) in order

to provide the wide range of the overlapping in figures 14.10 and 14.11.

At the final step of the implementation, the number of terms can be

reduced, boosting the algorithm, without loss of the precision. In par-

ticular, this applies to the evaluation of tetration along the real axis: it

is sufficient to approximate tet(z) for |z| ≤ 1/2, using only a quarter

of the radius of the precise approximation with function maclo.

For iterates of the exponent, the inverse function, id est, arctetration,

or abelexponent, is also required. This arctetration is considered in the

next chapter.
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Chapter 15

Natural arctetration
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Figure 15.1: u+iv = ate(x+iy) [vladi02c] [figsexpG]

The inverse function of tetration, id est, arctetration, or abelexponent,

is denoted with name ate; ate = tet−1. Complex map of arctetration is

shown in figure 15.1.

Arctetration satisfies the Abel equation

ate
(
exp(z)

)
= ate(z) + 1 [abelate] (15.1)

and the additional condition

ate(1) = 0 [abelate10] (15.2)

Properties of functions ate and the algorithm for the evaluation are

described in this chapter.
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1 Evaluation of arctetration

Arctetration can be evaluated as inverse function of tetration, using the

Newton method. Function ate(z) appears as limit of sequence gn with

the recurrent relation

gn+1 = gn +
tet(gn)− z

tet′(gn)
[atenewton] (15.3)

The derivative of tetration can be approximated, differentiating the ap-

proximations of tetration with elementry functions described in the pre-

vious section. The representation through the Cauchy integral [54] also

allows the straightforward differentiation. However, in this case, several

iterates by (15.3) are required to evaluate the arctetration.

Evaluation of arctetration through tetration using equation (15.3) is

significantly slower, than evaluation of tetration. In addition, the initial

approximation g0 should be specified. This specification should carry

about the cutlines. In Figure 15.1, these cut lines are drawn parallel

to the real axis. Over-vice, the recurrency by (15.3) returns a value

from any of branches of the corresponding multivalued function, and

the question about the range of holomorphism becomes difficult.

In order to get efficient approximation for the arctetration ate, I deal

with the corresponding Abel equation (15.1), rather than with recur-

rences by (15.3). It worth to approximate arctetration with some func-

tion, which reproduce at least the leading terms of the asymptotic ex-

pansion of ate. This approximation is constructed below.

Arctetration, as solution of the Abel equation (15.1), should have sin-

gularities in the fixed points of logarithm L and L∗. From the precious

chapter, we already know, that the dominant term of the asymptotic

expansion appears as fixed point plus the corresponding exponential.

This indicates, that the corresponding expansion of arctetration should

begin with logarithm. The efficient approximation of arctetration can

be obtained through the expansion of function h by

h(z) = ate(z)− ln(z−L)

L
− ln(z−L∗)

L∗
[atelo] (15.4)

Function h can be expanded to the Taylor series at unity. This expansion

leads to the approximation

fsl(z) =
ln(z−L)

L
+

ln(z−L∗)

L∗
+

N−1∑
n=0

un (z−1)n [fsl] (15.5)

ate(z) = fsl(z) +O(z−1)N (15.6)
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Figure 15.2: u+iv=slo(x+iy) by (15.5), left, and the agreements by DA=DA(x+iy),

DB=DB(x+iy), by formulas (15.7), (15.8)

Approximations of the first 30 coefficients of this expansion are shown

in table 15.1. Complex map of function fsl by (15.5) at N=70 is shown

in the left hand side picture of figure 15.2 in the same notations, as

in figure 15.1. The central part of left map in figure 15.2 looks as a

fragment from figure 15.1.

Table 15.1: Coefficients un in expansion (15.5).
n un n un n un

0 1.41922521550451 10 0.00000003111805 20 0.00000000002293

1 −0.02606629029752 11 0.00000002940887 21 −0.00000000002462
2 0.00173304781808 12 −0.00000001896929 22 0.00000000000666

3 −0.00001952130725 13 0.00000000351784 23 0.00000000000322

4 −0.00006307006450 14 0.00000000204270 24 −0.00000000000354
5 0.00002567895998 15 −0.00000000171995 25 0.00000000000096

6 −0.00000559010027 16 0.00000000039882 26 0.00000000000051

7 −0.00000007279712 17 0.00000000019328 27 −0.00000000000055
8 0.00000065148872 18 −0.00000000019113 28 0.00000000000014

9 −0.00000027698138 19 0.00000000004947 29 0.00000000000009

Range of validity of approximation 15.5 is limited. In order to show

this range, the central and right hand side maps in figure 15.2 show the

agreements

DA(z) = − lg

(
|fsl(exp(z))−1− fsl(z)|
|fsl(exp(z))−1|+ |fsl(z)|

)
[sloE] (15.7)

DB(z) = − lg

(
|fsl(ln(z))+1− fsl(z)|
|fsl(ln(z))+1|+ |fsl(z)|

)
[sloL] (15.8)

Inside the inner loops in the central and right hand side pictures of fig-

ure 15.2, the agreement is better than 14. These domains are marked
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with symbol “15”. Figure 15.2 indicates, that at |z−1|<1.4, the approx-

imation fsl(z) provides of order of 14 significant figures. The precision

of this approximation is a little bit worse in vicinity of fixed points L

and L∗. This could be expected: First, there, the small variation of

argument leads to the significant variation of value of function. Second,

these points are at the edge of the range of convergence of expansion in

equation (15.5).

For implementation of natural arctetration, it is sufficient to prepare the

efficient primary approximation for the domain sickle, defined with

sickle = {z ∈ C : 	(z) ≥ L, |z| < L} [sicle] (15.9)

then, for other values of the argument, function can be expressed through

the Abel equation (15.1). The region sickle is shaded in maps of figures

15.1, 15.2. This leads to implementation, denoted with FSL. I would

like to check the self-consistency of implementation FSL with implemen-

tation FSE by (14.61). The numerical test of the relations below had

been performed:

ate(tet(z)) = z [atetet] (15.10)

tet(ate(z)) = z [tetate] (15.11)

These relations are tested for the complex double implementations tet≈
FSE and ate≈FSL. Figure 15.3 shows the maps of the agreements

Dat(z) = − ln

(
|FSL(FSE(z))− z|
|FSL(FSE(z))|+ |z|

)
[Dat] (15.12)

Dta(z) = − ln

(
|FSE(FSL(z))− z|
|FSE(FSL(z))|+ |z|

)
[Dta] (15.13)

In figure 15.3, the left hand side map shows D = Dat(x+iy) and the

right hand side map shows D = Dta(x+iy) in the x, y planes. The levels

D = const are drawn with interval 2; as in other maps of agreement,

the additional level D = 1 is shown with thick line. This line indicates

the boundary of the range of validity of relation (15.10).

As for many other inverse functions, the range of validity to relation

(15.10) is limited. Width of the strip, where the relation (15.10) takes

place, is determined by the asymptotic periodicity of tetration in the

upper and the lower parts of the complex plane. In vicinity of the real

axis, the strip becomes wider, showing some kind of along the real axis

to infinity. Thickness of this “beak” reduces quickly at the growth of the

real part of the argument.
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Figure 15.3: D=Dat(x+iy), left, and D=Dta(x+iy), right, by (15.12)

and (15.13) [vladi11]

The numerical tests confirm, that the approximations of tetration and

arctetration are self-consistent. The complex double implementations

provide of order of 14 significant figures.

2 About names

The numerical implementations of algorithm FSE and FSL described

above are loaded to TORI as

http://mizugadro.mydns.jp/t/index.php/Fsexp.cin and

http://mizugadro.mydns.jp/t/index.php/Fslog.cin

The names of these routines are discussed in this section.

Names of function FSEXP and FSLOG are historic. They may mean

“Fast Super EXPonential” and “Fast Super LOGarithm. Hernryk Trapp-

mann even wanted to add my last name to the identifier of each of these

two functions. He had believed, that “my tetration” is not unique, and

not so principal, as I claim, using names “tet” and “ate”. Henryk wanted
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to use names “tet” and “ate” for the “true” tetration and arctetration,

“more natural”, more “true”, than the functions I had constricted.

After the long discussion and the heavy deduction, Henryk had to agree,

that the functions I have constructed are unique [73], and, in this sense,

true and the only true tetration and arctetration. The routines FSEXP

and FSLOG were already implemented that time, and I decided not

to change the notations: the poor sistem of notation is still better and

causes less confusions, than two “good” systems of notations.

I need to mention, that name FSLOG (Fast Super LOGarithm) is even

more idiotic, than FSEXP. Name FSLOG makes impression, that it is

superfunction of logarithm, while it is not really so. Superfunction of

natural logarithm van be written as

z �→ tet(−z) (15.14)

I think, this function does not deserve to have a special name assigned.

I am far from eugenic ideas to refine the human rase, nor the system

of notations. The best system of notations should vin the competition

with other notations. All this should be considered as my excuse to keep

names FSEXP and FSLOG for the approximations and the numerical

implementations of tetration tet and arctetration ate.

Many superfunctions of natural exponent can be constructed with trans-

formation (2.17), just misplacing the argument of tetration with some

periodic real-holomorphic function. The range of holomorphism of these

transforms is narrower, than the range of holomorphism of tetration.

Now, I see no need to give them special names.

I expect, in future, even more efficient implementations for tetration will

be suggested. Then, they may be called with the same names, as the

name of the functions tet and ate, in the same way, as in the algorithmic

languages the implementation of sin is denoted with the same name as

the function.

After to eliminate the potential confusion with names, the tetration and

arctetration can be used for the iterates of the exponent. These iterates

are described in the next section.
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Figure 15.4: y=expn(x) by (15.15) for varuous n [expiteplot]

3 Iterates of exponent

Tetration tet and arctetration ate, as superfunction and abelfunction of

exponent, specify, determine the non-integer iterates:

expn(z) = tet(n+ ate(z)) [expn] (15.15)

Here, number n of iterates, has no need to be integer (although, of

course, can be integer too). For real values of argument, iterates of

exponent by equation (15.15) are shown in figure 15.4, y = expn(x).
Lines, that correspond to integer n (except n = 0), are thick. These

lines correspond to y=exp(exp(exp(x))), y=exp(exp(x)), y=exp(x),
y=ln(x), y=ln(ln(x)), y=ln(ln(ln(x))). Higher integer iterate happen
to be out of range of the figure.

Complex maps of iterates of the exponent are collected in figure 15.5.

Twelve maps are shown for
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Figure 15.5: Maps of iterates of natural exponent by (15.16)
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u+iv = expn(x+iy) [uxexpxy] (15.16)

with lines u= const and lines v = const in the x, y plane for various

values of the number n of iterate; this n is printed with big font in the

upper left corner of each map. The maps are symmetric with respect

to reflection from the abscise axis (the only, the imaginary part of the

function changes its sign). So, the only upper part of the complex plane

is presented in each map.

Maps at the top of figure 15.5 correspond to n=1 and n=−1; these are
complex maps of exponent and of logarithm. First of them reproduces

part of figure 14.2. The exponent is holomorphic in the whole complex

plane, but the logarithm has branch point at zero and the cut along the

negative part of the real axis.

The second and following rows of the figure represent the non-integer

iterates. These iterates have two additional cuts along the lines y =
±
(L); here L ≈ 0.3181315+1.3372357 i is fixed point of logarithm,

id est, solution of equation L= ln(L). By default, all the cut lines are

directed parallel to the real axis (axis x in the figure, abascissa) toward

the negative direction of the real axis. In such a way, for negative non-

integer n, the map has 3 cut lines (and that in the lower half-plane is

not seen, as it is out of field of view of the map).

The thick lines in figure 15.5 corresponds to the integer values of u or v.

The thin lines are drawn with interval 0.2; the additional lines u=	(L)
and v=
(L) are also drawn. These lines always cross each other at the

fixed point L.

Figure 15.5 shows the gradual transition of the map for the exponential

(top of the left column) the map for the logarithm (top of the right hand

side column). As the number n of iterate reduces from unity to zero,

the web of the lines u=const and lines v=const rotate around the fixed

point L, and become uniform rectangular grid at n=0. At this value,

the horizontal cuts along lines ±
(L) disappear, but they appear again,
as n becomes negative non-integer. At n<0, the additional branch point
comes from −∞ at the real axis and moves toward zero, as n becomes

minus unity. With integer n, the branch points L and L∗ disappear.

Maps of non-integer iterates can be plotted also for other transfer func-

tions, considered in this Book. The readers are invited to download the

implementations of the superfunctions and the abelfunctions, and plot

the corresponding complex maps of the iterates.
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4 Lessons of natural tetration and arctetration

On the base of representation of tetration through the Cauchy integral,

through the solution of the integral equation (14.22), one can express

also derivatives of this function; differentiation of the integrands in the

right hand side of (14.22) is straightforward. Namely in this way, the

derivatives of tetration for real and for pure imaginary values of the

argument had been evaluated for the tables 1 and 2 in publication [54].

In this section, I suggest some philosophic speculations about tetration

and arctetration.

Complex map of tetration tet is shown in figure 14.12, and its behaviour

along the real axis is shown in figure 14.1. Properties (14.16)-(14.20) first

were observed with various approximations of tetration with elementaty

functions, and then postulated. The approximations reproduce values

of tetration in vicinity of integer values of the argument,

tet(−2 + ε) = log(ε) + const +O(ε) (15.17)

tet(−1) = 0 (15.18)

tet(0) = 1 (15.19)

tet(1) = e (15.20)

tet(2) = e2 (15.21)

Then, the agreement at the substitution of the fitting function into the

transfer equation (14.1) had been minimised for complex values of the

argument.

The behaviour similar to properties (14.16)-(14.20) had been detected

with various fitting functions. Then these properties were formulated

as definition of tetration, id est, just postulated. First, I did not expect

this set of postulates to be self-consistent. Contrary, I tried to find

some contradiction; I expected to use such a contradiction as a proof of

non-existence of holomorphic tetration. Such a non-existence would be

an upgrade of the proof by M.Hooshmand [49], that uses the doubtful

assumption about monotonous behaviour of the derivative of tetration;

I tried to find a proof, that does not use this assumption. Expression

of tetration through the Cauchy integral [54] allows to make the precise

approximations [64], and no internal contradictions in the assumptions

(14.16)-(14.20) had been detected. This leads to the conjecture about

existence and uniqueness of tetration, that later had been confirmed

with the careful analysis [73]. I show the first primitive approximations

in figure 14.4, as they answer the frequent question by colleagues: “How

213



did you guess?”. I think this heuristic approach can be used also for

analysis of other (and more complicated) functional equations.

Tetration and arctetration significantly extend the arsenal of functions,

available for the description of physical phenomena. In particular, the

non-integer iterates of exponent can be useful in description of processes,

that grow faster than any polynomial, but slower than any exponent.

Following the TORI axioms, I formulate mainly the practical problems.

From the point of view of applications, not the proof by itself is im-

portant, but the strong indication, that the system of postulates is not

self-contradictory. The multiple (failed) attempts to reject the conjec-

ture of existence and uniqueness can be considered as such indication.

Some “pure mathematicians” believe, that the only rigorous proof has

a scientific value. In order to show, that actually it is not so, I suggest

the example with the Euclid axioms of planimetry. Those axioms can

be deduced from the properties of the coordinate plane. It is not so

difficult, although first, one had to provide the accurate definitions of sin

and cos as solution of the corresponding system of differential equations,

check that their properties lead to the Pythagoras theorem and other

properties, known as the Euclid Axioms. In the elementary school,

however, till now, the teachers begin with the postulating the Euclid

axioms. I believe, the superfunctions should become a pretty elementary

tool, and their properties (including those of tetration) could be just

postulated - in the similar way, as the Euclid axioms. If someone wants

to reduce the amount of axioms, one may begin wight he Euclud axioms,

having no need to deal with tetration and other superfunctions. I hope,

one day, the beautiful, short, simple and rigorous proof of the existence

and uniqueness will be formulated.

Form my side, I make all possible efforts in order to simplify refutation

of my concept (for the case, f one day someone will be able to refute

them). I load the figures from this book to my site as

http://mizugadro.mydns.jp/t/index.php/Category:BookPlot

http://mizugadro.mydns.jp/t/index.php/Category:BookMap

and I supply them with generators in C++ and Latex. Everybody can

reproduce the figures, and plot the new figures, trying to find a hint to

any internal contradictions in the concepts suggested. Of course, any

other alternative hypothesis can be considered too, as it is shown in

figure 15.6.

After to see, how the natural tetration comes from the Cauchy integral

in a pretty natural way, I had constructed similar maps for other values
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http://mizugadro.mydns.jp/t/index.php/File:BlackSheep.png

Figure 15.6: Two mathematicians go to the First International Congress

on superfunctions, and discuss the color of the ship they see from the

train: Your assumption, dear colleague, seems to be not obvious, it is

not supported with observations. Yet, all what we can conclude, that

there is at least one sheep in this country, and at least the right hand

side of this sheep is black. [sheep]

of base b, namely, for b=10, b=2 and b=1.5, but I did not revealed any

new property, that could be difficult to expect, looking at the natural

tetration. The most of curves in figure 17.1, considered later, can be

plotted with the Cauchy integral by very similar algorithms. I was sure,

that my mission about tetration is finished. Then, Henryk Trappmann

wanted still to reduce b; he asked me, wether I can evaluate in the

similar way tetration to base b =
√
2. I had to confess, that I cannot.

But I told, that I can do it by another way [61]. That “another way”

happened to be even simpler, than application of the Cauchi integral; so,

I described it in the previous chapters as “regular iteration”. However,

namely tetration to base b=
√
2 is not described above; this tetration is

matter of the next chapter.
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Chapter 16

Tetration to base b=
√
2

2

1

−1

−2

−3

−2 −1 1 2 3 x

y=tet√2(x)

y=−
x

http://mizugadro.mydns.jp/t/index.php/File:Sqrt27t.jpg

Figure 16.1: y = tet√2(x) [sqrt27a]

In chapter 13 above, the natural tetration is constructed and evaluated.

I mean, tetration to base b=e≈2.71 . For other bases, the definition of

tetration should be generalised. This generalisation is suggested in this

chapter. I try to follow the principles “from simple to complicated” and

“from specific to general”. First, I consider the specific base b=
√
2. For

this base, the graphic of tetration is shown in figure 16.1. Namely for

this base, the graphic looks especially symmetric. Below I show, that

this is just visual impression, and the apparent symmetry x ↔ −y is

only approximation.
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1 Definition

Tetration to the real base b > 1 is real-holomorhpic function f = tetb,

that satisfies the transfer equation

f(z+1) = bf(z) [sqrt2transfer] (16.1)

at least for 	(z) > −2, and is bounded at least in the range |
(z)| ≤ 1,

and, in addition, the specific (the same for all b) value at zero is assumed:

f(0) = 1 [sqrt2f01] (16.2)

Here, function T =expb appears as the transfer function, and tetration

f as its superfunction.

The Reader is invited to check, that the natural tetration tet = tete,

considered in chapter 14, also falls into into this definition. Below, the

tetration to various bases is considered. In particular, this chapter deals

with the special case b =
√
2. Exponential to this base is shown in

figures 9.1 and 9.2. Namely for this case, in section 9, the growing super

exponential SuExp√2,5, is constructed; graphic y=SuExp√2,5 is shown

in figure 9.4.

Here, for the same base b=
√
2, id est, for the same transfer function,

I describe another superexponent, namely, tetration. Its explicit plot

is shown in figure 16.1 and it is pretty different from the plot of the

growing superexponent F =SuExp√2,5 shown in figure 9.4.

2 Again regular iteration

In this section, again I use the regular iteration, as in chapter 9, in other

to construct another superfunction, namely, tetration, for the exponen-

tial to base
√
2 as the transfer function. This construction appears as

an example to evaluation of tetration tetb для 1<b<exp(1/e).

In such a way, here I consider the case b =
√
2. Explicit plot of this

tetration is shown in figure 16.1. The construction below is quite anal-

ogous to the construction of the growing super exponent to the same

base, presented in chapter 9. Some formulas in this section are taken

from publication [61].

The fixed points of exponent to base b=
√
2 are considered in chapter

9, see figure 9.1. These fixed points are 2 and 4. In that chapter,

217



the superexponent F5 = SuExp√2,5 is built at the fixed point L = 4.

Along the real axis, that superexponential grows monotonously from

4 to infinity. For that super exponent, the equation F5(z) = 1 has

no real solution; that superexponent is not tetration. In order to get

tetration, we should use the fixed point L=2. This case is considered

in this chapter. The corresponding superfunction Φ can be expanded as

follows:

f(z) = 2 + ε+
M−1∑
m=2

vmε
m [sqrt2fas] (16.3)

Φ(z) = f(z) +O(εn) [sqrt2Phi] (16.4)

where

ε = exp(kz) [sqrt2ve] (16.5)

while increment k and coefficients v are constants. Substitution of the

asymptotic expansion F =Φ in to the transfer equaiton

F (z+1) = exp
(
ln

(√
2
)
F (z)

)
[sqrt2transfereq] (16.6)

determines the increment

k = ln(ln(2)) ≈ −0.3665129205816643 [sqrt2k] (16.7)

and leads to the chain of equations for coefficients v. I set v1=1; then,

v2 =
ln(2)/4
ln(2)−1 ≈ −0.56472283831773236365

v3 =
ln(2)2(2+ln(2))/24
(ln(2)−1)(ln(2)2−1) ≈ 0.33817758685118329988

[sqrt2v2] (16.8)

Approximate values of coefficients v are collected in table 16.1.

At fixed number M of terms in the right hand side of equation (16.3),

function f and be considered as approximation of superfunction with

certain asymptotics, namely, that grows at infinity, approaching the

fixed point 2. This superfunction appears as limit

Φ(z) = lim
n→∞

T−n(f(z+n)) = lim
n→∞

log n
b (f(z+n)) [sqrt2F] (16.9)

does not depend on the number M of terms in the right hand side of

equation (16.3). However, at large M , the limit in the right hand side

of (16.9) converges faster.
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Table 16.1: Approximations of coefficients v and V in expansios (16.3), (16.16)

n vn Vn

1 1.0000000000000000 1.0000000000000000

2 −0.5647228383177324 0.5647228383177324

3 0.3381775868511833 0.2996461813840881

4 −0.2103313021386278 0.1559323904892543

5 0.1344548790521098 0.0803518797481544

6 −0.0877843886012191 0.0411584960662439

7 0.0582880930830947 0.0209985209544120

8 −0.0392407117837278 0.0106825803202636

9 0.0267232860342981 0.0054228810223159

10 −0.0183765205976376 0.0027482526618683

11 0.0127420898467766 0.0013909151872678

12 −0.0088986329515697 0.0007031815862125

13 0.0062531995639749 0.0003551700677648

14 −0.0044181328624397 0.0001792537427482

15 0.0031365295362696 0.0000904088765718

16 −0.0022361213774487 0.0000455725430285

17 0.0016001999145218 0.0000229602263218

18 −0.0011489818761273 0.0000115627707503

19 0.0008274921384317 0.0000058201696570

20 −0.0005975832172069 0.0000029289688393

Tertation to base b =
√
2 that satisfies condition (16.2), appears as

function Φ with displaced argument,

tet√2(z) = Φ(x1+z) [sqrt2tetF] (16.10)

where x1 ≈ 1.25155147882219 is solution of equation Φ(x1) = 1. The

readers are invited to verify, that this tetration satisfies the conditions,

formulated in the section 1 of this chapter. For real values of the argu-

ment, graphic of this function is shown in figure 16.1. The complex map

of tetration to base b=
√
2 is shown in figure 16.2.

Tetration by (16.10), is periodic; the period P is pure imaginary,

P = P (tet√2) = −
2πi

ln2(2)
= − 2πi

ln(ln(2))
≈ 17.14314817935485 i (16.11)

I remind, the double logarithm ln2(2) = ln(ln(2)), but does not mean

ln(2)2, according to notations declared at the beginning of this Book.
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Figure 16.2: u+iv = tet√2(x+iy) [sqrt2tetmap]

As it is claimed above, tetration tet√2(z) is holomorphic in the strip

|	(z)| ≤ 1. The range of holomorphism is much wider than this strip.

Tetration to base
√
2 is holomorphic in the whole complex plane, except

the countable set of branch points and the corresponding cut lines

{z ∈ C : 	(z) ≤ 2, 
(z)=n
(P ) , n ∈ N} [sqrt2tetCuts](16.12)

Outside these cuts, tetration approaches the fixed points of the corre-

sponding logarithm, to 2 or to 4, at the increase or decrease of the real

part of the argument, respectively. For any real y,

lim
x→+∞

tet√2(x+iy) = 2 [sqrt2tetLim1] (16.13)

and for y �= 
(T )n, n ∈ N,

lim
x→−∞

tet√2(x+iy) = 4 [sqrt2tetLim2] (16.14)
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Figure 16.3: u+iv = ate√2(x+iy) [sqrt2atemap]

For real x, function tet√2(x) is defined at x > −2. In point −2, the
function has logarithmic singularity, as tetrations to other values of base.

The function grows from −∞ at −2, passes through points (−1, 0) и

(0, 1), and continue to grow, approaching its limit value 2 at +∞.

There are several reasons, why tetration to base b =
√
2 is especially

interesting. Namely for this base b=
√
2, both real fixed points of logb

have integer values. In addition, namely for this base, the graphic of

function in figure 16.1 seems to be symmetric with respect to reflection

x ↔ −y. In order to stress this illusion, the additional line y =−x is

drawn in figure 16.1. For analysis of the illusion mentioned, the inverse

function should be constructed; I mean, arctetration ate√2=tet −1√
2
. The

complex map of this arctetration is shown in figure 16.3. This function

is described in the next section.
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3 Arctetration to base b=
√
2

For the inverse function of tetration, I use name arctetration, in analogy

with arcsin, arccos and arcBessel; ateb = tet−1b . Arctetration is abel-

function of exponent and satisfies the corresponding Abel equation. For

base b=
√
2, this equation can be written as follows:

G
((√

2
)z)

= G(z) + 1 [sqrt2abeleq] (16.15)

One of solutions of equation (16.15) is arctetration G=ate√2. Complex

map of arctetration is shown in figure 16.3.

As other abelfunctions, arctetration to base
√
2 can be evaluated through

its asymptotic expansion, using the Abel equation (16.3) to bring the

argument into the range, where the fruncated expansion provides the

required precision. The asymptotic expansion for the arctetration can

be obtained with the asymptotic expansion of tetration. Also, the same

expansion can be obtained directly from the Abel equation (16.3); we

should add the constant to the solution in order to satisfy condition

ate√2(1)=0.

Each of the two methods mentioned above lead to the same expansion

g(z) =
1

k
ln

(
M∑
n=1

Vn · (z−2)n

)
[sqrt2ateG] (16.16)

where V are constant coefficients. Constant k = ln2(2) is the same, as

in the expansion (16.3)-(16.5), see equation (16.7). Then, asymptotic

solution G of the Abel equation can be written as follows:

G(z) = g(z) +O(z−2)M+1 [sqrt2GO] (16.17)

Substitution of this expansion into the Abel equation (16.15) leads to

the chain of equations for coefficients V ; in particular,

V1 = 1 (16.18)

V2 = −v2 = 1
4

ln(2)
1−ln(2) ≈ 0.56472283831773236365 (16.19)

V3 =
ln(2)2

24
1+2 ln(2)

(1−ln(2))2(1+ln(2)) ≈ 0.29964618138408807683 (16.20)

Approximatioms of coefficients V are collected in the second (and last)

column of table 16.1.

With asymptotic expansion (16.16), the solution G of the Abel equation

(16.15) can be written as limit

G(z) = lim
n→∞

g
(
exp n√

2
(z)

)
− n [sqrt2Glim] (16.21)
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Here, in the argument of function g, function exp√2 is iterated n times.

In order to make arctetration ate√2, not only the asymptotic properties

should be taken into account, but also the value at unity. So, I define

tetration as

ate√2(z) = G(z)−G(1) ≈ G(z)−1.25155147882219 [q2G1] (16.22)

that leads to the correct value ate√2(1) = 0. In previous publication

[61], This arctetration is denoted with symbol F2,1
−1; constant 2 in the

subscript indicates the fixed point of the transfer function, at which the

regular iteration is constructed, and content 1 in the subscript indicates

its value at zero. As usually, the upper index indicates the number of

iterate.

In figure 16.3, at the complex map of arctetration, its periodicty is seen.

This periodicity follows from the representation of arctetration through

limit in equation 16.3. The period P is determined by the period of the

exponent to base
√
2;

P =P (ate√2)=
4πi

ln(2)
≈ 18.129440567308775239 i [sqrt2ateP](16.23)

Imaginary part of this period is slightly greater, than that for tetration

to the same base, see equation (16.11).

In figure 16.3, the isolines are reproduced at the translations along the

ordinate axis for 
(P ). In addition, due to the real-holomorphism,

the maps of tetration and arctetration are symmetric with respect to

reflection from the real axis, id est, with respect to the up side down

flip.

In wide range of values of z, the identity

tet√2(ate
√
2(z)) = z [sqrt2tetatez] (16.24)

is valid. This range is shaded in figure 16.4. Technically, the shading is

realised as complex map of the left hand side of equation (16.24), treated

as function of z and plotted in coordinates x=	(z) and y=
(z). While

the equation (16.24) holds, the levels of the constant real part and levels

of the imaginary part are parallel to the coordinate axes and form the

uniform rectangular grid, that at the poor resolution looks as shading.

However, the relation (16.24) cannot hold in a strip wider than the

period of function ate√2; so, the upper part and the lower part of the

domain of the map are not shaded in this way. In addition, the range of
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Figure 16.4: u+iv = tet√2(ate
√
2(x+iy)) [sqrt2tetate]

validity of equation (16.24) is limited at the right hand side with levels



(
expn√

2
(x+iy)

)
= ±|P |

2
= ± 2 π

ln(2)
[sqrt2en] (16.25)

drawn above the map in figure 16.4 for integer n = 0, 1, 2, 3, 4. In the

mentioned right hand side of the figure, relation (16.24) also is not valid.

Figure 16.4 can be considered as verification, validation, test of imple-

mentation of arctetration to base
√
2. These properties and the imple-

mentations of tetration and arctetration allow to analyse approximate

the symmetry y=−x of graphic y = tet√2(x) shown in figure 16.1.

The apparent symmetry of the plot in figure 16.1 had been declared in

the preamble of this chapter. The consideration had been postponed

until tetration and arctetration to base
√
2 are described. The approxi-
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mate symmetry mentioned means, that for x > −2,
tet√2(x) ≈ −ate√2(−x) [sqrt2approx] (16.26)

Properties of tetration and arctetration to base
√
2 indicate, that the

exact equality un (16.26) can take only at the set of measure zero, due to

very simple and pretty fundamental reason: tetration in the left hand

side and atctetration in the right hand side of (16.26) have different

(incompatible) periods.

Period of function in the left hand side of equation (16.26), see equation

(16.11), is P ≈ 17.143 i, while period in the right hand side of equa-

tion (16.26), see equation (16.23), is P ≈18.129 i. The different periods

indicates, that these are different functions. If two holomorphic func-

tions coincide at the segment of finite length, they should coinside in

the whole range of holomorphism. Hence, there is no exact equality in

(16.26), for the most of z, nor for the exact symmetry in figure 16.1.

Deviation from the exact symmetry can be characterised with function

devia(x) = tet√2(x) + ate√2(−x) [sqrt2simdevi] (16.27)

It is shown in figure 16.5 with dashed line. Where the symmetry be

exact, the dashed curve should follow the abscise axis.

y

y = tet√2(x) + ate√2(−x)

y = tet√2(−ate√2(x)) + x

0.01

−0.01

−0.02

−0.03

−2 −1 1 2 3 4 5 6 7 x

http://mizugadro.mydns.jp/t/index.php/File:Sqrt27u.png

Figure 16.5: Precision of “symmetry” of figure 16.1: y=devia(x) by (16.27), dashed,

and y=devib(x) by (16.28), solid [sqrt27b]

Also, the deviation is characterized with function

devib(x) = tet√2(−tet√2(x)) + x [q2tetatem] (16.28)
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This dependence is shown in figure 16.5 with solid line. Expression

−tet√2(x) approximate function ate√2(−x). Again, at the exact sym-

metry, the solid line would be just abscise axis. In such a way, figure 16.5

indicates the range of validity of the statement about the symmetry: it

reproduce of order of 2 significant figures of tetration or arctetration

to base
√
2; however, at the segment from −1 to 0 in figure 16.5, the

“symmetry” holds with 4 signifivant figures; this is pretty sufficient to

cause the illusion of symmetry in figure 16.1.

Similarity of dependences y = tet√2(x) and y =−ate√2(−x) for real x
may look occasional. However, on the other hand, it is unavoidable for

the following reasons. Every tetration to base b>1 has logarithmic sin-

gularity at point −2; the graphics approach vertical line x=−2. Graph-
ics of all these tetrations pass through points (−1, 0) и (0,−1), which
correspond to the symmetry discussed. In addition, for b < exp(1/e),

all the graphics have the horizontal asymptotic for large values of the

augment, they approach some positive quantity (which is fixed point

of logarithm). For some value of base, this quantity is 2, that corre-

sponds to the apparent symmetry. This value of base is just b=
√
2, this

base is chosen as an example in this chapter as illustration behaviour of

tetration and arctetration to base b at 1<b<exp(1/e).

In years 2009-2010, the apparent symmetry of graphic in figure 16.1

caused hard discussion. The opponents had claimed, that the symmetry

is obvious and does not require any verification. (Before, I had observed

so strong believe in the wrong and absurd statements only in the USSR;

Soviet veterans had insisted on concepts of sovetism, being unable to see

internal contradictions of it.) To convince the opponents, Henryk and I

had elaborated two independent demonstrations, that the exact symme-

try cannot take place, without using of properties of these functions in

the complex plane. Both these proofs are presented in publication [61].

Readers are invited to invent some real-holomorphic function with graphic

that passes through points (−1, 0) and (−0, 1), and exponentially ap-

proach to the vertical line x=−2 and horizontal line y=2. I suspect,

such a function will be pretty similar to tetration to base
√
2.

With the suggestion above, I finish the description of arctetration to

base
√
2. At lest in some vicinity of the half-line z<2, relation (16.24)

is valid, and the pair (tetration,arctetration) can be used to iterate the

exponent. These iterates are considered in the next section.
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4 Again iterate exponent to base
√
2

The real-holomorphic Iterates of exponent to base
√
2 are considered

above, in Chapter 9, for large values of positive part of the argument,

with functions SuExp√2,5 and AuExp√2,5. Those iterates are presented

first (and shown in figure 9.8), because they look similar to iterates

of other growing functions, considered in the first half of this Book.

However, tetration and arctetration, constructed in this chapter, also

can used to iterate the exponent to base
√
2. In this section, I show,

that these iterates look similar in vicinity of the interval (2, 4); but far

from this interval, the deviation becomes strong.

The “regular iteration” described above, allows to iterate the function,

and iterates are regular in vicinity of the fixed point of the transfer

function, used to construct the superfunction and the abelfunction. Bot

these iterates may be not regular (have singularity, branch point) at the

other fixed points of the same transfer function. Below, the illustration

of this statement is presented.

Iterates of exponent to base
√
2 constructed with the infinitely growing

superfunction SuExp√2,4 by (9.11),(9.12),(9.13) are shown in figure 9.8.

Similar iterates can be constructed also with tetration, described in this

chapter,

exp n√
2,d
(z) = tet√2

(
n+ ate√2(z)

)
[sqrt2exptet] (16.29)

Here, symbol “,d” in the subscript indicates, that the lower, “down”

fixed point of the transfer function is used for the asymptotic of the

superfunction.

For real values of argument, iterates exp n√
2,d

by (16.29) are shown in

figure 16.6 for various real values of n. This figure is analogy of figure 9.8,

that represents the similar iterates built up with the infinitely growing

superexponent SuExp√2,5 and corresponding abelexponent AuExp√2,5.

Graphics in figures 16.6 and 9.8 look similar. The thick curves, for the

integer iterates are, indeed, the same. However, for the non-initeger

n, the iterates also look similar, the curves in figure 16.6 seem to be

just extension, continuation of those in figure 9.8. In the intermediate

range, 2 < x < 4, visually, the iterates exp√2,d(x), evaluated through

the tetration tet√2 and arctetration ate√2, seems to be the same, as

iterates exp√2,u(x), evaluated through the superexponent SuExp√2 and

abelexponent AuExp√2. Then I saw this coincidence first time, it looked

strange, counter-intuitive and therefore interesting. The matter is, that
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Figure 16.6: y=exp n√
2,u
(x) for various n [sqrt2eitet]

two different holomorphic functions cannot coincide at the interval of

finite length. If they are identical at the part of the real axis from 2 to 4,

then they must coincide in the whole connected range of holomorphism.

As an example, I consider the case n = 1/2; id est, the iterates of

exponent number half. The iterate constructed with growing exponent,

id est, exp
1/2√
2,u

had been shown earlier in figure 9.9. The iterate exp
1/2√
2,d
,

constructed with tetration and arctetration, is shown in figure 16.7.

These two maps are not the same. The second of them is periodic (with

period 4πi/ ln(2) ≈ 18.12944 i), while the first one is not. These two

maps look similar only in vicinity of the interval (2,4) at the real axis.

I felt myself confused about the identical behaviours of the half iterates

along the interval (2, 4) of functions, that have different behaviour in
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Figure 16.7: u+iv=exp
1/2√
2,d
(x+iy) [sqrt2q2map]

the complex plane. I thought, that I made an error implementing these

functions. I even considered the absolutely phantasmic hypothesis that

I see the traces of the Mizugadro number 1, that reveals the internal

contraction in the system of postulates of arithmetics (that is used in

mathematical analysis and, in particular, in the theory of holomorphic

functions). I had prepared the explicit plot the half iterates of the

exponent to base
√
2, evaluated through the tetration and that evaluated

through the super exponential SuEx√2; this plot is shown in figure 16.8,

and looked at the zoom-in of the central part; then at the zoom-in of that

zoom-in, and so on, but I could not see deviation of curve y = exp√2,u(x)

from curve y = exp√2,d(x) .

Searching for the error, as a working hypothesis, I assumed, that the

precision of variables complex double (which is of order of 15 decimal

1 http://mizugadro.mydns.jp/t/index.php/Mizugadro_number

http://budclub.ru/k/kuznecow_d_j/mizugade.shtml Mizugadro’s number (2010-2011)
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Figure 16.8: Comparison of the half iterations to base
√
2, constructed at fixed

point 2 (dashed) and at fixed point 2 (solid curve). In the interval between these

two points, the difference (16.30) is shown, scaled with factor 1024. [sqrt2srav]

digits) is not sufficient to see the difference between exp
1/2√
2,d

by formula

(16.29) and exp
1/2√
2,u

by formula (9.24). I begun to compute the iterate

with a hundred decimal digits; the exact formulas and abilities of Maple

and Mathematica allow this. The deviation happened to be in 25th

digit. This deviation can be characterised with difference

D(x) = exp
1/2√
2,u
(x)− exp

1/2√
2,d
(x) [sqrt2D] (16.30)

This difference is shown at the bottom of figure 16.8. In order to see

it, I had to scale it with factor 1024, as it is marked in the figure. For

|z−3|<2, function D(z) can be approximated with the 7 parameter fit

D̃(z)=2.48·10−25(z−2)(4−z)
(
1 + 0.120(z−3) + 0.006(z−3)2

)
×

sin
(
.747−.068(z−3)+0.007(z−3)2+p4 ln(4−z)+p2 ln(z−2)

)
(16.31)

where p4 = 2π/ln(2 ln(2))≈19.23614904204285

and p2 =−2π/ ln2(2) ≈ 17.14314817935485

correspond to periods of the two superfunctions of exp√2, built up on the

fixed points 4 and 3, see equations (9.6), (9.7) (16.11). Тhis fit provides

of order of two significant figures; at figure 16.8, the curves for D and

for D̃ almost coincide.
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After to plot the bottom curve in figure (16.8), I realised, that it is first

case in my life, when the double precision, id est, 15 significant digits,

happened to be not sufficient to see the difference between two functions,

which have no small parameters. This example gives a good lesson: the

numeral calculus with high precision serious evidence to refute, reject

(or to verify) a conjecture. Whenever the rigorous proof is available of

not, the numerical testing should be applied. The TORI axioms provide

a good hint for the revision.

It should be noted, that my attempts to use the Maple-10 software for

visualisation of difference D by (16.30) failed. I could not find way to

pot graphics with precision better than just “float” 2. In order to plot

the beautiful figure (16.30), I had to save values of function D as a table,

and then export this table to the C++ program. I hope, now there exist

more straightforward ways to do the same; in particular, use of the fit

provides the “quick and dirty” realisation. I expect, using the precise

numerical solution, fit 4 can be significantly improved; the readers are

invited to do this as an exercise.

Iterate of a function, regular at some of fixed points, often is singular

in another fixed point. Some exceptions, when the superfunction is

expressed with elementary function, are mentioned in Chapter 4.

In such a way, for a given transfer function, there may exist many su-

perfunctions, and some of them may be arguably declared as a “true”

or “principal” superfunction. For the case of transfer function T =

exp√2, the four real-holomorphic superfunctions with various exponen-

tial asymptotics are considered in the next section.

5 Four superexponents to base
√
2

On the base of consideration of previous chapters, one can built-up the

four different real-holomorphic superfunctions for the transfer function

2The poor precision of the graphic procedures in Maple-10 is described in the poem http:

//en.wikisource.org/wiki/Maple_and_Tea Maple and tea. This is one few my texts, that are

not yet removed from wikisource with pretext of protection of my author rights. This is common

practice at wikisource and other sites of Wikimedia projects: the Soviet veterans promote sovietism

and remove texts of anti-Soviet authors with any absurd pretext; often, the claim for the violation

of the author rights is used, even if cases, when the author gave permission to publish the files

providing the free ("copyleft") licence. The permission to use the author’s file is usually removed

together the file. While the soviet veterans act as trolls and vandals in wiki-projects, I loaded the

copy also to http://budclub.ru/k/kuznecow_d_j/maple.shtml
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Figure 16.9: Four superexponents to base
√
2 [sqrt2sufuplot]

T = exp√2. These superexponentials are shown in figure 16.9 and dis-

cussed below.

Here I comрare the four functions; in publication [61], they are are called

F2,1, F2,3, F4,3 and F4,2. Each of them is real-holomrphic solution of the

transfer equation

F (z+1) =
(√

2
)F (z)

(16.32)

The first number in the superscript indicates the limiting value, that the

function approaches exponentially; it is any of the two fixed points of

the exp√2, id est, either 2 or 4. The second number in the superscript

indicates value of this function at zero.

Function F2,1=tet√2 is tetration to base
√
2; the curve for F2,1 is bor-

rowed from the figure 16.1. Properties of this function are considered

above in this chanter. It is superfunction of exponent to base
√
2, built

up with the regular iteration at fixed point 2. As tetration to any other

base, it takes value unity at zero.

Function F4,5 = SuExp√2,5 refers to formula (9.13). This function, to-

gether with its inverse function F−14,5 = AuExp√2,5 is used to built-up

iterates of exponent to base
√
2; and these iterates grow up infinitely
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along the real axis. Fixed point 4 is used as the asymptotic value at

minus infinity. With the appropriate translation along the real axis, the

condition F4,5(0) = 5 is achieved.

Function F2.3 is tetration with displaced argument,

F2,3(z) = tet√2(z+z2,3) (16.33)

z2,3 = ate√2(3+io) ≈ −3.3834692659172254 + 8.5715740896774228 i

However, F2,3 has the same periodicity, as tetration F2,1.

Function F2,3 is growing superexponent with displaced argument

F4,3(z) = SuExp√2,5(z+z4,3) (16.34)

z4,3 = AuExp√2,5(3+io) ≈ 3.015784890490347+9.618074521021425 i

Along the real axis, functions F2,3 and F4,3 decrease from 4 at minus

infinity to 2 at plus infinity. In figure 16.9, curve y=F2,3 overlaps well

with curve y=F4,3. The deviation is smaller than the thickenss of lines,

and it is small compared to size of atoms, of which this book (or the

screen where it is watched) is built. In otter to show the deviation,

denote it with

d42(z) = F4,3(z)− F2,3(z) [d42] (16.35)

Tn figure 16.9, the thin line shows y=1024d42(x) ; I scale values of this

difference for 24 orders of magnitude, to make it visible. This similarity

takes place only in vicinity of the real axis. The functions have different

periods, and one go them has singularities; so, they must be pretty

different somewhere.

Similarity of functions F4,3 and F2,3 determines the similarities of corre-

sponding iterates of exponential to base
√
2. These iterates are shown

in figures 9.8, 9.9, 16.6 and 16.7. For real values of the argument, the

half iterates are compared also in figure 16.8. I expect, for application

in physics (where the precision usually does not exceed 20 decimal dig-

its), any of the two iterates is declared as the “true iterate”. However,

for some applications (for example, if the model refers to the complex

numbers), the difference may be important, and the fixed point should

be specified.
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Figure 16.10: u+iv = exp i√
2,d
(x+iy) by (16.36) [sqrt2itemap1]

6 Complex iterates

When the draft of the Russian version of this Book had been completed,

I found, that the book had no maps of the complex iterates. I had

declared that I can calculate any real or even complex iterate, but all

the examples refer to real iterate. I fill this gap in this section. Here I

describe two iterates number i. As this i appear with Roman font; one

may guess, that it is not variable, but a constant, square root of −1.
Figures 16.10 and 16.11 show the complex maps of iterates

exp i√
2,d
(z) = tet√2

(
i + ate√2(z)

)
[sqrt2dii] (16.36)

and

exp i√
2,u
(z) = SuExp√2,5

(
i + AuExp√2,5(z)

)
[sqrt2uii](16.37)
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Figure 16.11: u+iv = exp i√
2,u
(x+iy) по формуле (16.37) [sqrt2itemap2]

Function exp i√
2,d

by (16.36) is built up from the tetration and arctetra-

tion to base
√
2, considered in this chapter. Function exp i√

2,u
by (16.37)

is built up from the growing super exponent to base
√
2 and the cor-

responding abelexponent; these functions are considered in chapter 9.

These pairs of functions look similar in vicinity of the interval (2, 4), but

they are pretty different beeng evaluated far from this interval. As one

could expect, the i th iterates, shown in figures 16.10 and 16.11, are also

similar in vicinity of the interval mentioned, but far from this interval,

they deviate strongly.

As in the case of real iterates, each of considered here complex iterates

can be arguably qualified as “true”. In this sense, the are “equal”. In

the similar sense, "all animals are equal" in the novel “Animal’s Farm”
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by George Orwell 3 In the movel, soon it happens that “All animals

are equal, but some of them are more equal than others”. In the similar

sense, one of iterates, either 16.10 or 16.11, may be “more equal”, if some

additional criterion arises from some physical reasons, specifying, for

example, the asymptotic behaviour of the iterate at infinity. If only one

of iterates reproduces the required behaviour, this iterate immediately

becomes “more equal” than another.

The example of this section once again confirms the general observation

about non-integer iterates of a function, that have more than one fixed

point: the regular iterate, holomorphic in vicinity of some fixed point,

has no meed to be holomorphic at another fixed point. The choice to

the fixed point (and choice of the iterate) should involve the additional

requirement, that may arise from the applications. This general rule

hold also for complex values of the number of iterate.

I expect, the integer iterates may appear more often that real; and the

real iterate may appear more often than compex. On the other hand,

the mathematical formalism should cover an area, which is wider, than

that required for the today’s applications. For this reason I consider

the case with complex number of iterate as an important example, that

shows the power of the formalism of superfunctions.

Following the lessons I remember since the Soviet school, I wanted to say

that “the formalism of superfunctions is omni-potnent, because it is true”
4. On the other hand, the First TORI axiom prohibits consideration of

omnipotent and almighty concepts in a scientific analysis; such doctrines

and concepts are qualified as religious [68].

Various iterates are available for q transfer function with several fixed

points. As soon, as the non-integer iterate of a holomorphic function

with several fixed point is required, the additional conditions should be

added to the formalism in order to decide, which of the iterates is “more

equal than others”.

3 http://msxnet.org/orwell/print/animal_farm.pdf George Orwell. Animal Farm. 1945.

.. “All animals are equal, but some of them are more equal than others”..
4http://www.marxists.org/archive/lenin/works/1913/mar/x01.htm V.I.Lenin. The

Three Sources and Three Component Parts of Marxism. Lenins Collected Works, Progress Pub-

lishers, 1977, Moscow, Vol.19, p.21-28. .. The Marxist doctrine is omnipotent because it is true.

..
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7 Not all is done

In this Book, I describe methods, that can be used to build-up (and eval-

uate) superfunctions, and the iterates that can be expressed through the

superfunctions and the abelfunctions. The properties of superfunctons

and those of the iterates appear as illustrations of the methods. I ex-

pect the Reader to use these methods not only for the transfer functions,

considered in this book. In particular, this chapter indicates the inter-

esting (from my point of view) branch for the future research, namely,

comparison of superfunctions and the corresponding iterates, that are

regular in various fixed points, and look for some general criteria: in

which cases, the iterates, built up at different real fixed points of some

real-holomorphic transfer function, behave in the similar way in the in-

terval between these fixed points. They happened to be very similar

in the case of exponent to base
√
2. How about other growing transfer

functions with two real fixed points?

The Readers are invited to repeat the calculus, described in this Book

(and in this Chapter) for other transfer functions. As an example, I

would suggest to experiment with polynomial transfer function.

One example of the polynomial transfer function is shown in raw 5 of

table 3.1, T (z)=zb. The readers may confirm, that the primary approx-

imation with the regular iteration at the fixed point z=1 gives the series

of expansion of the superfunction, that is just expansion of the “outer”

exponent in superfunction exp(bz). Up to my knowledge, this is the only

case, where the primary series by the regular iteration converges. The

appropriate choice of the 0th approximation should cut the series at the

first term. I expect, many of transfer functions can be treated in such

a way, and the corresponding superfunctions and abelfunctions can be

built-up. The goal of this Book not to describe all the examples, but to

teach the Readers to to it by themselves. So, it is rather collection of

tools, than collection of specific properties of the specific functions.

Consideration of tetration to base b =
√
2, presented in this chapter,

can be generalised to other values of base; in particular, for real values

1<b<exp(1/e). This generalisation is described in the next chapter.
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Chapter 17

Tetration to base b>1

The previous chapters describe various methods of construction of su-

perfunctions for the transfer functions that have real or complex fixed

points. In particular, the examples of the exponential transfer function

are considered, z �→ bz for the cases b=
√
2≈ 1.44, b=exp(1/e)≈ 1.46

and b=e≈2.71 .

In this chapter, I combine methods, described in the previous chapters,

and describe tetration to the real base b>1. For the real values of base,

the interpretation of the superfunction, abelfunction and iterates of the

exponent is especially explicit.

1 Approximation of tetration near zero

For the base b from the interval 1<b< exp(1/e), tetration tetb can be

evaluated with regular iteration at the lowest (smallest) positive fixed

point of the exponent to this base. For b=exp(1/e), it can be evaluated

with the exotic iteration by equation 10.44. For b > 1/ exp(1/e), the

representation through the Cauchy integral can be used. In such a way,

all the domain b>1 is covered with the efficient algorithms for evaluation

of tetb.

For real values of the argument, graphic y= tetb(x) is shown in figure

17.1 versus x for various values of base b>1. Similar plot for arctetration

is shown in figure 17.2.

Figure 17.1 for tetration and figure 17.2 for arctetration are generated,

using the special approximation of tetration for b< 3, by function fit1,

defined with

d=ln(b)
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Figure 17.1: y = tetb(x) for various b [tet10bx]

q=
√
d

c0=−1.0018 + 0.1512848482(1.+33.0471529885q−3.51771875598d)q
1+3.2255053261256337q +

ln(2)− 1

2

d

c1=1.1− 2.608785958462561(1− 0.6663562294911147q)q − ln(2)− 5

8

d

c2=−0.96 + 3.0912038297987596 (1+0.60213980487853d)q
1+4.24046755648d +

ln(2)− 2

3

d

c3=1.2−10.44604984418533 (1+0.213756892843q+0.369327525447d)q
1+4.9571563666q+7.702332166d − ln(2)− 131

192

d

fit1b(z)=(1+c0z+c1z
2+c2z

3+c3z
4)(z+1) + ln(z+2)− ln(2)

d
(1+z)

(17.1)
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Figure 17.2: y=ateb(x) for various b [ate10bx]

In order to get approximation (17.1), I expanded the expression

tetb(z)− ln(z+2) + ln(2)/ ln(b)

1+z
(17.2)

into the Taylor series with powers of z for various values of (new) pa-
rameter d = ln(b). Coefficients of this expansion are approximated as
functions of parameter d. Then, tetration is expressed through this ex-
pansion. The series is truncated; only few terms are taken into account.
For |z| ≤ 1/2, the resulting approximation provides few correct decimal
digits of tetb(z). This approximation is used for |	(z)| ≤ 1/2; for other
values of z, value of tetration is represented through its values at the
appropriate argument, usng either

tetb(z) = btetb(z−1) [tetbminus] (17.3)

or

tetb(z) = logb
(
tetb(z+1)

)
[tetbplus] (17.4)
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dependently on signum of 	(z). In such a way, tetration can be evalu-
ated with few decimal digits for moderate values of |
(z)| and |
(b)|.
Yet, I have no similar approximation for larger values of |
(b)|, although,
the Cauchy integral can be generalised for various, even complex values
of b; the example is considered below in chapter 18. The range of validity
of approximation fit1b is wide; In particular, at b<5, the approximation
provides of order of four significant figures. This is sufficient precision
for plotting of the camera-ready pictures, the defects of this approxima-
tion are not seen in figure 17.1. However, at b=10, the approximation is
a little bit worse; for this value, the primary representation through the
Cauchy integral is used. This refers to only single curve in the picture.

Figure 17.1 shows behaviour of tetration of real argument at various
values of base b>1:

In the interval −2≤ x≤−1, tetration y = tetb(x) has negative values
and grows while b increases.

In th interval −1≤ x≤ 0, tetration y = tetb(x) has positive value and
grows with increase of b.

At x>0, tetration y=tetb(x) has positive values and grows with increase
of b.

In the limiting case b→1, the curve y=tetb(x) approaches the asymp-
totics x=−1 and y=1.

In the limiting case b→∞, curve y = tetb(x) approaches asymptotics
x=−2 and x=0, and also −2<x<0 at the abscise axis.

At all b>1, tetration tetb(x) is monotonic function, and curve y=tetb(x)
passes though points (−1, 0), (0, 1) and (1, b).

At b= exp(1/e), the line y = filog(1/e) = e becomes asymptotics. this
line is added to the rectangular grid at integer values ob abscissas and
ordinates.

At 1<b≤exp(1/e), with grow of x the curve y=tetb(x) approaches the
horizontal asymptotics y = filog

(
ln(b)

)
.

Function filog expresses fixed points of logarithm as function of loga-
rithm of its base. This function is considered in the next chapter. It is
essential for evaluation of tetration of complex base. While, suggest to
compare the results of the previous chapters for the real base. This is
matter of the next section.
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2 Various bases of exponent and the iterates

In this section, the iterates of exponent are compared. These iterates
are considered in the previous sections. Below, I overview the results.

Iterates of exponent to bases b=e, b=exp(1/e) and b=
√
2 are shown in

figure 17.3 as functions of the real argument for various values of number
n of iterate. The curves are drawn for n=−2, −1, −0.9, −0.5, −0.1,
0, 0.1, 0.5, 0.9, 1, 2.

The upper picture in figure 17.3 represents the case b=e; iterates of the
natural exponents are shown. These iterates are calculated through the
natural tetration tet and natural arctetration ate, I repeat this formula
once again:

y = expn(x) = tet
(
n+ ate(x)

)
(17.5)

Similar pictures can be plotted also for other values of base b> exp(1/e).
For these values of base, the real iterates are real-holomorphic functions
at least in some vicinity of the real axis. In this area, the iterates of the
exponent are so smooth, as the exponent itself.

As the base b, the width of the strip along the real axis (where the
iterates are holomorphic) decrease; at base b = exp(1/e) all the curves
for various iterates pass through the fixed point e. This case is shown
in the central picture of figure 17.3. Then, the non-integer iterates of
exponents at argument, larger than e, are not anymore holomorphic
extensions of those for argument, smaller than e. In order to stress this,
the curves, plotted through tetration and arctetration, are shown with
dashed lines

y = exp n
b,d(x) = tetb

(
n+ ateb(x)

)
(17.6)

while the solid lines correspond to the iterates, expressed through the
growing superexpponent SuExp,

y = exp n
b,u(x) = SuExpb,3

(
n+AuExpb,3(x)

)
(17.7)

Tetration tetb to base b=η=exp(1/e) is determined with (10.44), and
the arctetration to this base can be evaluated through (10.49). In the
similar way, the growing superexpenent is determined by (10.45) with
SuExpb,5 = F3, and the corresponding abelexponent can be evaluated
with (10.50) at AuExpb,3=G3.

For the real base b, at 1<b<exp(1/e), The exponent has two real fixed
points (See figures 9.1, 10.1). Each to these fixed points can be used for
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Figure 17.3: y=expnb (x) for various n at b=e, b=exp(1/e), b=
√
2 [e1e14]
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the regular iteration. However, the non-integer iterate, regular at one
fixed point, is singular at another one. At the bottom picture of figure
17.3, value b=

√
2 is chosen.

Dashed lines corresponds to

y = exp n
b,d(x) = tetb

(
n+ ateb(x)

)
(17.8)

while the solid curves refer to

y = exp n
b,u(x) = SuExpb,5

(
n+AuExpb,5(x)

)
(17.9)

For non-integer number n of iterate, the fixed point 2 or 4 limits the
range of holomorphism of each iterate. In the interval from 2 to 4, each
of the two iterates is holomorphic, and the difference between these
iterate is very small, of order of 10−24, see figure 16.8. Due to this
smallness, the dashed lines at the bottom picture of figure 17.3 seem to
coincide with the corresponding solid lines.

Similar illusion takes place for the central part of figure 17.3; the dashed
lines seem to be continuations of the corresponding solid lines. The
example with exponent show, that, in order to specify the non-integer
iterate, one should choose, establish the asymptotic behaviour of the
superfunction in the complex plane. Over-vice, there may exist vari-
ous solutions, and each of them arguably can be declared as the “true”
one. In order to specify the superfunctions, they are considered for the
complex argument.

3 Dependence of tetration on its base

Graphics of tetration of real argument, shown in figure (17.1), allow to
guess, that the dependence of tetration on the base (at fixed argument)
is continuous (and, perhaps, even holomorphic) function. In order to
show, that this refers not only to the real values of the argument, figure
17.4 shows the complex maps of tetration for b = 1.5 at left, for b =
exp(1/e)≈1.44 at center, and for b=

√
2≈1.41 at right.

All the 3 maps in figure 17.4 look similar, although different algorithms
are used for evaluation of tetration. In principle, tetration to base b=
exp(1/e), for moderate values of the imaginary part of the argument,
could be evaluated also through tetration with a little bit smaller or a
little bit larger values of the base b, as limit b → exp(1/e), using the
corresponding representation through the integral Cauchy (for bigger
values) or with regular iteration (for smaller values). The Readers are
invited to calculate tetration to base b ≈ exp(1/e) and estimate, how
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Figure 17.4: u+iv=tetb(x+iy) for b=1.5, b=exp(1/e) and b=
√
2 [e1e09]

many significant figures can one achieved in such a way, assuming, that
the arithmetics with finite precision is used.

At b→exp(1/e), the efficiency of evaluation of tetration (both through
the Cauchy integral and through the regular iteration) reduces. For
this reason, Henryk Trappmann had expected, that the tetration is not
continuous function of b at point b = η = exp(1/e). For this reason,
Henryk wanted the asymptotic expansion namely for η=exp(1/e), and
it had been done 1. I had suggested the expansion (10.36) and plotted
pics for b= exp(1/e), and Henryk had arranged a lot of mathematical
deduction around it [79].

I hope, the Reader already understands, how to guess the expansion for
the exotic iterates, and can write the similar expansion of superfunc-
tion for any other transfer function, as soon as such an superfunction
will be requested for any application. The inversion of the series gives
the expansions (and the precise approximations) for the corresponding
abelfunctions.

I hope, with the tools above, the colleague can evaluate any iterate of
any holomorphic transfer function, not only real, but also complex. The
examples with iterates number i are hown in figures 16.10 and 16.11 for
the transfer function T = exp√2.

After publications of the results presented above, the colleagues at the
Henryk’s forum had agreed, that the complex iterates, and in particular,
those of the exponent to various real base b> 1, can be evaluated in a
pretty regular way. However, There were some doubts about iterates of
the exponent to the complex base. This case is considered in the next
chapter.

1 This was soon after the article about four real-holomorphic superexponentials to base
√
2 had

been submitted to Mathematics of computation [61]; as usually, the appetite comes while eating.
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Chapter 18

Tetration to complex base

Here, tetration to complex base is considered. Id est, superfunction for

the transfer function T (z) = bz, where base b is not real. In order to

hande this case, I need an additional special function "flog"; it is also

described in this chapter.

In principle, the superfunction of the exponent to complex base can be

constructed with regular iteration, in the similar way, as the tetration to

base
√
2 is constructed in Chapter 16. However, the important question

is, at which of the fixed points, the superfunction should be regular, and

which of possible superfunction should be qualified as tetration.

In addition, at some values of the base, the exponential asymptotic

solution has real part of the increment zero or close to zero; this makes

the application of regular iteration difficult, if at al. One of such cases is

considered below in more details, as an example. The representation of

tetration through the Cauchi integral is not sensitive to the real parti of

the asymptotic increment of the solution; so, such a representation gives

the efficient way of evaluation of tetration to complex base. However,

the asymptotic behaviour of tetration in the upper and in the lower

complex plane should be specified.

The main idea of this chapter is to make superfunction that approaches

one of the fixed points of the exponent at the upper half of the complex

plane, and to another fixed point at the lower part of the complex half

plane, using the assumption, that, for the complex base, the imaginary

part of the asymptotic increment is not zero.

Question about the fixed points is important (as in the case of any

other superfunction), and it should be considered. This consideration is

presented in the following section.
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Figure 18.1: u+iv=filog(x+iy) , as solution L=filog(B) of (18.1)

1 Fixed points of logarithm

This section is dedicated to relation between the base b of the exponen-

tial and its fixed point L. Let L = filog(B) be solution of equation

ln(L) = BL [LL] (18.1)

Complex map of function filog is shown in figure 18.1. The zoom-in of

the central part of this map is shown in figure 18.2. Let

B = ln(b) [Bb] (18.2)

Then filog(B) determines the fixed point L1 of logarithm to base b;
another fixed point L2 is determined with the complex conjugation:

L1 = fllog(B) [L1filog] (18.3)

L2 = filog(B∗)∗ [L2filog] (18.4)
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Function filog can be expressed through the special function Tania by

(5.3) as follows:

filog(z) =
Tania

(
ln(z)− 1− πi

)
−z (18.5)

Note, that here, namely Tania is used, but not WrightOmega, which

looks similar to Tania in vicinity of the real axis. The Readers are

invited to try to reproduce figure 18.1, using WrightOmega instead of

Tania, and look, what does it give instead of the beautiful map.

Function filog determines the fixed points of logarithm (which are also

fixed point of the exponent) to base b:

L1 = filog
(
ln(b)

)
[L1filob] (18.6)

L2 = filog
(
ln(b∗)

)∗
[L2filob] (18.7)

At ±i∞, tetration should approach these fixed points. This assumption

to use the Cauchy integral for the definition (and evaluation)

2 Tetration to the Sheldon base

This section describes the tetration to the Sheldon base,

b = 1.52598338517 + 0.0178411853321 i [sheldonS] (18.8)

This number is named after Sheldon Levenstein. In 2015, Sheldon had
expected, that the namely this base causes difficulties at evaluation of
tetration. It was the only request from colleagues to evaluate tetration
to the specific complex base; and this request had been fulfilled.

Complex map of tetration to the Sheldon base is shown in the top picture
of figure 18.3. Explicit plot of this function is shown in the central
picture of that figure. The bottom picture shows the explicit plot of
tetation to Sheldon base along the imaginary part. This tetration has
complex values; so, the graphics are drawn for the real and for the
imaginary parts.

In this section I assume, that value of b is determined with equation
(18.8). I consider this as an example; tetration to other values can be
calculated in the similar way.

It is convenient to define B = ln(b). Then, the fixed points of logarithm
to base b, id est, solutions L of equation lnb(L) =L, can be expressed
through function filog, described in the previous section:

L1 = filog(B) ≈ 2.0565398441043761+1.1445267140098765 i (18.9)

L2=filog(B∗)∗≈ 2.2284359658711805−1.3507994961102865 i (18.10)
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where constant B is evaluated as follows:

B = ln(b) ≈ 0.4227073870410604 + 0.0116910660021443i (18.11)

Solution F of the transfer equation bF (z) = F (z+1) with asymptotics

F (z) = L1+exp(k1z+φ1) +O(exp(2k1z)) при 
(z)→∞ (18.12)

F (z) = L2+exp(k2z+φ2) +O(exp(2k2z)) при 
(z)→−∞ (18.13)

can be considered in the similar way, as for tetration to real base, larger
than the Henryk base η = exp(1/e). Even the same contour of inte-
gration can be used. Subslitution of the asymptotic solutions (18.12),
(18.13) into the transfer equation determines the increments

k1 = ln(L1b) ≈−0.0047589243931785+0.5354935770338939 i (18.14)

k2 = ln(L2b) ≈ 0.0970758595007548−0.517289596155984 i (18.15)

The solution has quasiperiod

P1 =
2πi

k1
≈ 11.7325200133916496−0.1042667514229599 i (18.16)

in the upper part of the complex plane, and quasiperiod

P2 =
2πi

k2
≈ 11.7331504449085493−2.2018723603861230 i (18.17)

in the lower part of the complex plane,

The properties above are sufficient to express the solution F (z) of the
transfer equation

F (z+1) = exp
(
B F (z)

)
[sheldonTra] (18.18)

through the Cauchy integral. This construction is quite analogous to
that for the tetration to base e, described in chapter 14; therefore I do
not repeat here the description of the contour of integration nor the
iterational procedure, that provides the approximations of the solution.
The tetration is expressed through the solution F in the following form:

tetb(z) = F (z1 + z) [sheldonTetDef] (18.19)

where z1 is solution of equation F (z1) = 1. Using equation (18.18), the
solution can be extended at least to the right hand side of the complex
plane. As for the left hand side, in the Second quadrant of the complex
plane, the branch points and the cutlines appear. These cutlines appear
at the use of the logarithmic function to extend the solution to the
direction of negative values of the real part of the argument.
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Unfortunately, the most of cut lines do not fit the frame of map in figure
18.3, althogh I make it in the whole width of the page. The asymptotic
(18.12) indicates, that these cuts are unavoidable, while the imaginary
part of quasi period P1 is negative. Each time, when the tetration takes
value zero, there is branch point at value of the argument, for unity
smaller. These cuts are unavoidable also for other tetrations, while
formula

F (z) = logb
m(F (z+m)) (18.20)

is used for some integer m such that value z+m belongs to the strip
{z ∈ C : |	(z)| ≤ 1/2}. In this sense, the tetration to the Sheldon base
is similar to tetration to the real base.

3 Shell-Thron region

For moderate values of argument z, tetration tetb(z) looks as a smooth

function of base b. At large values of 	(z), dependently on the base,

tetration either has complicated, quasi-chaotic behaviour, or approaches

some of the fixed point of the corresponding logarithm. At the site “Ere-

trande”, the range of values of base b, for which the tetration approaches

its limiting value, is called Shell-Thron region 1. Such a name seems to

be commonly accepted, and I even suggest the Russian literal transla-

tion “Область Тронной Ракушки” for the Russian version of this Book.

However, yet, it is difficult to predict, how convenient and stable are

these names.

In this Book, I am interested mainly the tools for evaluation of super-

functions, and resolving the paradoxes, that are discussed among col-

leagues. Consideration of many examples, that cause no doubts, fall out

of scope of this Book.

In principle, at the iterates of exponent to complex base, we have to

deal with the 6-dimensional space. Coordinates of this space are the

real and imaginary parts of base b (or real and imaginary parts of its

logarithm, B=ln(b)), the real and imaginary parts of the argument,and

the real and imaginary parts of the number of iterate. There may be

many interesting effects hidden in the 6-dimensional space. The detailed

description of these effects may require a special book, dedicated namely

1 Shell-Thron region:

http://math.eretrandre.org/hyperops_wiki/index.php?title=Shell-Thron_region.
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to tetration to complex base. Since year 2010, Henryk Trappmann tries

to compose such a book [66] (I had promised to provide all the algorithms

and pictures he needs for this, and all the pictures requested up to date

are already plotted an included there). I hope, one day Henryk gets good

grant for this activity and will be able to polish the text to the state

he considers as satisfactory. While I still see no principal problem, that

cause serious difficulty at the evaluation of the corresponding iterates;

so, I do not include parts of [66] to this Book. For this reason, analysis

of the Shell-Thron region is presented here in a declarative form.

I hope, the Readers can plot all the pictures that are necessary for

illustration of tetration to the complex base, using the tools described

above. However, if any difficulties of paradoxes appear in the analysis, I

shall try to consider and to resolve them. This point of view is described

by the Russian writers Arkadi & Boris Strugatski in the novel “Monday

begins on saturday” [14]: .. It’s nonsense to look for a solution if it

already exists. We are talking about how to deal with a problem that has

no solution. ..

I hope, the Readers can evaluate tetration to other bases by themselves,

using the tools any examples above. Following the idea mentioned, I

continue to deal with cases that are believed to have “no solution”. One

of the such cases refer to the superfunction of tetration; let it be called

“pentation”. In order to bring is to the textbook case, as it is shorn in

figure 18.4, this function, among other ackermanns, is considered in the

next chapter.

Figure 18.4: Textbook case
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Chapter 19

Ackermanns
W.Ackermann
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Figure 19.1:

— Do you know, owr man asks hoggible questions!
— Who is that man?
— He is called Asker-man!

Here I retell some results for holomorphic ackermanns, tetration and
pentation [89]. For base b>1, tetration f=tetb is solution of equations

f(z+1) = bf(z) , f(0) = 1 [tetb] (19.1)

holomorphic at least in range

z ∈ C : 	(z) > −2 [htetb1] (19.2)

that is limited in range

z ∈ C : |	(z)| ≤ 1 [htetb12] (19.3)

Equation (19.1) appears as special case of the Ackermann equations

A1(z) = b+ z , z ∈ C [Acker1] (19.4)

An(1) = b , n ∈ N, n≥1 [Acker2] (19.5)

An(z+1) = An−1
(
An(z)

)
, n ∈ N, n > 1 [Acker3] (19.6)

I call functions A “ackermanns” in order to avoid confusion with math-
ematician Wilhelm Ackermann, shown in figure 19.1. His last name, to
make difference from the name of the function, is written with Capital
letter [7]. Ackermanns A are subject of this chapter. However, for the
highest ackernanns, the range of holomorphism has no need to be the
same as condition (19.2) for tetration. This range, as well as the asymp-
totic behaviour of highest ackermanns should be specified. I cannot yet
provide the general specification; below, I suggest only the first approach
to the problem.

For base b=2, the explicit plots of the first four ackermanna are shown
in figure 19.2 with thick lines, solid, solid, dotted and dashed. The thin
lines refers to another (and more conventional) system of notations,
described in the next section.
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Figure 19.2: Comparison of definitions for binary ackermanns [acker2t]
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1 Binary ackermanns

In century 20, the ackermanns are considered mainly (or even exclu-

sively) for the base b= 2, and mainly (or even exclusively) for integer

values of the argument. I call ackermanns to base b = 2 as “binary”

ackermanns.

For the binary ackermanns, the special notations are used. The number

of ackermann is written as additional, first argument, and the base b is

not indicated at all; there is no need to indicate it, as it remains to be

two. Relation of the classical (and usual for today) notations for the

ackermanns by (19.4) (19.5) (19.6) can be expressed with the simple

formula

A(m, z) = A2,m(z + 3)− 3 [asa3] (19.7)

In particular,

A2,1(x) = 2 + x = A(1, x+3)− 3 = A(1, x) (19.8)

A2,2(x) = 2 x = A(2, x+3)− 3 (19.9)

A2,3(x) = exp2(x)= A(3, x+3)− 3 = 2x (19.10)

A2,4(x) = tet2(x) = A(3, x+3)− 3 (19.11)

Figure 19.2 shows relation between the single-argument function A with

subscripts and conventional A without subscript, but with two argu-

ments. Four ackermanns are plotted as functions of real argument;

y=A2,m(x) for m = 1, 2, 3, 4 are shown with thick lines (solid, solid,

dotted and dashed); dependences y =A(m, x) for m = 1, 2, 3, 4 are

shown with thin lines (solid, solid, dotted and dashed);

Due to relation (19.7), the thick lines in Fig.19.2 can be obtained from

thick lines by translation for 3 units along x axis and for the same along

the ordinate axis; the only straight line for the First ackermann stays at

its place at such a transform.

Especially for the binary ackermanns, the system of equations (19.4),

(19.5), (19.6) can be a little but extended, in order to include the “ze-

roth" ackermann. Equations for A can be written as follows:

A(0, z) = z + 1 (19.12)

A(m+1, 0) = A(m, 1) (19.13)

A(m+1, z+1) = A
(
m,A(m+1, z)

)
[ackerbi] (19.14)

Displacemenr of both, argument and the function, by formula (19.7) can

be qualified as conjugation. The transfer equation (19.14) for the binary
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ackermann in the “classcal” notations has the same form, as the transfer

equation (19.6).

One of applications of the ackermanns is to denote the huge numbers

(for real moderate values of the argument). Due to the displacement

of the argument, the canonical ackermanns can make illusion of a lit-

tle bit more fast growth, than the ackermanns by (19.4), (19.5), (19.6).

However, for the applications, this “acceleration” is not important. I

think, the notations in formulas (19.4),(19.5),(19.6) are better than the

canonical notations. In notations (19.4), (19.5),(19.6), the third acker-

mann happens to be just exponent, the fourth - just tetration, and so

on. In addition, I consider ackrmanns as superfunctions, holomorphic

with respect to the last argument; so, it is good, to keep this argument

single, The base b and the number of the ackermann appear as parame-

ters; they can be specified in the subscript. I hope, the Reader will meet

no problems using relation (19.7) for the conversion from one system of

notations to another one.

2 Names and notations

As I had mentioned above, in century 20, the functions of Ackermanns

are considered for base b=2 and only for integer values of the argument

z. While, I see no fundamental limits, that would prohibit existence

and evaluation of these functions for various, including complex, val-

ues of b and z; however, the appropriate requirement on the range of

holomorphism should be formulated.

I hope, for all ackermanns, we may require the real holomorphism at least

in some vicinity of at least some part to the real axis. In general, the

solution of the transfer equation is not unique; so, we should indicate

also the way of construction of each ackermann, or to guess (invent,

postulate) its behaviour in the complex plane, following the idea, used

to construct natural tetration described in chapter 14.

Several ackermanns already have special names:

Ab,1 = z �→ b+z, addition of constant b,

Ab,2 = z �→ bz, multiplication by constant b,
Ab,3 = expb = z �→pow(b, z) = z �→bz, exponent to base b,

Ab,4 = tetb = z �→ tetb(z), tetration to base b,

Ab,5 = penb = z �→ penb(z), pentation to base b.

The following functions can be denoted with sumbols hexb, hepb, octb,..
and be called, accordingly, with terms “hexation”, “heptation”, “octation”
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and so on. These notations appear at the truncation of latin names of

numbers to three characters.

Initially, the formalism of sulerfunctions had been developed for tetra-

tion, id est, for superfunction of the exponent, for the Fourth ackermann.

However, this formalism can be applied also for other functions, and, in

particular, for various ackermanns. As an example, in the next section

I consider the 5th ackermann, the pentation.

3 Pentation

If you give to some true Mathematician the teapot, the gas stove, the

matches and water tap, and ask to prepare tea, the Mathematician puts

water into the teapot, ignites the gas and put the teapot on the fire. If

the Mathmatician finds the tea powder, then, perhaps, he or she even

drop it into the hot water after to see the boiling and switch off the gas.

But if, after that, the Mathematic again is asked to prepare the tea,

while the water is already in the tea pot, and the gas fire at the stove is

ready.. Ooh.. You may guess, that the true Mathematician shuts down

the gas, drops the water from the teapot and spells the magic sentence:

“The problem is reduced to the previous one!” .

I hope, with methods, described above, and especially, keeping in mind

the previous paragraph, the Reader already can calculate the superfunc-

tions, just following the general algorithms from this Book. On the other

hand, I am more physicists, than mathematician. (The mathematician

colleagues have no doubt in this, although some physicists express the

opposite opinion.) Theredore, instead of to spell the magic sentence

“The problem is reduced to the previous one!” , in this chapter,

I suggest one more example of evaluation of ackermann. This example

refers to the natural pentation, id est, pen = pene = Ae,5.

At the construction of a superfunction, the key question is about the

fixed points of the transfer function. For pentation, the transfer function

is tetration, considered in chapter 14. The real fixed points of tetration

are shown in figure 19.3. This is modification of figure 17.1: some lines

are removed, and the new curve for tetration to base b= τ ≈1.63532 is

added. Here, τ is specific values of base, at which the curve y=tetτ(x)
touches the line y=x. The point of touching has coordinates (Lτ,1, Lτ,1),
and Lτ,1 ≈ 3.087. For this value, the additional grid lines are added in

figure 19.3.

At base b > τ , tetration tetb has the only one real fixed point. In
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Figure 19.3: y=tetb(x), fragment of figure 17.1; line y=x and y=tetτ (x) are added

particular, this refers to the case of natural tetration tet = tete. For

natural tetration, this point is L=Le,0≈−1.85035452902718, and for

this value, also the additional grid lines are shown in figure 19.3. Namely

this point is chosen to built-up the natural pentation pen, id est, for the

fifth ackermann to base e=exp(1)≈ 2.71 . As the Reader can see, not

so many options we have in this case.

The growing real-holomorphic superfunction of natural tetration, that is

constructed with regular iteration at the fixed point Le,0 and approches

this fixed point at −∞, I call the fifth ackermann, or pentation. Graphic

of pentation is shown in figure 19.4. I describe the construction below.
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Figure 19.4: y = pen(x) by (19.24), its asymptotic (19.25), and deviation of the

linear approximation by (19.27)
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For superfunction F of transfer function tet, the transfer equation is

F (z+1) = tet
(
F (z)

)
(19.15)

I construct the growing along the real axis solution F by the regular
iteration at the fixed point of tetration L=Le,5,0≈−1.85035452902718;
I mention the key point of the construction below.

For some natural number M > 1, I search the solution F of equation
(19.15) in the following form:

F (z) = f(z) +O(εM) [penF] (19.16)

where

f(z) = Le,4,0 +
M−1∑
m=1

amε
m [penf] (19.17)

ε = exp(kz) [penepsilon] (19.18)

Here, the positive constant k has sense of the increment of the growth
of superfunction at large negative values of the argument, and a are real
coefficients. For simplicity, I set a1=1. Substitution of representations
(19.16), (19.17) to the transfer equation (19.15) and the asymptototic
analysis with small parameter ε give

k = ln
(
tet′(L)

)
≈ 1.865733 (19.19)

and the coefficients a; in particular,

a2 =
tet′′(L)/2(

tet′(L)−1
)
tet′(L)

≈ −0.6263241 (19.20)

a3 =
tet′′(L)a2 + tet′′′(L)(
tet′(L)2−1

)
tet′(L)

≈ 0.4827 (19.21)

For the numerical implementation, in (19.17), I choose M = 4; this is

sufficient to evaluate pentation with 14 significant figures and to plot

all the figures of this article in real time. This approximation is good

for large negative values of the real part of argument of supertetration.

Then, for integer n, I define

Fn(z) = tetn(f(z − n)) [pentalim] (19.22)

The exact superfunction F appears as limit

F (z) = lim
n→∞

Fn(z) [flim] (19.23)

261



y

3

2

1

0

−1

−2

−3

−4−4 −3 −2 −1 0 1 2 3 x

v=0

u=L

v=0 cut

u=L

v=0

u=L

v=0 cut

u=L

v=0

v=−1

v=1

v=−1

v=1

u
=
−
1

u
=
0

u
=
1

u
=
2

http://mizugadro.mydns.jp/t/index.php/File:Penmap.jpg

Figure 19.5: u+iv = pen(x+iy) по формуле (19.24) [penmap]

The limit does not depend on the chosen number M of terms in the

asymptotic expansion. However, the larger is M , the faster the limit in

(19.23) does converge.

The pentation appears as superfunction F with displaced argument:

pen(z) = Ae,4(z) = F (x5+z) [pendef] (19.24)

where x5≈ 2.24817 is solution of equation F (x5)=1. Complex map of

this pentation is shown in figure 19.5.

The real-real plot of pentation by (19.24) is shown in figure 19.4 with

thick curve. The additional horizontal grid line y = Le,4,0 shows the

asymptotic at large negative values of the argument. The thin curve
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shows the more advanced asymptotic

y=Le,4,0 + exp(k(x+x5)) [pen01e] (19.25)

Pentation is holomorphic at least for |	(z)| < |P |/2 ≈ 1.6838, where

P =2πi/k is period; pentation, as exponential, is periodic function. A

little bit more than two periods are covered by the range of the map at

figure 19.5. Pentation has the countable set of cut lines, parallel to the

real axis. In figure 19.5, these cuts are marked with dashed lines.

In vicinity of the segment of length 2 at the negative part of the real

axis, pentation can be approximated with the linear function,

pen(x) ≈ 1 + x [penlin] (19.26)

At −2.1< x < 0.1, approximation (19.26) provides two significant fig-

ures. Deviation of this approximation from pentation pen can be ex-

pressed with function

δ(x) = pen(x)− (1+x) (19.27)

This deviation is shown in figure 19.4 with thin line; it is scaled with

factor 10; curve y = 10 δ(x) is drawn.

The linear function in the right hand side of equation (19.26) approxi-

mates also the previous ackermann, id est, tetration; its graphic is show

in figure 14.1. For tetration, the function in the right hand side of

formula (19.26) also gives of order of two significant figures; however,

the range of this approximation for pentation is twice wider, than for

tetration.

Complex map of pentation by (19.24) in figure 19.5 demonstrates, that

pen(z) is holomorphic at least for 	(z) < −2.5 . As the real part of the
argument approaches minus infinity, pentation exponentially approaches

the limiting case L = Le,4,0 ≈ −1.850354529, shown in figure 19.3. In

order to show this explicitly, the light strip in figure 19.5 indicates the

additional level u=Le,4,0.

Pentation is periodic; its period P is determined by the increment k, id

est, by the derivative of tetration at its fixed point Le,4,0:

P =
2 π i

k
≈ 3.36767615657879 i [penP] (19.28)
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Figure 19.6: u+iv = pen(x+iy) by (19.24), zoom-in from figure 19.5 [penzoo]

The period is pure imaginary; the complex map of pentation reproduces

itself at translations for integer factor of the period. The cuts of the

range of holomorphism are also reproduced.

Along the real axis, pentation shows very fast growth, faster, than that

of natural tetration. As maps of many other fastly growing functions, the

map of pentation has complicated structure in vicinity of the real axis.

Pentation varies with huge derivatives, that correspond to enormous

density of the levels at the complex map. The plotter could not draw

the huge amount of lines, and so, the narrow region in vicinity of the real

axis in figure 19.5 is left empty. The same applies to the translations for

integer factor of period P . In order to shown behaviour of pentation in

vicinity of the real axis and in vicinity of the cut line, figure 19.6 shows

the zoom-in from the figure 19.5.

General methods of construction of superfunctions can be used to build-

up the ackermanns. If the growth of tetration happens to be not suf-

ficiently fast, the pentation described above, can be used. The highest

ackermanns can be constructed in the similar way. In particular, the

fixed points of pentation indicate the way to build-up its superfunction,

id est, the next ackermann. Fixed points of tetration are considered in

the next section.

264



4 Fixed poins of pentation and future work

In this section I suggest some hint, how can one built-up the next acker-

mann, pentation, using the fixed points of tetration. Actually, here I do

not construct pentation (because, anyway, I have to stop somewhere); I

only mention the way to do it.

As usually, one should begin with the fixed points, id est, solutions L of

pen(L) = L [penLeq] (19.29)

Some of the solutions are shown in figure 19.6, these solutions are marked

with character L. They correspond to

L = Le,5,0 ≈ −2.260 + 1.384 i (19.30)

L = Le,5,1 ≈ 1.057 + 1.546 i [penL1] (19.31)

There are also solutions in vicinity of the real axis

L = Le,5,2 ≈ 3.43 + 0.07 i (19.32)

L = Le,5,3 ≈ 4.39 + 0.11 i [penL3] (19.33)

but they do not fit the frame of the map on figure 19.6. The readers

are invited to solve numerically equation (19.29) and to adjust values of

Le,5,0 Le,5,1. I expect, one can find the real-holomorphic solution F to

equation

F (z+1) = pen
(
F (z)

)
(19.34)

with additional conditions

F (0)=1 , F (i∞)=Le,5,0 , (19.35)

The readers are invited to find this solution and interpret it as hexation,

id est, the 6th ackermann.

At this point, I stop constructing new ackermanns. I want to compare

the first 5 ackermanns. It is mater of the next section.
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5 Comparison of natural ackermanns

In this section I compare the first 5 sclermanns for the natural base

b=e. In such a way, I overview results for ackermanns. For real values

of argument, these functions are plotted in figure 19.7.
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Figure 19.7: y=Ae,n(x) for n=1, 2, 3, 4, 5 [ackerplo]
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Functions plotted in figure 19.7 are:

Ae,1(z) = e+z, addition of constant e,

Ae,2(z) = e z, multiplication to constant e,

Ae,3(z) = exp(z) = ez, natural exponent ,

Ae,4(z) = tet(z), tetration to base e,

Ae,5(z) = pen(z), pentation to base e.

These notations are used to mark curves y=Ae,n(x) at figure 19.7. As

usually, if the base is not specified at the subscript, it is assumed to be

e, base of natural exponent and that of natural logarithm.

Tetration and pentation at the segment [−1, 1] look similar. However,

at the printing with good resolution, the deviation is seen, it exceeds

the width of the lines in figure 19.7.

I expect, the tetration already has the growth fast enough to describe

the fastest function that may appear in the applications. However, the

main property of the scientific revolution is that they are unexpected. If

for some case, the growth of tetration is not fast enough, the pentation

or even higher sckermanns can be implemented, using the tools from

this Book.

When I plotted the pentation, I ask myself: "Why not to do in the

similar way the next ackermann?" The answer is simple: I already know,

how to do it. And the Reader, if reached here, also knows. Anyway, the

Book should be finished at some moment, see figure 19.8.

Instead of to add more examples for the tools described above, I think,

it is more important to consider at least one example, when the tools

above do not work. This example correspond to the transfer function,

that has no fixed points at all - neither real, nor even complex. Such

an example is considered in the next chapter, and, while typing this, I

believe, that will be the last example in this Book.

No rafting! Sit and finish your divine
Book “Superfunctions”

http://mizugadro.mydns.jp/t/index.php/File:Veslo.png

Figure 19.8: Wash yourself and finish your divine opera Khovanshina! [15]
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Chapter 20

Without fixed points

In this chapter I describe the last (for this book) example of the trans-
fer function, I consider function without fixed points. I suggest, that
the Reader tries to invent, to guess, to write-out some entire function
without fixed points, before to look at the formula below.

For the transfer function without fixed points, neither method of regular
iteration, nor the representation through the Cauchy integral can be
applied as is for the primary evaluation of superfunction. For this reason,
this example is interesting and deserves the special chapter. Here, I retell
results published recently [88].

1 Trappmann function
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Figure 20.1: y=tra(x) and y=exp(x)

I give name ‘Trappmann func-
tion” to the elementary function

tra(z) = exp(z) + z (20.1)

Function tra has no fixed point;
equation tra(L) =L has no solu-
tion. Function tra is compared to
exponent in figure 20.1.

Function tra had been expected
to be a trap, trump, to catch me
on my claim, that I can build-up
a superfunction for any holomor-
phic transfer function. Henryk
Trappmann had suggested this
function; so, I use first three car-
acters of his family name to de-
note it.
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Figure 20.2: u+iv = tra(x+iy) по формуле (20.1) [tramap]

Word “trap” can be interpreted also as gate, a way to the future successes
in solving of various transfer equations and iterates of tricky functions.
We see, function tra deserves the special name.

Complex map of function tra by (20.1) is shown in figure 20.2. In the
right hand side of the figure, the map looks similar to that go exponent:
at the background of the exponential growth, the linear addition in the
right hand side of equation (20.1) does not look impressive. In the left
hand side of the map, contrary, the exponent becomes negligible, and
the lines of constant real part and those of constant imaginary part of
the function form almost uniform grid of lines, parallel to the coordinate
axes.

Similar property, at least in some part of the complex plane, is shown by
the inverse function, id est, ArcTra = tra−1. Complex map of ArcTra
is shown in figure 20.3. I consider its evaluation in the next section.
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Figure 20.3: u+iv=ArcTra(x+iy) [arctranmap]

2 ArcTra, inverse of trappmann

In order to iterate a function, I mean non-integer iterates, first, we need

to learn to evaluate the integer iterates. For positive integer number of

iterate, we may apply the function to the argument so many times as

necessary. As for the negative iterates, we need the efficient algorithm

for the inverse function. Let this inverse function be called ArcTra, in

analogy tithe ArcSin, ArcTan and ArcBessel; in some wide range to

values of the argument (that includes the real axis), the ArcTra should

satisfy equation

tra
(
ArcTra(z)

)
= z [traArcTra] (20.2)

Complex map of function ArcTra is shown in figure 20.3.
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Figure 20.4: Linear versus nonlinear

Perhaps, I should explain, why I de-

scribe in this Book so elementary

thing, as building-up of inverse func-

tion. In century 20, I used to deal

with students interested in nonlinear

optics and quantum optics. Some of

them were smart [28], but some stu-

dents had problem even with linear

optics. It costed to me certain efforts,

to explain them, that there is a lot of

pretty “linear” science behind every so-

called “nonlinear” phenomenon, as it

is shown in figure 20.4. In the similar

way, it is vain to discuss non-integer iterate, while even the negative

integer iterates are not yet implemented. I describe the implementation

of function ArcTra in this section.

During the USSR, there was some science there. The famous institutes

of the so-called "Soviet School" were Fizfak (Физфак, Physics depart-

ment of the Moscow State University) and Fiztech (Физтех, Moscow

Phisics-Technical Institute). As one can guess, Fizfak used to deal with

fundamental science, and Fiztech did with the applied one. In order

to compare a specialist graduated from Fizfak to that graduated from

Fiztech, in the USSR, the following example is popular. One, graduated

from Fiztech, can calculate or ensemble everything. But he/she under-

stands close to nothing. As for one graduated from Fizfak - Oooh.. he

or she understands everything, although can calculate close to nothing.

I remind that story for the analogy with figures of this section. Read-

ers, who are interested in the beautiful pictures, may look at the coplex

maps presented in this section. Then, these Readers can be qualified

with specification “understand everything”. As those graduated from

Fizfak.

For the implementation of the Abel function for the transfer function tra,

the inverse function ArcTra = tra−1 is used. Unfortunately, as in the

case of ArcSin and ArcFactorial, I could not find any complex double im-

plementation of ArcTra, and I had to make it by myself. This is general

rule: for the efficient implementation of the non-integer iterates of some
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transfer function 1 , the inverse function also should be implemented. In

order to show the underwater stones, that may appear at calculation of

superfunctions, in this section, the efficient implementation of function

ArcTra is described.

It is not difficult to calculate the derivative of function tra:

tra(z) = z + exp(z) , tra′(z) = 1 + exp(z) [traagain](20.3)

The Newton method gives a good precision evaluating solution f of

equation

tra(f)=z [traf] (20.4)

fn+1 = fn +
z − tra(fn)

tra′(fn)
[arctranewton] (20.5)

f = lim
n→∞

fn [arctralim] (20.6)

under a simple condition: the initial approximation f0 indicates the cor-

rect branch of the resulting inverse function. It is general rule, that

any non-trivial holomorphic function (and, especially, entire function)

has some points, where its derivative is zero; and these points provide

branches of the inverse function. For this reason, for the robust im-

plementation, the correct choice of the initial approximation is essen-

tial: over-vice, the resulting function may return values from different

branches in some almost random, almost unpredictable way. In order

to indicate the correct branch, the expansions below are used.

Expansions of tra in vicinity of the saddle points ±πi can be inverted,

giving the expansions of ArcTra in vicinity of −1± iπ. These expansions

determine the positions of the branch points, and the direction of the

cut lines, seen in figure 20.3.

Consideration of the exponential in (20.3) as a small parameter and

as a big parameter gives two more asymptotic expansions. Together

with the Taylor expansion at unity and the expansions at the branch

1In principle, any holomorphic function can be declared as “transfer function”. I still specify

that tra is “transfer function”, in order to indicate my intention to iterate it and to distinguish it

from its superfunction and its Abel function.
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points, these expansions cover all the complex plane with the appropriate

primary approximations, providing several correct decimal digits of the

primary estimate f0 of value of function ArcTra. Then, few iterations

by (20.5) already reach the maximal precision (15 digits), available for

the complex double variables. This algorithm is used in the numerical

implementations of ArcTra and AuTra. 2

The easiest expansion is at the negative part of the real axis:

ArcTra(z) ≈ app4(z) = z − ez + e2z − 1

2
e3z (20.7)

The Readers are invited to plot the map of the agreement function

A4(z) = − lg

(
|tra(app4(z))− z|
|tra(app4(z))|+ |z|

)
(20.8)

The logarithmic growth of function ArcTra can be caught with the

asymptotic expansion This expansion provides the approximation

ArcTra(z) ≈ app3(z) = ln(z)

(
1 +

1

z

M∑
m=0

Pm(ln(z))

zm

)
(20.9)

where Pm is polynomial of mth order. In particular,

P0(�) = −1 (20.10)

P1(�) = 1− �/2 (20.11)

P2(�) = −1 + 3�/2− �2/3 (20.12)

P3(�) = 1− 3L+ 11�2/6− �3/4 (20.13)

P4(�) = −1 + 5�− 35�2/6 + 25�3/12− �4/5 (20.14)

The Taylor expansion of function tra at unity gives the approximation

ArcTra(z) ≈ app1(z) =
M∑
n=1

cn(z − 1)n [arctrap1] (20.15)

Some tens of coefficients c of this expansion can be calculated, invert-

ing the Taulor expansion of function tea at zero; the beginning of the

expansion can be written as follows:

2 Details of the algorithm and the maps of the primary approximations for ArcTra are loaded

to the special page http://mizugadro.mydns.jp/t/index.php/ArcTra .
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ArcTra(1+z)= z
2−

z2

16 +
z3

192 +
z4

3072 −
13z5

61440 +
47z6

1474560 +
73z7

41287680 −
2447z8

1321205760+..

AtM=21, for |z|<1, this approximation provides at least 12 significant

figures.

Expansion of ArcTra at point −1− iπ can be written as follows:

ArcTra(z) ≈ app2(z) =
M∑

m=1

c ∗m (z+1+iπ)m/2

= −iπ + i
√
2
√
z+iπ+1 +

1

3
(z+iπ+1)

− i(z+iπ+1)3/2

9
√
2

− 2

135
(z+iπ+1)2 + .. (20.16)

In more compact (and more efficient for the numerical implementation)

form, this expansion can be re-written as follows:

ArcTra
(
− 1−iπ+2t2

)
= −iπ + 2it+

2t2

3
− 2it3

9
− 8t4

135

+
it5

135
− 32t6

8505
+

139it7

42525
+ .. (20.17)

with obvious modification for the “conjugated” region

ArcTra
(
− 1 + iπ + 2t2

)
= iπ − 2it+

2t2

3
+

2it3

9
− 8t4

135

− it5

135
− 32t6

8505
− 139it7

42525
+ .. (20.18)

where t has sense of algebraic function of argument z of the arctrapp-

mann,

t =

√
z + 1− iπ

2
[arctrait] (20.19)

The cut of the square root function in (20.19) automatically determines

the cut lines of function ArcTra, seen in figure 20.3. I invite the Reader

to plot the maps of the agreement functions

Am(z) = − lg

(
|tra(appm(z))− z|
|tra(appm(z))|+ |z|

)
(20.20)

in the complex plane z = x+iy for m = 1, 2, 3, 4, id est, for the four

primary approximations suggested in this section.

When the approximations above are implementd and called with names

arctra1, arctra2, arctra3, arctra4, the numeral implementation of func-

tion ArcTra can follow the algorithm below:
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z_type arctran(z_type z) { DB x=Re(z), y=Im(z);

if( x>2.) return arctra3(z);

DB Y=fabs(y);

if(Y<M_PI){ if(x<-1.5) return arctra4(z);

if(Y<2.) return arctra1(z); }

if( Y>5. || x<-4. ) return arctra3(z);

if( y>0. ) return arctra2(z);

return conj( arctra2(conj(z)) );

}

Alternatively, function ArcTra can be expressed through the Tania func-

tion (5.3):

ArcTra(z) = z − Tania(z−1) [ArcTraTania] (20.21)

In such a way, in this Book, function Tania is used already 3 times

in three pretty different ways: First, in the simple model of the laser

amplifier, then, in the representation of function flog, and, en fin, now,

as an alternative implementation of ArcTra.

At least on vicinity of the real axis, function Tania can be expressed also

through other special functions namely, LambertW and WrightOmega,

see (5.2). In principle, one could use those representations instead of the

implementation described above. However, at large z, Tania shows the

growth similar to the proportional; so, the numerical implementation of

ArcTra through Tania may cause loss of precision due to the rounding

errors. However, the special implementation of ArcTra specifid above,

had been used for the testing of the numerical implementation of func-

tion Tania.

While both tra and ArcTra are described and implemented, function

tra can be iterated, using the representation through the superfunction

and the abelfunction. I call these functions SuTra and AuTra; then, a

usually

tran(z) = SuTra
(
n+AuTra(z)

)
[tranz] (20.22)

In such a way I announce the future consideration: Function SuTra is

described in the next section, and function AuTra is treated soon after

that section.
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Figure 20.5: y=SuTra(x) and y=− ln(−x)

As it is mentioned above,
the Trappmann function tra
has no fixed points. For
this reason, the methods
described in the previous
chapters of this Book, can-
not be applied “as is”. Hen-
ryk Trappmann had ex-
pected, that it will be dif-
ficult, to construct super-
function for the function
tra, if at all.

However, the simple and ef-
ficient way to construct and
evaluate SuTra, which is su-
perfunction for the Trapp-
mann function, exist. Plot
of function SuTra is shown in figure 20.5 and compared to the graphic
of its asymptotic. Below I describe the construction of this function.

Many colleagues, instead of to trace the deduction, ask first “How did you
guess?” Following such an interest, first, I describe the hint, that leads to
the efficient representation of function SuTra. For the transfer function
tra, and its superfunction F , the transfer equation can be written as
follows:

F (z+1) = tra(F (z)) = F (z) + exp(F (z)) [trantrap] (20.23)

and re-written in the following form:

F (z+1)− F (z) = exp(F (z)) [trantrap1] (20.24)

In the left hand side of equation (20.24), I see something, that looks
similar to derivative of function F . This similarity can be expressed
with approximate equation

dF

dz
≈ 1

exp(−F )
(20.25)

that gives ∫
exp(−F )dF ≈

∫
dz (20.26)
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exp(−F ) ≈ −z (20.27)

This relation indicates, that expansion of superfunction F may begin
with the logarithmic term, namely the term, shown in figure 20.5.
However, the “heuristic solution” above is not a solution at all; in the
best case, it is only the asymptotic approximation. Substitution of the
approximation of function F into the transfer equation (20.23) gives, of
course, some residual. This residual indicates the form of the next term
of the expansion; and so on. In such a way, I guess the form of the
asymptotic solution F :

F (z) = FM(z) +O

(
ln(−z)

z

)M+1

[sutraFMO] (20.28)

where M is natural number, and

FM(z) = − ln(−z) +
M∑

m=1

Pm

(
ln(−z)

)
z−m [sutraFM](20.29)

where

Pm(z) =
m∑
n=1

am,nz
n [sutraP] (20.30)

Substituting this expansion into the transfer equation (20.23), I collect
terms with equal powers of z and equal powers of ln(−z). This gives
both, verification of the form of the asymptotic expansion (20.29),(20.30)
and values of coefficients a. Several coefficients a, calculated in this way,
are shown in Table 20.1.

Table 20.1: Coefficients a in the expansion (20.28),(20.29)

0 −1
2

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8
1
6

−1
4

1
8

a2,3 a2,4 a2,5 a2,6 a2,7 a2,8
7
48

− 7
24

3
16

− 1
24

a3,4 a3,5 a3,6 a3,7 a3,8
647
4320

−35
96

5
16

−11
96

1
64

a4,5 a4,6 a4,7 a4,8
1427
8640

−4163
8640

25
48

−17
64

25
384

− 1
160

a5,6 a5,7 a5,8
1380863
7257600

−1883
2880

5963
6912

− 653
1152

305
1536

− 137
3840

1
384

a6,7 a6,8
3278773
14515200

−2171723
2419200

97603
69120

−3961
3456

537
1024

− 263
1920

49
2560

− 1
896

a7,8
251790467
914457600

−35981749
29030400

1049251
460800

−920881
414720

69953
55296

−13381
30720

4123
46080

− 363
35840

1
2048

Using Mathematica, coefficients a can be found with the following code:
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T[z_] = z + Exp[z];

Clear [n, m, M];

P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]; P[m, L];

F[z_]=-Log[-z]+a[1,1] Log[-z]/z+Sum[P[m,Log[-z]]/z^m,{m,2,M}]

M = 12;

F1x = F[-1/x + 1];

Ftx = T[F[-1/x]];

s[1] = Series[F1x - Ftx, {x, 0, 2}];

t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]

A[1, 1] = ReplaceAll[a[1, 1], t[1]];

su[1] = t[1]

m = 2; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];

t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];

u[m] = Collect[t[m], L];

v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];

w[m] = Table[a[m, n], {n, 0, m}];

ad[m] = Extract[Solve[v[m], w[m]], 1];

su[m + 1] = Join[su[m], ad[m]];

ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

m = 3; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];

t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];

u[m] = Collect[t[m], L];

v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];

w[m] = Table[a[m, n], {n, 0, m}];

ad[m] = Extract[Solve[v[m], w[m]], 1];

su[m + 1] = Join[su[m], ad[m]];

ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

and so on m=4, m=5, etc. I do not arrange here the loop “For” with

respect to m, in order to keep the code explicit and simplify the tracing

step by step.

Expression (20.29) can be considered as primary approximation of su-

perfunction of the Trappmann function (20.1). Then, the exact solution

F of the transfer equation appears as limit

F (z) = lim
k→∞

trak
(
FM(z−k)

)
[exa] (20.31)

In order to get superfunction SuTra, that satisfies also the additional

condition

SuTra(0) = 0 [SuTra0] (20.32)

I set

SuTra(z) = F (z + x0) [SuTraDef] (20.33)
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Figure 20.6: u+iv = SuTra(x+iy) по формуле (20.33) [sutramap]

where x0≈−1.1259817765745026 is real solution of equation

F (x0) = 0 [x00] (20.34)

Figure 20.5 shows y = SuTra(x) versus x. For comparison, the thin

curve shows the leafing term of the asymptotic representation of SuTra,

id est, y = − ln(−x). In the left hand side of the figure, graphic of

SuTra approaches its asymptotic.

Complex map of function SuTra is shown in figure 20.6. Being far from

the positive part of the real axis, function SuTra looks similar to function

z → − ln(−z), as it is suggested by the leading term of its asymptotic

representation. Lines of the constant real part look similar to circles,

while lines of constant imaginary part look similar to the straight lines;

this make the map to look similar to the map of logarithm.
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Figure 20.7: Complex maps of functions f2 by (20.35) and f4 (20.36),

overlapped with map of function f∞ by (20.37)

I would like to show, how the logarithmic function z → − ln(−z) can
be approximated with the entire function. Figure 20.7 shows complex

maps of the entire functions

f2(z) = SuTra(2z) + ln(2) (20.35)

f4(z) = SuTra(4z) + ln(4) (20.36)

for comparison, each of these maps is overlapped with the map of

f∞(z) = − ln(−z) (20.37)

In the right hand side picture of figure (20.7), the levels of different

functions are so close, that it is difficult to see, which of functions does

each level correspond to. For all z, except zero and positive part of the

real axis, sequence

Φn(z) = −
(
SuTra(−nz) + ln(n)

)
[phin] (20.38)

at big n approximates ln(z). Up to my knowledge, expression (20.38)

provides the range of approximation of logarithm with entire functions,

that is wider than that of all approximations ever suggested before pub-

lication [88].

I have no idea, what for the approximation of logarithm with entire

function can be used. This approximation appears here as a by-product

at construction of function SuTra. But is someone needs such an ap-

proximation, it is done and it is here, formula (20.38).
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4 Implementation of SuTra and the testing

The key parameters of any approximation are the range of applicabil-

ity, the precision and the number of elementary operations that should

be performed for each evaluation. If the range of applicability is wide

(for example, cover the range of holomorphism of the approximated

function), the precision is close to the that allowed at the computer rep-

resentation of numbers, and the complex maps can be plotted in real

time, then I qualify the solution as “exact”. This implies, that, if, for

some reason, the precision needs to be improved, the implementation of

the high precision code is straightforward, id est, can be realised with

the same formulas.

If some function is supplied with definition, the properties are described,

and the efficient precise algorithm for the evaluation is presented, I treat

such a function as a “special function”. Then, if the solution of some

problem is explicitly expressed in terms of the special functions, I call it

“exact solution”. I place this explanation for my old coauthor, who until

now believes, that π is approximate number. However, the fundamen-

tal mathematical constants are, contrary, exact numbers, in the sense

mentioned above; neither π, nor values of superfunctions constrcted in

this Book are exceptions: they are exact and can be evaluated with any

required precision.

Following the ideology of the preamble of this section, I consider here the

range of values of the argument z, at which the approximation FM(z+x0)

by (20.29) can be considered as good approximation of SuTra(z). Then

I describe the algorithm, based on this analysis.

For the practical reasons (in order to get the complex double implemen-

tation, that can be easily reproduced and verified), I took 12 terms in

the expansion, id est, M=12. For the dozen terms, the ageement

A(z) = − lg

(
|FM(z+x0)− SuTra(z)|
|FM(z+x0)|+ |SuTra(z)|

)
[sutraA](20.39)

had been analysed. Levels of this function are shown in figure 20.8.

For the precision complex double, values outside the “thick” contour in

figure 20.8 can be used “as is”. For other values, formula
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Figure 20.8: Map of A = A(x+iy) by (20.39)

SuTra(z) = trak(SuTra(z−k)) [SuTrak] (20.40)

is used with appropriate k, in such a way, that the inner argument is

outside the “thick” contour in figure 20.8. This thick contour is not part

of the map; it is formed with the segment along the line x=−11, arc
with centre at point (5, 0) of radius 18, and the half-line along y=6.

Outside the thick contour in figure 20.8, the precision of evaluation of

function SuTra is limited mainly by the rounding errors. Values outside

the “thick contour” are used for the numerical implementation directly.

For other values, formula 20.40 is used with appropriate value of k. This

algorithm is used for the numerical implementation of function SuTra,

http://mizugadro.mydns.jp/t/index.php/Sutran.cin

At the evaluation of function SuTra, function tra should be evaluated of

order of ten times. (However, this depend on the initial value). Function

tra is fast, because tra(z)=z+exp(z). In such a way, the evaluation of

SuTra is only for an order of magnitude slower, than evaluation of other

special functions like exp, erfc or BesselJ. This is one of reasons why I

qualify SuTra as special function.

For iterates of the Trappmann function, I need also the inverse function,

AuTra = SuTra − 1. This function is shown in figure 20.9 and described

in the next section.
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Figure 20.9: y=AuTra(x) by (20.47) and two its asymptotics by (20.44)

5 AuTra, abelfunction of trappmann

This section describes evaluation of the inverse function of SuTra, id est,

the Abel function for the Trappmann function tra. I call this abelfunc-

tion AuTra. Its explicit plot is shown in figure 20.9; for comparison, in

the same picture, the two asymptotics of function AuTra are shown.

Complex map of function AuTra is shown in figure 20.11.

For the transfer function tra, the abeldunction G satisfies the Abel equa-

tion

G(tra(z)) = G(z) + 1 [abeltraeq] (20.41)

In order to see the asymptotic expansion of the solution G, I rewrite
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this equation as

G(z + ez)−G(z) = 1 [abeltraeq1] (20.42)

and expand the left hand side, using ez as small parameter:

G′(z)ez +G′′(z)e2z/2 + .. ≈ 1 [abeltraeq3] (20.43)

This expansion allows to guess the asymptotic solution:

G(z) ≈ z

2
− e−z − ez

6
+

e2z

16
− 19e3z

540
+

e4z

48
− 41e5z

4200
+O(e6z) (20.44)

The coefficients of the expansion above are calculated and evaluated
with the Mathematica code below:

tra[z_]=z+Exp[z];

g0[z_] = z/2 - Exp[-z] + Sum[c[n] Exp[n z], {n, 1, 20}]

n = 1; s[n] = Series[g0[Log[t]] + 1 - g0[tra[Log[t]]], {t,0,n+1}]

u[n] = Extract[Solve[Coefficient[s[n], t^(n+1)] == 0, c[n]], 1]

g[n, z_] = ReplaceAll[g0[z], u[n]]

For[n = 1, n < 20, n++;

s[n] = Series[ g[n-1,Log[t]]+1-g[n-1,tra[Log[t]]],{t,0,n+1}];

u[n] = Extract[Solve[Coefficient[s[n], t^(n+1)] == 0, c[n]],1];

g[n,z_] = ReplaceAll[g[n-1, z], u[n]]; ]

g[n, z]

Table[Coefficient[g[n, z], Exp[n z]], {n, 1, 20}]

N[Table[Coefficient[g[n, z], Exp[n z]], {n, 1, 20}], 18]

The same coefficients can be obtained also by the inversion of the asymp-

totic expansion of function SuTra. Note, that the asymptotic expansion

of AuTra is simpler, than that of SuTra.

For some fixed integer M , define the primary approximation as trunca-

tion of the series above:

GM(z) =
z

2
− e−z +

M∑
m=1

cme
mz [autraGM] (20.45)

Define function G as limit

G(z) = lim
n→∞

(GM(ArcTran(z)) + n) [autraG] (20.46)

AuTra can be expressed through G with

AuTra(z) = G(z)−G(0) ≈ G(z) + 1.1259817765745026 (20.47)

The constant G(0) can be interpreted also as negative of coefficient x0
in equation (20.34), id est, x0=−G(0).
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Figure 20.10: Map of agreement A = A(x+iy) by (20.50); range (20.49)

is shaded A = A(x+iy) по формуле (20.50) [autraAgreMap]

For the numerical implementation, we need to choose the appropriate

numberM in and to determine the number n of iterations approximating

limit in equation (20.46). The reasonable choice is M = 9. Then, the

primary approximation

SuTra(x+ iy) ≈ g9(x+ iy) (20.48)

is used for the region defined with condition

|y|<3 and |y|/3+x<3.5 (20.49)

This region is shaded in the figure 20.10 Also, at the same figure, the

map of agreement A is shown,
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A(z)=− lg

(
|SuTra(gM(z))−z|
|SuTra(gM(z))|+|z|

)
(20.50)

Map in figure (20.10) can be considered also as the numerical verification

of relation

SuTra(AuTra(z)) = z [SuTraAu] (20.51)

In the shaded range, for the numerical implementation, the relation

(20.51) holds with at least 15 decimal digits; as it is supposed to be

while AuTra is abelfunction, corresponding to superfunction SuTra for

the transfer function tra.

Region, where the primary approximation is used, can be optimised,

approaching to the level A=15 and improving the algorithm. I suggest,

the Reader can do the as an exercise; I hope, the reader will not forget

to test the improved algorithm.

The primary approximation (20.48) can be used only in the narrow range

of values of the argument shaded in figure autraAgreMap. If the initial

argument z = x+iy happens to be outside the shaded region, then,

the function ArcTra = Tra−1 is applied n times with such n, that the

argument comes to the shaded range. Then, approximation

AuTra(z) ≈ g9(ArcTra
n(z)) + n [AuTrag9] (20.52)

is used to evaluate the function.

The cuts of the range of holomorphism of function ArcTra determine

also the cuts the range of holomorphism of function AuTra. These cuts

are seen in figures 20.3 and 20.11. At large |z|, function AuTra(z)
shows the slow growth, except the half-strip 	(z) < 0, |
(z)| < π. In

this half-strip, at large negative values of 	(z), function |AuTra(z)|
increases exponentially. In particular, this refers to the real values of

the argument. This behaviour agrees with that of SuTra shown in figure

20.5.

Readers are invited to download the generators of the figures of this

chapter, together with implementations of SuTra and AuTra, and inves-

tigate numerically the ranges of applicability of identities

AuTra(SuTra(z)) = z , SuTra(AuTra(z)) = z (20.53)

With functions SuTra and AuTra, described in this chapter, one can

evaluate the non-integer iterates of function tra. These iterates are de-

scribed in the next section.
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Figure 20.11: u+iv = AuTra(x+ iy) [autraMap]

6 Iterates of trappmann

With functions SuTra and AuTra, the iterate of the Trappmann function

can be expressed as follows:

tran(z) = SuTra
(
n+AuTra(z)

)
[traite] (20.54)

As usually, the number n of iterate has no need to be integer. For real

value of the argument and some real values of the number n, the iterates

of the Trappmann function are shown in figure 20.12.

Iterates of function tra(z) = z+ez look similar to those of other growng

transfer functions. These iterates provide the smooth transfer from the

function tra to its inverse function ArcTra = tra−1, and zeroth iterate

is the identity function.
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Figure 20.12: y=tran(x) versus x for various n by (20.54)

7 Relation to other functions

Function SuTra can be expressed through function SuZex

SuTra(z) = SuZex(ln(z)) [SuTraSuZex] (20.55)

and function AuTra can be expressed through function AuZex

AuTra(z) = exp(AuZex) [AuTraAuZex] (20.56)

One can look at expansions of SuZex and AuZex from chapter 12 and

see, that expansions for functions SuTra and AuTra can be obtained

with relations (20.55) and (20.56). However, these representations may

loss some precision, especially in the regions where the logarithm has low

derivative, and the exponential has high derivative. So, for the numerical

tests, I use the special representations from the previous sections.
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In order to make the deep test of relations, suggested in this Book, the

robust representations are required for all the functions involved. For

these reasons, the special representations and implementations for func-

tions ArcTra, SuTra and AuTra are described above. The readers are

invited to make the asymptotical analysis for the relations above. Also,

the numerical verification can be used. For moderate values of the argu-

ment, the representation of SuTra through SuZex loss only few decimal

digits in the precision. I load the descriptions of functions mentioned in

this section,

http://mizugadro.mydns.jp/t/index.php/ArcZex

http://mizugadro.mydns.jp/t/index.php/AuZex

http://mizugadro.mydns.jp/t/index.php/SuZex

http://mizugadro.mydns.jp/t/index.php/ArcTra

http://mizugadro.mydns.jp/t/index.php/SuTra

http://mizugadro.mydns.jp/t/index.php/AuTra,

together with their complex double numerical implementations.

On this I finish the consideration of the Trappmann function and its

iterates. And at this point I finish consideration of examples of transfer

functions, superfunctions, abelfunctions and the non-integer iterates.

Perhas, I should explain, why I had spent so many efforts on this. I

think, the best explanation is to remind the old folkloric story below.

Оne-legged friend of one Taylor asked him to sew the special pants with
one leg. He payed well for the custom pants, but he needed also the pants
for his dog, who, as himself, had lost one leg long time ago.Taylor sewed
the pants for that 3-leg dogs. The pants were beautiful, and friend of
friend asked him the same for his normal, 4-leg dog.. The story is long,
the starfishеs and octopuses are mentioned there. En fin, the Taylor had
elaborated tools to sew pantaloons for creatures with arbitrary number
n of legs. And if tomorrow some extraterrestrials with n legs come, the
Taylor already has pantaloons for them.

I typed the story above in order to explain better, what is scientific re-

search and what do the researchers. You may consider this as a kind of

joke, but if someone needs to approximate, for example, the logarithmic

function with entire functions, - then, like the Taylor mentioned, I al-

ready have such an approximation; it can be expressed through SuTra

by formula (20.38). This may be considered as a small specific addition

to various motivations suggested in the Preface.

On this point I stop the main body of the Book and go to overview the

results presented above. This makes the content of the next chapter.
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Chapter 21

Conclusion

Figure 21.1:

This chapter discusses the same, as the Intro-

duction. The main difference of this chapter

from the introduction is, that I assume, that

the reader already has browsed at least some

of the previous chapters, as it is shown in figure

21.1, and understands sense of some notations

used. In order to show the need of conclusion, I remind the old leyend.

One emperor wanted to study history. He ordered the Ministry of Sci-
ence to develop a full course of the world-wide history. The greatest
scientists were working on this tutorial during many years. Finally, the
heavy truck arrived with thousands volumes of "Complete Course of
the World History". The Emperor realised that all his life will not be
sufficient to read this course. The Emperor asker the President of the
Ministry of Science to shorten the course. The historians worked on the
second edition during few years, and then, in a big pack, "Trilogy of the
World History" had been delivered to the Emperor. But the Emperor
already had weak eyes, and he could not read that Trilogy. Again, the
historians had to shorten the course. A year later, the Top Historist
came to the Emperor and gave him the pamphlet "A Brief History of
the Imperial Family." Emperor was old and ill, and could not even read
that brochure. He asked Historist, whether the brochure can be reduced.
Historist answered: “No new edition is necessary. I’ll tell you right now:
People were born, suffered and died.”

Several colleagues had told me, that this Book is too thick, and asked,

if it can be shorter. As the historian in the story above, I follow the

requests and describe the topic of superfunctions briefly. Below, the

main results of the Book are collected in a single section.
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1 Basic results

Holomorphic functions can be iterated. The iterates can be expressed

through the superfunction and the abelfunction; then, the number of

iterate has no need to be integer.

In order to iterate some holomorphic function T , first, I declare it as

“transfer function”. Then, I construct for the superfunction F , that is

solution of the transfer equation

F (z+1) = T
(
F (z)

)
I need also the inverse function, G= F−1. I call it “Abel function” or

“abelfunction”. It satisfies the Abel equation

G
(
T (z)

)
= G(z) + 1

When superfunction F and the Abel function G are established, the

iterates of function T can be expressed as

T n(z) = F
(
n+G(z)

)
where the number n of iterate has no need to be integer; the transfer

function can be iterated some non-integer, rational or even complex

number of times. However, for the integer n, the conventional expression

of iterates holds:

T n(z) = T
(
T
(
..T (z)..

))
︸ ︷︷ ︸

n evaluations of function T

Solution of the transfer equation is not unique. If some solution F is

found, then, one additional solution f can be constructed with modifi-

cation of the argument,

f(z) = F
(
z + θ(z)

)
where θ is periodic holomorphic function with period unity. Accordingly,

the new abelfunction g can be established. Then, the new superfunction

and the corresponding abelfunction will provide new, different iterates

of the transfer function.

Variety of superfunctions can be narrowed, if we establish, postulate the

asymptotic behaviour of the superfunction in the complex plane. The
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superfunction with simple asymptotic behaviour I treated as principal.

Other superfunctions can be expressed with modification of argument

of the principal superfunction. Holomorphic periodic function grows

at least exponentialy (as sin and cosine to in the direction of imaginary

axis); even a small periodic modification is easy to reveal in the complex

plane. For this reason, for uniqueness, it is important to build-up the

superfunctions for the complex argument, even if they are supposed to

be used for the real argument. The criterion of holomorphism indicates,

which of superfunctions is expected to have the physical sense and should

be considered as “true” one.

Some superfunctions and abelfunctions have special names. These func-

tions are collected in Table 3.1. Some of them are widely known; one

may use them without to know, that they are superfunctions.

In principle, for any holomorphic function F , one can built-up the in-

verse function G = F−1 and define T (z) = F
(
1 + G(z)

)
. Then, such

function T can be treated as transfer function with known superfunction

F , abelfunction G and non-integer iterates T n(z) = F
(
n+G(z)

)
.

The inverse problem, id est, construction of superfunction F for some

given transfer function T , is considered in this Book. For this construc-

tion, the key question is about the fixed points of the transfer function,

id est, about solutions L of the equation

L = T (L)

As physicist, I am interested mainly in the real-holomorphic functions,

for which T (z∗) = T (z)∗. In order to reduce variety of solutions of the

transfer equation, I postulate, that the superfunction approaches the

fixed point L at the infinity.

Methods of asymptotic expansions of the superfunctions are suggested

in the Book. At infinity, the superfunction is postulated to approach

the fixed point of the transfer function. In many cases, this approach

is exponential; and, in many cases, the exact superfunction appears

as the limit at the multiple application of the transfer function to the

asymptotic solution with displaced argument.

It may happen, that all the fixed points L of the transfer function T are

complex, not real. In particular, this is case of the natural exponent.

Then, the superfunction can be expressd through the Cauchy integral

and solution of the corresponding integral equation. Historically, the

292



first complex map of superfunction of exponent, had been constructed

with this representation. Complex map of tetration is shown in figure

14.12 and at the First page of the cover of this Book. Tetration tet

appears as solution of the transfer equaiotn

tetb(z+1) = etetb(z) , tetb(0) = 1

tetb(z) is supposed to be bounded in the strip |	(z)|≤1. For real b>1

and real x, dependence y = tetb(x) is shown in figure 17.1. Tetration

can be constructed also for the complex base; the example with b =

1.52598338517+0.0178411853321 i is shown in figure 18.3.

It may happen, that the transfer function T has no fixed point at all.

One example of such a function is the Trappmann function

T (z) = tra(z) = z + exp(z)

However, even for this function, the superfunction can be constructed.

It is called SuTra; its map is shoe in figure 20.6. This is entire function

with logarithmic asymptotic; up to my knowledge, before publication

[88], no one such function had been suggested.

Since 2010, I claim, that I can construct the superfunction F , abel-

function G and non-integer iterates for any growing real-holomorphic

transfer function T . This Book describes the sequence of attempts to

negate, refute this claim. All these attempts failed: I could not find the

transfer function, for which I cannot construct the superfunction. In

support of my claim, the Book presents examples of transfer function

with real fixed point(s), examples with complex fixed points, and the

example of the transfer function without any fixed point. While all the

tests are successful, the ability of construction of superfunctions can be

interpreted as a scientific fact.

I just have mentioned, what is done. But, as usually, a lot of can be

done about superfunctions. The next section is dedicated to this.

2 Future work

I tried to collect that I know about superfunctions and iterates, in this

Book. However, always some phantasies remain, what else would be

interesting to do. Some of hese phantasies are collected below.
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The more efficient, more simple and more rigorous proofs of the existence

and uniqueness of superfunction may require the future work, and also

the additional conditions, that should be applied in order to provide the

uniqueness of superfunction.

Application of superfunctions into the laser science may be subject for

the future analysis. Especially, this refers to the laser science, where the

physical sense of superfunctions and the non-integer iterates is especially

explicit.

The future work may be related to the specific case of superfunctions,

namely, ackermanns. Figure 19.7 shows the graphics for the first five

ackermanns: addition of constant, multiplication to constant, exponent,

tetration and pentation. I think, similar graphics can be constructed

also for higher ackermanns.

The important suggestion for the future work is related with the au-

tomatisation of construction of superfunctions. I mean the automatic

algorithm, that begins with the transfer function, searches for the ap-

propriate fixed points of this function (if the transfer function has fixed

points), chooses the appropriate asymptotic for the superfunction, use

it to build-up the superfunction, build-up the corresponding abelfunc-

tion and calculates the non-initeger iterates. The software Mathematica

already has name for such a procedure; it is called Nest. Up to date of

preparation of this Book, the routine Nest can deal only with very spe-

cial case, namely, when the number of iterate is expressed with positive

integer constant; in other cases, the call is interpreted as error. The up-

grade of that routine for the real and complex number of iterate would

be intersting.

Phantasies and curiosity should be motivations for any serious scientific

research. I collect the tools that can be used in this work. Many of them

are described in this Book.

3 Notations

I try to use the same notations through the whole Book. In order to

approach this, the notations are different from those used in the original

publications. Some notations are collected in tables 21.1, 21.2. I collect

the most important notations, and those, that often cause confusions.
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Table 21.1: Notations, Latin alphabet

A(m, z) = A
(
m−1,A(m, z−1)

)
canonical ackermann (19.14)

Ab,n ackermann to base b of order n, (19.7)

an Coefficinets in various asymptotic expansions

AuExpb = SuExp−1b growing abelexponent to base b

AuTra Abel function for the Trappmann function

AuSin abelsine

Arc prefix indicating the inverse function

b base of ackermanns, (19.1)

cn coefficients in expansions, for ex., (10.47) or (20.15)

Cn coefficients in expansions, for ex., (7.12)

e = exp(1) ≈ 2.7 base of natural logarithms

exp exponent to base e

expb exponent to base b

F Name, used to denote superfunctions

Factorial(z) = z! holomorphic solution of equations z! = z (z−1)!

f name used for various functions

G = F−1 name used to denote abelfundtions

h=Elu0.5
s half iterate of logistic operator

i =
√
−1 imaginary unit i2 = −1

i variable, usually it takes integer values

K plug for the contour integral rfK, or ek

k increment in the asymptotic representation of superfunction (6.3)

L fixed point of transfer function T , id est, solution of T (L)=L

ln logatirhm to base e

logb Logarithm to base b

M number of terms in truncated series

O some function that grows-up not faster than its argument

P period or asymptotic period; also is used as inverse of function Q

Q is used as inverse function of P in table 3.1

Super prefix to name of function, indicating its sperfunction

s parameter of the logistic operator (7.1)

T transfer function

tet natural tetration (14.28), [54]

tetb solution f of equaitons f(z+1)=bf(z), f(0)=1, see fig. 17.1

u real part of function in the complex map

v imaginary part of function in the complex map

x used as dummy parameter, that takes real values

y used as dummy parameter, that takes real values

z used as dummy parameter, that takes complex values; often z=x+iy
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Table 21.2: Notations, Greek alphabet

α , β , γ used as parameters in the expansions

η=exp(1/e)≈1.444667861 Henryk base

ε = exp(kz) small parameter in the expansion of superfunctions

θ holomorphic periodic function with period unity

ζ ζ(z)=
∞∑
n=1

1

nz
, Riemann function (8.9), [13, 18]

Ω contour of integration in the Cauchy formula (14.21)

4 Afterwards

The first (Russian) version of this Book happened thicker, than I had

expected. and could be much thicker; because all the time, there is the

evil illusion, that some additonal small formula should greatly simplify the

understanding. In addition, with each formula from the book, several

additional picture can be plotted. However, I think, for the Reader, it

will be much better, to plot some picture, than to see the gallery of

similar figures in the Book.

I tried to make this Book shorter, than its first Russian version. Actually,

the Book happened to be longer, thicker, because I include here the

chapter about the Nemtsov function Nemq(x) = x+x3+ qx4; this is

important example of the exotic iteration of transfer function with the

specific expansion at the fixed point.

Some things are still dropped out from the Book. I did not include

the holomorphic extension of tetration beyond the cut lines. I did not

include figures to iterates of the exponent to complex base. And I did not

include many other figures, assuming, that the Readers can download

the generators of the figures and plot all modifications they need.

The Readers are invited to download algorithms, figures and their gen-

erators from http://mizugadro.mydns.jp/t/index.php/Category:

Book; with these tools, the colleague may continue from that points

of research, where I am now. I beleve, this is correct style of making

science, where all the results are available for researchers. This is sup-

posed to simplify the verification and refutation (if anything is seriously

wrong), as well as revealing and correction of mistakes in formulas and

bugs in the algorithms. I invite the colleagues to expose their results in

a similar way.
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Figure 21.2: Near relatives, whose existence is essential for writing of this Book

5 Acknowledgement

I am grateful to relatives (Figure 21.2) for the tolerance with respect to
this Book, it took much more time and efforts, than expected.

Figure 21.3: Bookorm [117]

I am grateful to colleagues, who helped
me to collect the literature on super-
functions (Figure 21.3) and arrange the
server, database and mediawiki: with-
out these instruments, I would get lost
among a thousand files used for genera-
tion of this Book.
The goal was to get possibility to answer
the questions on superfunctions with ei-
ther Nobody knows this! or Das ist in

meinem Buch! (see figure 21.4). Per-
haps, this goal is not reachable; the new algorithms are expected to be
reported [93]. Tanks to colleagues who keep doing superfunctions.

Figure 21.4: Das ist in meinem Buch! [ainu]
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Chapter 22

Supplement

1 About the cover

At the front cover of this book, the map is shown, from http://mizugadro.

mydns.jp/t/index.php/File:Tetma.jpg

This is one of versions of figure 14.12; Some details and labels are re-

moved in order to simplify the aesthetic view.

The cover of the Russian version is loaded as http://mizugadro.mydns.

jp/t/index.php/File:Covervi.jpg
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Figure 22.2: Map of the Taylor expansion f of AuSin with 40 terms in the standard

notations. u+iv = f(x+iy).

3 Taylor expansion of AuSin

In chapter 13, the Taylor expansion of function AuSin at π/2 is men-
tioned, (12.24). In figure 22.2, the complex map of the truncated series
with 40 terms is shown. This map should be compared to Figure 12.4.
Such an expansion can be used to boost the precise evaluation of AuSin
for values of the argument in vicinity of π/2. Also, coefficients of this ex-
pansion can be used for evatuation of coefficients of expansion of SuSun
at zero; for example, wight routine InverseSeries.
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4 Sites

Goal to his Book is not to attract attention of Reader to the cites below,
but to provide the description of superfunctions, that releases the reader
from need to browse the sites below.

http://allmybase.com/dropbox/tetration.pdf

http://cdn.bitbucket.org/bo198214/bunch/downloads/main.pdf H.Trappmann,
D.Kouznetsov. 5+ methods for real analytic tetration. June 28, 2010.
http://en.citizendium.org/wiki/Cauchy-Riemann_equations

http://en.citizendium.org/wiki/Superfunction

http://en.citizendium.org/wiki/Tetrational

http://en.citizendium.org/wiki/Holomorphic_function

http://en.wikipedia.org/wiki/Abel_equation

http://en.wikipedia.org/wiki/Abel_function

http://en.wikipedia.org/wiki/Cauchy’s_integral_formula

http://en.wikipedia.org/wiki/Hellmuth_Kneser

http://en.wikipedia.org/wiki/Niels_Henrik_Abel

http://en.wikipedia.org/wiki/Superfunction

http://en.wikipedia.org/wiki/Tetration

http://math.eretrandre.org/tetrationforum/index.php

http://math.stackexchange.com/tags/tetration

http://mathworld.wolfram.com/Tetration.html

http://oeis.org/wiki/Tetration

http://mizugadro.mydns.jp/t/index.php/Abel_function

http://mizugadro.mydns.jp/t/index.php/ArcShoka

http://mizugadro.mydns.jp/t/index.php/AuSin

http://mizugadro.mydns.jp/t/index.php/AuTra

http://mizugadro.mydns.jp/t/index.php/AuZex

http://mizugadro.mydns.jp/t/index.php/Complex_map

http://mizugadro.mydns.jp/t/index.php/Doya_function

http://mizugadro.mydns.jp/t/index.php/Factorial

http://mizugadro.mydns.jp/t/index.php/Holopmorphic_extension_of_Collatz_

Subsequence

http://mizugadro.mydns.jp/t/index.php/Keller_function

http://mizugadro.mydns.jp/t/index.php/LambertW

http://mizugadro.mydns.jp/t/index.php/Logistic_sequence

http://mizugadro.mydns.jp/t/index.php/Regular_iteration

http://mizugadro.mydns.jp/t/index.php/Shoka_function

http://mizugadro.mydns.jp/t/index.php/Superfunction

http://mizugadro.mydns.jp/t/index.php/Superfactorial

http://mizugadro.mydns.jp/t/index.php/SuSin

http://mizugadro.mydns.jp/t/index.php/SuTra

http://mizugadro.mydns.jp/t/index.php/SuTra

http://mizugadro.mydns.jp/t/index.php/Table_of_superfunctions

http://mizugadro.mydns.jp/t/index.php/Tania_function

http://mizugadro.mydns.jp/t/index.php/Tetration

http://www.proofwiki.org/wiki/Definition:Superfunction

http://www.proofwiki.org/wiki/Definition:Tetration

http://www.tetration.org/Tetration/index.html D.Geisler. What lies beyond
exponentiation?
http://www.youtube.com/watch?v=z-mfxP1Tmfw Kasane Teto. Tetration ↑↑. 2012.
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5 New notations

In future, the new notations will be requested. Below, I suggest tentative

names for them:

Transferation. For given function f , construction of the transfer func-

tion T (z) = f
(
1+f−1(z)

)
. For this transfer function T , function f is

superfunction and f−1 is abelfunction.

Transation. For given function f , construction of the transfer function

T (z) = f−1
(
1+ f(z)

)
. For this transfer function T , function f−1 is

superfunction and f is abelfunction.

Superation. For given function f , construction of superfunction F as

solution of equation F (z+1) = f
(
F (z)

)
. In this case, f appears as

transfer function.

Supation. For given function f , construction of abelfunction G as

solution of the Abel equation G
(
f(z)

)
=G(z)+1. In this case also f

appears as a transfer function.

F

←
tr

an
sf

er
at

io
n
←

−→
su

p
er

at
io

n
−→

T G−→ supation −→
← transfation ←

←−
InverseFunction

−→

Figure 22.3: T , F and G=F−1

Transferation is inverse operation with

respect to suppuration. Transfation is

inverse operation with respect to supa-

tion. This is shown in figure 22.3 for

the transfer function T , superfunction

F and abelfunction G.

This Book is dedicated to superation

and supation, and also to the additional

requirements, that provide the unique-

ness of superfunction F and abelfunc-

tion G.

In this Book, I do not use the new words

shown in figure 22.3; while, there is no

need to use them. In the similar way, there was no need in the special

terms for differentiation and integration, until these operations became

routines. However, the terms shown in figure 22.3 will be requested as

soon as the automatic construction of superfunctions and abelfunctions

will be realised. In language Mathematica, for the superation, there exist

name Nest (until year 2017, this routine is supported only for natural

values of the number of iterate).

I am not sure, that namely the names from figure 22.3 will be usual.

For this reason, I do not use these names in the Book. However, the

operations, mentioned in figure 22.3 exist; they will require some names.
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6 Extended abstract

The Book is dedicated to construction of superfunction F

and abelfunction G for given transfer function T . The for-

malism of superfunctions is considered with examples, that

are presented in ready-to-use form. The reader is supposed to

know something about the complex numbers and elementary

functions.

The superfunction is solution of the transfer equation

F (z+1) = T
(
F (z)

)
The abelfunction G = F−1 satisfies the Abel equation

G
(
T (z)

)
= G(z) + 1

In order to provide the uniqueness of solution, the additional

requirements on F are applied, referring to its behaviour in

the complex plane.

The nth iterate of function T is denoted with superscript:

Tn(z) = T
(
T
(
..T (z)..

))
︸ ︷︷ ︸

n evaluations of function T
With superfunction F and abelfunction G, the iterate is ex-

pressed as Tn(z) = F
(
n+G(z)

)
. In this representation,

the number n of iterate has no need to be integer.

Examples of superfunctions are considered and collected as

Table 3.1. Superfunctions are constructed for sin, factorial,

exponential, tetration and other functions.

Many explicit plots and complex maps for these functions,

superfunctions, and iterates are included. The figures are

loaded also to TORI together with their generators at

http://mizugadro.mydns.jp/t/index.php/Category:Book

The formalism of superfunctions greatly extends the set of

functions available for applications in the scientific research.
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7 Keywords

In this section, I suggest the essence of the notations

T Transfer function

T
(
F (z)

)
= F (z+1) Transfer equation, superfunction

G
(
T (z)

)
= G(z) + 1 Abel equation, abelfunction

F
(
G(z)

)
= z Identity function

Tn(z) = F
(
n +G(z)

)
nth iterate

F (z) =
1

2πi

∮
F (t) dt

t− z
Cauchy integral

tetb(z+1) = btetb(z) tetration to base b

tetb(0) = 1 , tetb
(
ateb(z)

)
= z

ateb(b
z) = ateb(z) + 1 arctetration to base b

exp n
b (z) = tetb

(
n+ateb(z)

)
nth iterate of function z �→bz

Tania′(z) =
Tania(z)

Tania(z)+1
Tania function, Tania(0)=1

Doya(z) = Tania
(
1+ArcTania(z)

)
Doya function

Shoka(z) = z + ln(e−z+e−1) Shoka function

Keller(z) = Shoka
(
1+ArcShoka(z)

)
Keller function

tra(z) = z + exp(z) Trappmann function

zex(z) = z exp(z) Zex function
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Tools for evaluation of superfunctions, abelfunctions and non-integer
iterates of holomorphic functions are collected. For a giver transfer
function T, the superfunction is solution F of the transfer equation
F(z+1)=T(F(z)) . The abelfuction is inverse of F. In particular,
superfunctions of factorial, exponent, sin are suggested. Also, the
holomorphic extensions of the logistic sequence and those of the
Ackermann functions are considered. Among ackermanns, the tetration
(mainly to the base b>1) and natural pentation (to base b=e) are
presented. The efficient algorithm for the evaluation of superfunctions
and abelfunctions are described. The graphics and complex maps
are plotted. The possible applications are discussed. Superfunctions
significantly extend the set of functions that can be used in scientific
research and technical design. Generators of figures are loaded to the
site TORI, http://mizugadro.mydns.jp for the free downloading. With
these generators, the Readers can reproduce (and modify) the figures
from the Book. The Book is intended to be applied and popular.
I try to avoid the complicated formulas, but some basic knowledge
of the complex arithmetics, Cauchy integral and the principles of the
asymptotical analysis should help at the reading.
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