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Глава 1

Предисловие

Рис. 1.1: Фигура
Маяковского

Я пишу это предисловие из уважения к моим учите-
лям Английского языка, которые считают, что лю-
бая писанина (даже если она не очень по-английски),
каждый том, глава должны начинаться с Предисло-
вия (или даже Вступления) и заканчиваться Послесловием. Схожее
мнение, ещё в СССР, высказывали учителя русской литературы,
объяснявшие школьникам облако в штанах (рис.1.1) и прочие де-
тали соцреализма.

Это предисловие пишется не для читателей. Оно пишется для тех,
кто Книгу читать не будет:

Для редакторов, издателей и продавцов, которые работают с ты-
сячами книг и которым надо за минуту понять, почему именно эта
Книга должна (по мнению автора) стоять на первом месте в списке
рекомендованной литературы.

Для опытных критиков, которым достаточно прочесть две стра-
ницы, чтобы написать рецензию: «Это что за невидаль: “Тетрация,
суперфункции”? Что это за “суперфункции”? Мало нам сверхпро-
водимости, сверхтекучести, сверхразрешения, суперсимметрии, су-
пергравитации, суперструн и других “супернаук”, и мало нам супер-
менов, супермаркетов и суперинфляции, и вот, на тебе, теперь ещё
“суперфункции”! И швырнул в свет какой-то лазерщик! Слава Богу!
Ещё мало забили интернет всякими текстами и извели леса на бума-
гу! Ещё мало народу, всякого звания и сброду, застряло у мониторов!
Дернула же охота и лазерщика потащиться вслед за другими! Пра-
во, печатной бумаги развелось столько, что не придумаешь скоро,
что бы такое завернуть в нее». [4]
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Для библиотекарей, которым надо выбрать для этой Книги под-
ходящую полку на самом видном месте, чтобы её было легко най-
ти среди книг про суперсимметрию, сверхтекучесть, сверхпроводи-
мость, суперменов и супермаркеты.

Для коллег, которые удивляются, с какой стати лазерщик, вме-
сто того, чтобы рекламировать оптические керамики, развивая При-
кладную Лазерную Науку (за которую дают гранты), вдруг занялся
суперфункциями (за которые пока грантов не дают), и ведёт себя
как простак, который не знает, где в суши спрятана рыбка (так в
стране Восходящего Солнца может звучать русская Теорема о том,
с какой стороны у бутерброда масло).

Для родственников и друзей, которые учат меня жить и рекла-
мировать мои результаты. Судя по предварительным отзывам, они
лучше меня понимают, где в суши спрятана упомянутая выше рыб-
ка, и как её съесть, совмещая полезное с приятным. Впрочем, иссле-
дование взаимопонимания между родственниками и друзьями [23]
не включено в этот труд и публикуется отдельно.

Любители чтения увлекательного и благопристойного [1], уставшие
от сальных шуток Панурга и желающие хлебнуть чуток физической
математики [68, 49], либо интересующиеся именно тетрацией и про-
чими суперфункциями, могут диагоналить отсюда прямо к главе 2.

1 Физическая математика

Меня спрашивали, как я бы характеризовал жанр этой книги. Я
бруснул поисковики, и получается, что ближе всего подходит тер-
мин “физическая математика” [68, 49]. Такой порядок слов выбран,
чтобы не путать её с математической физикой.

Термин “физическая математика” означает, что для математики не
делается исключений, и для проверки математических гипотез ис-
пользуются те же методы, какие приняты и для других наук и, в
частности, для физики. Строгое математическое доказательство на
основе сформулированных в самом начале аксиом при этом является
допустимым методом исследования, но не императивом. Разумеет-
ся, приветствуется перевод эвристических утверждений этой Книги
на строгий язык чистых математиков.
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http://commons.wikimedia.org/wiki/File:Aqua_regia_in_Davenport_Laboratories.jpg

Рис. 1.2: Царская водка, H2 S O4 + 2 H Cl и водка царская, 3 H2 O + 2 C2 H5 O H

Желательно не путать физическую математику и математическую
физику. Физическая математика использует методы физики и про-
чих естественных наук в математике (зачастую вместо общеприня-
той математически-строгой дедукции).

Математическая физика применяет методы, типичные для матема-
тики, к уравнениям, которые пришли из физики. Физическая мате-
матика похожа на математическую физику, примерно как Царская
Водка похожа на водочное царство. Для внутреннего употребления
водка царская может быть более подходящим напитком, особенно
для любителей, чем царская водка (рис. 1.2).

В этой Книге используется именно физическая математика, а не
царская водка, не водка царская и даже не математическая физи-
ка. Результаты, представленные здесь, носят прикладной характер.
Mне представляется наиболее интересным приложение результатов
к Лазерной науке. Поэтому я стараюсь писать популярно, чтобы
это могли понять даже лазерщики; Книга рассчитана на попадание
в руки даже самого необученного академика.

Некоторые тексты физической математики [68] я считаю сложны-
ми1. Надеюсь, что дедукция в этой Книге более прозрачна.

1Например, я не сумел проследить “физический” вывод работы [68] о том, что площадь
под параболой равна 4/3 от площади в вписанного треугольника
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2 Аксиомы ТОРИ

В этой Книге используются Аксиомы ТОРИ. В этой секции предла-
гается краткий пересказ описания этих аксиом из УФН [55] и J. of
Modern Physics [72].

Наукой называется область человеческого знания, челове-
ческих достижений и деятельности, связанная с выработ-
кой специального языка, то есть системы обозначений и
концепций для описания воспроизводимых явлений любой
природы, характеризующегося следующими аксиомами:

1. Применимость. Каждая научная концепция имеет ограничен-
ную область применимости, отличную от пустого множества и пол-
ного множества.
2. Верификабельность. Каждая концепция может быть подтвер-
ждена: Не используя эту концепцию, можно описать некоторый спе-
цифический эксперимент с таким специфическим результатом, ко-
торый подтверждает концепцию.
3. Опровержимость (Опровергабельность). Каждая концеп-
ция может быть опровергнута (то есть, отвергнута): в терминах этой
концепции можно описать некоторый специфический эксперимент с
таким специфическим результатом, который указывает, что концеп-
ция ошибочна.
4. Внутренняя непротиворечивость. В концепции не найдено
внутренних противоречий.
5. Принцип соответствия. Если область применимости новой кон-
цепции пересекается с областью применимости другой, уже приня-
той и подтвержденной концепции, то новая концепция или воспроиз-
водит результаты старой концепции, или указывает способ доказать,
что старая концепция ошибочна. (Например, ошибочной может быть
оценка области применимости старой концепции.)
6. Плюрализм и простота.Допускается сосуществование взаимно-
противоречивых концепций, удовлетворяющих критериям (1-5). Ес-
ли две взаимно-противоречивых концепции имеют одну и ту же об-
ласть применимости, то более простая из них имеет приоритет и
рассматривается как основная по отношению к более сложной.

Именно эти аксиомы, 1-6, я называю термином “Аксиомы ТОРИ”.
На аксиомах ТОРИ (и для приложения этих аксиом) в 2011 году
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был построен сайт http://tori.ils.uec.ac.jp/TORI, который просуще-
ствовал 2 года. 2013.02.27, сайт был атакован политиками от науки
и доступ к нему был уничтожен 2; стоило трудов создать его клон
http://mizugadro.mydna.jp/t. Судя по письмам, предшествовав-
шим атаке, причиной агрессии явилась критическая статья, подго-
товленная для журнала Physics Today 3. К сожалению, именно так
политики отвечают на критику, когда им нечего возразить по суще-
ству. Надеюсь, что эти политики выплачивают администрации на-
шего университета значительную сумму за каждый день, пока сайт
ТОРИ недоступен по его оригинальному урлю. У меня нет других
сколько-нибудь логичных объяснений действиям университетской
администрации, постфактум одобрившей варварскую атаку.

Основные результаты, представленные в ТОРИ, удалось опублико-
вать в научных журналах [74, 72, 77, 78]. Для удобства ссылок,
для перечисленных выше аксиом потребовался специальный тер-
мин. Тогда-то я и назвал их “Аксиомы ТОРИ” (TORI axioms). Эта
Книга построена и написана на основе аксиом ТОРИ.

Термин ТОРИ означает “Теоретические Основы Революционных Ис-
следований”. Я предполагаю, что если какое научное исследование
не сулит революции в какой-либо области науки или технологии, то
не очень понятно, зачем вообще оно нужно (я имею в виду иные
мотивации, кроме получения и распила грантов).

ТОРИ есть русификация названия TORI (Tools for Outstanding Re-
search and Investigation). Имеется в виду, что в том, что иногда на-
зывают термином “современная наука”, очень много похожих, одно-
типных исследований, которые с трудом удовлетворяют аксиомам
ТОРИ, если вообще (if at al). Поэтому все нетривиальные исследова-
ния волей-неволей должны быть “Outstanding”. В ТОРИ собираются
инструменты, формализмы, алгоритмы для таких исследований.

Через несколько месяцев после упомянутой атаки, клон ТОРИ уда-
лось установить на новом сервере, http://mizugadro.mydns.jp/t; и
я продолжаю грузить туда инструменты, которые мне кажутся под-
ходящими для революционных исследований. В частности, в ТОРИ

2 http://mizugadro.mydns.jp/t/index.php/Tori_attacked
http://samlib.ru/k/kuznecow_d_j/toriattacked.shtml D.Kouznetsov. TORI attacked (2013)

3http://mizugadro.mydns.jp/PAPERS/2013physToday.pdf D.Kouznetsov. Corruption in
Russian science. 2013, preprint
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загружаются алгоритмы и картинки, использованные в этой Книге:
http://mizugadro.mydns.jp/t/index.php/Category:Book
В идеале, генератор каждого рисунка может быть скачан, скомпи-
лирован, просчитан и, при надобности, модифицирован Читателем.

Рис. 1.3: Сайт недоступен

Я гружу генераторы также и на
другие серверы. В Приложениях,
я предлагаю ссылки на разные
интернет-ресурсы, на тот случай,
если какой-либо сервер недосту-
пен (рис. 1.3). Таким образом Чи-
татель может использовать и раз-
вивать формализм суперфункций
с того самого места, до которого
дошел я. Эти генераторы можно
использовать, даже не повторяя
предложенные в Книге выкладки.

Я надеюсь, что читатели будут указывать источники, откуда они
скачивают алгоритмы и картинки. Это нужно не для того, чтобы
застолбить моё авторство, но на тот случай, если вдруг где опечатка
или, не дай Бог, методическая ошибка. Ошибки в книге, вероятно,
есть. Редакторы и корректоры издательства Lambert Academic Press
не только не правят рукописи, предназначенные для публикации, но
и даже не читают их. Появление этого абзаца в Книге будет тому
наглядным свидетельством. Поэтому, если чего не так, то ругать
нужно автора, а не редактора.

Рис. 1.4: Стучите - и вам откроют

Eсли при генерации (или модифи-
кации) рисунков возникают про-
блемы, то критику надо слать в ад-
рес автора, dima(a)ils.uec.ac.jp И
указать, какой алгоритм не рабо-
тает так, как это описано в Книге.
Чтобы исправить. Чтобы всё зара-
ботало. Таким образом, если чего
не выходит, надо не упроствовать,
а спрашивать. Стучите, и вам откроют 4 (рис. 1.4).

4http://www.bible.by/nt-slovo-life/read/40/07/ От Матвея, глава 7: .. Просите – и
получите, ищите – и найдете, стучите – и вам откроют.
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3 Зачем эта книга

После публикации статьи про голоморфную тетрацию [44], я наде-
ялся, что математики сподобятся проделать всю остальную работу
по суперфункциям сами. Увы...

Прошло пять лет, а суперфункции, в частности, тетрация и супер-
факториал, до сих пор не появились в описаниях алгоритмических
языков. Дo сих пор функция Nest [80] в языке “Математика” требует,
чтобы число итераций было целым; а если кто-то аппроксимирует
неизвестную колоколообразную функцию, то обычно фантазия кол-
лег не идет дальше Гауссовой экспоненты. В лучшем случае выбира-
ют между Гауссом, гиперболическим секантом и Лоренцом. А ведь
можно использовать ещё, например, половинную итерацию экспо-
ненты, то есть такую функцию f , что f(f(z)) = exp(z). И есть ещё
много всяких функций такого рода.

Почти весь матан в школах и вузах построен на первых трех аскер-
маннах (функциях Аскерманна: сложение, умножение, экспоненци-
рование) и их обратных функциях в различных комбинациях. Этот
арсенал можно значительно расширить за счет нецелых итераций.
Но для этого нужны суперфункции.

Когда физики исследуют нелинейный отклик среды, образец стара-
ются делать оптически-тонким, чтобы можно было пренебречь из-
менением усиления или поглощения при изменении интенсивности.
Можно улучшить точность, взяв образец потолще, измерить пере-
даточную функцию этого образца с несколькими знаками, и восста-
новить распределение интенсивности по мере усиления или погло-
щения света в образце [73, 74]. Но для этого нужно уметь строить
суперфункции.

Многие исследователи считают, что именно их работа чрезвычайно
важна. Я не являюсь исключением. С моей точки зрения, тетрация
и арктетрация, как и другие суперфункции и абельфункции, столь
же важны для науки 21 века, как экспонента и логарифм важны
для науки в 19м и в 20м веках. То есть ожидается научная револю-
ция, столь же значительная, как открытие того, что с экспонентой
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и логарифмом можно легко вычислять любую, даже дробную (или
даже комплексную) степень числа. С суперфункциями и абельфунк-
циями легко вычислять любую, даже дробную (или даже комплекс-
ную) итерацию практически любой голоморфной функции. Для это-
го нужны суперфункции.

Для использования суперфункций нужно знать их свойства и уметь
их быстро и аккуратно вычислять. Я этому уже научился. Эта книга
для того, чтобы вы тоже могли их вычислять.

Когда я объяснял редактору (и рецензентам), почему нашу статью
про корень из факториала [51] надо опубликовать в Вестнике Мос-
ковского Университета, я привел такой пример:

Приезжает студент физфака в деревню, а там колхозник, то
есть уже, конечно, не колхозник, а ударник капиталистического
труда, видит на студенте значок физфака в виде корня из факто-
риала, и спрашивает:“а что это значит?” - а студент не знает..

Судя по переписке и её результату, рецензенты сочли этот аргумент
убедительным. Корень из факториала - это такая функция f , что
f(f(x)) = x!, хотя бы для всех x>1. Эту функцию нетрудно вычис-
лять. Но для этого надо знать, что такое суперфункция и что такое
абельфункция. Для того, чтобы каждый, кто интересуется, мог это
знать, пишется эта книга.

Когда основы формализма суперфункций были уже созданы, один
из моих соавторов, Акира Ширакава (Akira Shirakawa) [35] заявил о
невозможности восстановления интенсивности света в усилителе из
его передаточной функции [64], а когда алгоритм для такого восста-
новления [50, 73, 74] был представлен, пожаловался, что формулы
сложны [65]. При всех взаимных недоразумениях, я хочу учесть его
замечания. В этой Книге я стараюсь цитировать не только научные
статьи и стараюсь избегать сложной математики, хотя бы в некото-
рых рисунках. Однако, я все же надеюсь, что читатель знает, чем
интеграл отличается от логарифма, и умеет извлекать квадратный
корень из минус единицы. Такой читатель, вероятно, является уз-
ким специалистом, и может не знать, чем Фудоки отличаются от
Нибелунгов, отчего умер Пушкин и как очищают политуру [15]. По-
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этому я стараюсь не злоупотреблять лирическими отступлениями.
Чтобы пояснить, что я имею в виду, предложу только один пример:

Счастлив путник, который после длинной, скучной дороги с её холо-
дами, духотой автобусов, промозглой сыростью аэрокондиционеров
в залах ожидания, с тупой придирчивостью консулов и погранич-
ников, отложенными рейсами, въедливыми таможенниками, охочи-
ми до грязного белья солдатами спецконтролей, перебранками с ве-
зущими в противоположную сторону таксистами, видит, наконец,
знакомую крышу с несущимися навстречу огоньками, и предстанут
пред ним знакомые комнаты, радостный крик выбежавших навстре-
чу людей, шум и беготня детей и успокоительные тихие речи, преры-
ваемые пылающими лобзаниями, властными истребить все печаль-
ное из памяти. Счастлив семьянин, у кого есть такой угол, но го-
ре холостяку! Счастлив автор, который проходит мимо результатов
странных, необычных, поражающих своим противоречием с обще-
принятой парадигмой, но находит и описывает случаи, являющие
высокое достоинство Науки, который из великого омута ежеднев-
но вращающихся вопросов избрал одни немногие исключения, для
которых и так есть известные ответы, который не изменял ни разу
возвышенного строя своей лиры, не ниспускался с вершины своей
к неразрешенным вопросам, и, не касаясь земли, весь повергался в
свои хвалебные песнопения, далеко отторгнутые от каких-либо несо-
гласий и конфликтов. Вдвойне завиден прекрасный удел его: он сре-
ди подобных ему коллег, как в родной семье; а между тем далеко и
громко разносится его слава. Он окурил упоительным куревом люд-
ские очи; он чудно польстил им, сокрыв печальное в науки и жизни,
показав им прекрасные и высокие достижения современников. Всё,
рукоплеща, несется за ним и мчится вслед за торжественной его ко-
лесницей. Великим всемирным ученым именуют его, парящим вы-
соко над всеми другими гениями мира, как парит орел над другими
высоко летающими. При одном имени его уже объемлются трепетом
молодые пылкие сердца, ответные слезы ему блещут во всех очах...
Нет равного ему в силе - он Бог! Но не таков удел, и другая судьба
исследователя, дерзнувшего вызвать наружу все, что ежеминутно
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пред очами и чего не зрят равнодушные очи, - всю страшную, потря-
сающую тину мелочей, опутавших нашу науку, всю глубину холод-
ных, раздробленных, повседневных и мелких исследований, кото-
рыми кишат научные журналы и программы конференций, подчас
горькая и скучная дорога, и крепкою силою неумолимого резца дерз-
нувшего выставить их выпукло и ярко на всенародные очи! Ему не
собрать народных рукоплесканий, ему не зреть признательных слез
и единодушного восторга взволнованных им душ; к нему не полетит
навстречу шестнадцатилетняя девушка с закружившеюся головою
и геройским увлеченьем; ему не позабыться в сладком обаяньи им
же исторгнутых звуков; ему не избежать, наконец, от современно-
го суда, лицемерно-бесчувственного современного Ученого Совета,
который назовет ничтожными и низкими им лелеянные созданья,
отведет ему презренный угол в ряду исследователей, оскорбляющих
человечество и религиозные чувства, придаст ему качества им же
цитированных и критикуемых коллег, отнимет от него и сердце, и
душу, и божественное пламя таланта. Ибо не признает Ученый Со-
вет, что одни и те же уравнения могут описывать волны света, и
волны звука, и волны на поверхности лазурного океана, что равно
чудны нелинейные эффекты в стеклах, кристаллах и керамиках, в
тонких оптических волокнах и в толстых образцах; не признает Уче-
ный Совет, что высокий восторженный смех достоин стать рядом с
высоким научным устремлением, и что целая пропасть между ним и
кривляньем балаганного скомороха! Не признает сего Ученый Совет
и все обратит в упрек и поношенье непризнанному исследователю;
без разделенья, без ответа, без участья, как бессемейный путник,
останется он один посреди дороги. Сурово его поприще, и горько
почувствует он свое одиночество. [5]

Философские упражнения о месте науки в человеческом знании [55,
56] также публикуются отдельно. Известный философ позапрошло-
го века Козьма Прутков указал, что нельзя объять необъятное. Что-
бы в дальнейшем избежать, по возможности, длинных лирических
отступлений, подобных приведенному выше, постараюсь сразу ука-
зать, что в этой Книге есть и чего в ней нет.
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4 Что в книге есть

В книге предлагается общий подход для построения суперфункций
и различные алгоритмы для их вычисления. Выбор алгоритма зави-
сит от того, каковы стационарные точки передаточной функции (и
есть ли у передаточной функции хоть какие-то стационарные точки)
и какие свойства требуются от суперфункции.

Я рассказываю про свойства и поведение суперфункций и абель-
функций. (После общения с германскими коллегами, я не могу по-
давить искушение писать такие слова слитно.)Для данной функции
T , суперфункцией называется решение F уравнения

F (z+1) = T (F (z))

Функцую T я называю передаточной функцией. Абельфункцией я
называю функцию, обратную от суперфункции. Через них выража-
ются нецелые итерации передаточной функции. В книге предлага-
ются способы их эффективного вычисления. Эффективного - зна-
чит, быстрого и с маленькой погрешностью. Например, при исполь-
зовании арифметики complex double, суперфункции и абельфункции
оцениваются примерно с 14 значащими цифрами, а комплексные
карты этих функций могут строиться в реальном времени. Я гру-
жу генераторы рисунков в ТОРИ http://mizugadro.mydns.jp/t;
Читатели могут проверить их на компьютере.

По умолчанию, предполагается, что параметры имеют веществен-
ные значения, а аргументы функций имеют комплексные значения.
Однако, я больше физик, чем математик (хотя мои соавторы-физики
обычно высказывают противоположное мнение), и для физических
приложений вещественные значения аргументов и функций пред-
ставляют особенный интерес. Поэтому графики функций при веще-
ственных значениях аргумента тоже представлены. Я считаю, что
такой вещизм оправдан прикладным и популярным характером этой
Книги.
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5 Чего в книге нет

В Книге нет четких и аккуратных указаний значений, которые мо-
гут принимать параметры и аргументы функций. Такое исследова-
ние предлагается читателям в качестве упражнений.

Я стараюсь определять функции так, чтобы хотя бы окрестность
положительной части вещественной оси попадала в область голо-
морфизма, но не всегда это возможно. Похоже, что это первая мо-
нография с описанием эффективного вычисления голоморфных су-
перфункций, и в ней неизбежен несколько эвристический стиль из-
ложения. К сожалению, один из немногих чистых математиков –
Генрик Траппманн, который шел рядом с рубанком, веником и сов-
ком, сметая грязь и превращая топорную работу плотника в ма-
тематически строгое доказательство – занялся бизнесом, хотя его
недавняя публикация [75], как мне кажется, заслуживает внимания.

В книге нет строгих доказательств сходимости, существования и
единственности решений. Сюда не включены доказательства, выра-
ботанные в сотрудничестве с Генриком. Особо въедливым читателям
предлагается скачать оригинальные статьи [50, 69, 63, 75], продрать-
ся сквозь дедукцию, выписанную с германской педантичностью Ген-
рика, и задавать вопросы. Указания на ошибки, если таковые там
есть, особенно приветствуются.

История развития теории суперфункций и функций Абеля начина-
ется примерно с 19 века и может быть весьма интересна, но она выхо-
дит за рамки темы этой книги. Oбзоры древних публикаций можно
найти в интернете по ключевым словам Abel function, iterated
functions, tetration, superexponential, superfunction. Искать
лучше по английски, так как наука в РФ превратилась в искусство
по “отмыванию” бюджета 5, и это отражается на качестве русско-
язычных научных (и не очень) публикаций [71]. Настоящая книга
является попыткой противопоставить этой тенденции русскоязыч-
ный пример того, что я называю термином “наука” [55, 56, 83, 84, 85].
А заодно показать коллегам, что не издательство красит Книгу, а

5http://samlib.ru/k/kuznecow_d_j/desciencer.shtml Уничтожение науки в РФ
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Книга - издательство.

В книге нет подробного цитирования работ коллег, которые пыта-
лись вычислять суперфункции и абельфункции в течение последней
пары веков. Чтобы понять, чем занимались на эту тему в прошлые
века, можно посмотреть работы Генрика Нильса Абеля (Neils Henryk
Abel) [3], Петера Фато (P. Fatou) [6], Хельмута Кнезера (Hellmuth
Kneser) [10], Жана Екале (Jean Ecalle) [17], Г.Сзекереса (G.Szekeres)
[11] и Петера Валкера (Peter Walker) [24]. Ещё обзоры публикаций
по теме представлены в линках, перечисленных в приложении.

Я вижу аналогию с тем, что в современном учебнике географии не
обязательно рисовать Землю на трех китах, плавающих в мировом
океане. Читатель может счесть такую аналогию чересчур претенци-
озной; однако, многочисленные методы вычисления суперфункций,
предложенные коллегами, столь неэффективны, что с ними пока
НИКОМУ не удалось построить комплексные карты этих функций.
Судя по публикациям, с такими алгоритмами не построено ни одной,
вообще ни одной карты тетрации. Генрик объясняет это тем, что у
меня очень хороший графопостроитель conto.cin, который быстро и
аккуратно проводит линии уровня, правильно интерпретируя раз-
резы области аналитичности и сингулярности...

Я считаю, что дело в удобном математическом представлении функ-
ций и эффективных алгоритмах, а не в графопостроителе. Поэтому
в этой книге нет описания моего графопостроителя; его можно ска-
чать из ТОРИ [81] или из Ситизендиума [82] и использовать, даже не
зная, как он работает. Кроме того, если запастись терпением в стиле
“to press a key, to have a tea” [41], то качественные графики можно
строить и из Математики, или даже из Мапле, если примириться с
тем, что прийдется корячиться с подробной сеткой, а размер файлов
для комплексных карт будет существенно больше, чем при создании
EPS файлов прямо из C++ процедурой “conto.cin” .

Аналогично, в книге нет кодов программ, использованных для вы-
числения функций и построения графиков. Во-первых, описания
алгоритмов достаточно подробны, сами алгоритмы просты, и да-
же студент после одного семестра изучения какого-либо языка про-
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граммирования, поддерживающего комплексную арифметику, мо-
жет легко воспроизвести их. Во-вторых, никто не станет отцифро-
вывать, перепечатывать из бумажного издания код, который можно
скачать из интернета. Коды рисунков и программ, использованных
в Книге, доступны в ТОРИ, Ситизендиуме и других сходных ресур-
сах. Поэтому, вместо текстов программ, я помещаю ссылки.

В книге нет последовательного изложения свойств уравнения Шрё-
дера. Мне не удалось построить пример, который бы решался с
функциями Шрёдера
http://mathworld.wolfram.com/SchroedersEquation.html
https://en.wikipedia.org/wiki/Schroeder_equation
но не решался бы с суперфункциями.

В книге нет описаний “драконов” 6, то есть таких объектов, которые,
вроде бы, и могли бы существовать, но почему-то их существова-
ния предъявить не удается и комплексные карты для них тоже не
построены. Драконоведение, как оно изложено в аннотации курса
лекций, который с 2007 года (и, возможно, до сих пор) читает на
Мехмате МГУ профессор всяческих наук, лауреат многочисленных
наград и премий Андрей Николаевич Квашенко 7, не удовлетворяет
Аксиомам ТОРИ, и поэтому в Книге не представлено. Впрочем, как
только с помощью суперфункций, или ещё как, кто-либо предложит
способ опровергнуть гипотезу о существовании драконов, эта гипо-
теза удовлетворит Аксиоме 3 (об опровержимости), и тогда я могу
всерьез рассматривать даже такую гипотезу.

В отличие от драконологии, мои результаты, в принципе, опроверг-
нуть можно. Для этого достаточно указать пример, в котором су-
перфункция, построенная описанными в Книге методами, не удо-
влетворяет передаточному уравнению (или дополнительным усло-
виям, добавляемым для её единственности). Или построить две раз-
личные суперфункции, удовлетворяющие условиям, которые, по за-
мыслу, должны обеспечить единственность. Или, хотя бы, предло-

6http://mizugadro.mydns.jp/t/index.php/Category:Dragon
7 http://mmmf.msu.ru/lect/kvashenko.html http://mmmf.msu.ru/lect/lect9.html Ан-

дрей Николаевич КВАШЕНКО. Драконы. 2007-2013
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жить такую передаточную функцию, для которой нельзя построить
суперфункцию методами, описанными в этой Книге. Пока мне не
встретилась такая передаточная функция, для которой я бы не мог
построить суперфункцию. Поэтому таких передаточных функций в
этой Книге нет.

Многие, как и я, ещё с младенчества, предпочитают листать книжку
и смотреть картинки, вместо того, чтобы читать текст. Поэтому я
старался, чтобы каждая страница Книги была иллюстрирована хотя
бы одним рисунком. Пока на некоторых страницах нет рисунков. Я
надеюсь исправить это упущение в следующих изданиях.

Кроме того, в книге нет многих других примеров, которые, как мне
кажется, можно рассмотреть аналогичным образом, но решения для
которых мне не удалось найти в литературе. Однако, я старался
собрать здесь все известные суперфункции, чтобы потом отдыхать
(рис. 21.4) и на вопросы про итерации и суперфункции отвечать
либо “Этого не знает никто”, либо “Это есть в моей Книге”.

Если всё-же какая-либо важная и красивая суперфункция ускольз-
нула от великого и могучего гуглевского серча, то, пожалуйста, со-
общите мне об этом. Тогда я постараюсь и её оприходовать, задей-
ствовав, если потребуется, всю мощь дарственного аппарата супер-
функций, абельфункций, ТФКП и прочего матана.
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Глава 2

Введение

Итерации и Суперфункции возникают в физике естественным об-
разом при описании последовательности похожих преобразований
чего-либо в однородной физической системе. Это может быть ослаб-
ление ударной волны в одной из последовательных секций автомо-
бильного глушителя. Это может быть накопление массы снежным
комом, который раз за разом скатывается с холма, покрытого лип-
ким снегом. Это может быть изменение интенсивности в световой
волне при прохождении одной секции лазерного усилителя или про-
светляемого поглотителя. Простор для фантазии.

Если состояние системы до преобразования описывается парамет-
ром x, а после - параметром y, и эти две величины связаны соотно-
шением y=T (x), то функция T называется передаточной функцией.
Можно рассмотреть постепенное изменение соответствующей вели-
чины от значения x к значению y, в зависимости от координаты,
вдоль которой усилитель считается однородным. Эта зависимость
называется суперфункцией от функции T . Такие суперфункции яв-
ляются объектом исследования; им посвящена эта Книга.

В принципе, для каждого процесса последовательного применения
одного и того же преобразования, можно строить физические мо-
дели, и сравнивать результаты измерений с предсказаниями моде-
ли. Это методически-корректный подход, и большинство коллег в
каждом случае работает именно с моделями. При этом нет надобно-
сти восстанавливать что-либо по результатам измерений; достаточно
обобщить, расширить модель вплоть до того, чтобы предсказывать,
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какое показание следует ожидать от гальванометра или осцилло-
скопа или секундомера в том или ином случае. Методом перебора
возможных моделей, задачу можно решать без всяких суперфунк-
ций. Однако это не единственный путь.

В физике известны также обратные задачи, когда модель какого-
либо процесса неизвестна (или, наоборот, имеется столько моделей,
что трудно примерять к результатам экспериментов каждую), и пред-
лагается восстановить по результатам измерений характеристики
системы, не предполагая какую-либо специфическую модель про-
цессов в этой системе.

В этой Книге предполагается, что измерена передаточная функция
системы, и по этой функции предлагается восстановить преобразо-
вание сигнала в системе. Чтобы рассматривать достаточно общий
случай, такая система называется фильтром.

1 Фильтры и обозначения

С точки зрения физики, итерация описывает последовательную ком-
бинацию фильтров. Пусть каждый фильтр характеризуется пере-
даточной функцией (Transfer function) T . Если на входе фильтра
имеется сигнал z, то сигнал на выходе фильтра будет T (z).

В этой книге рассмотрен простой случай, когда сигнал выражается
одним числом, вещественным или комплексным. В принципе, тер-
мин “передаточная функция” допускает обобщение на многомерный
случай, тогда эта функция превращается в функционал; аргумент z
мог бы иметь смысл вектора или функции. Как выяснилось, даже
одномерный случай вызывает много недоумений и конфузов (неко-
торые примеры такого рода упомянуты в последующих главах).

Продвигать многомерные обобщения, пока коллеги сомневаются да-
же в одномерном случае, представляется методически некоррект-
ным. В соответствии с определением Науки [55, 83], сперва следует
представить результаты по простейшему случаю, который всё ещё
опровергает устоявшуюся точку зрения о том, что восстановление
распределения сигнала внутри однородной нелинейной системы по
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её передаточной функции невозможно [59, 60, 61, 64, 65]. Рассмот-
рение комплексных значений аргумента передаточной функции поз-
воляет сузить класс возможных решений, и в этом смысле суще-
ственно важнее, чем рассмотрение многомерного сигнала. Поэтому
в этой книге считается, что передаточная функция и её суперфунк-
ция определены для комплексных значений аргумента; кроме того,
предполагается, что каждая из этих функций голоморфна в той об-
ласти, которая требуется для рассмотрения.

Сигнал на выходе фильтра (например, усилителя) может быть по-
дан на вход еще одного такого фильтра, и тогда сигнал на выходе
второго фильтра будет

T (T (z)) = T 2(z) (2.1)

Здесь используется обозначение с верхним индексом. Вальтер Бергве-
илер (Walter Bergweiler) использовал такие обозначения ещё в про-
шлом веке [26]. Если после имени функции следует верхний индекс
(и это не штрих, указывающий производную), то этот индекс указы-
вает номер итераци функции. В частности, нулевая итерация есть
идентичная функция (которая равна своему аргументу),

T 0(z) = z (2.2)

Первая итерация от функции есть она сама, а минус первая ите-
рация соответствует обратной функции. Например, для функции
T =sin,

sin−1(z) = arcsin(z) (2.3)

sin0(z) = z (2.4)

sin1(z) = sin(z) (2.5)

sin2(z) = sin(sin(z)) (2.6)

В некоторых учебниках используется (хотя и не декларируется) обо-
значение, в котором sina(z) имеет смысл sin(z)a. Такое обозначение
приводит к путанице. Например, при a=−1, это выражение может

указывать на arcsin(z), но может указывать также и на
1

sin(z)
.

В этой Книге, число в верхнем правом индексе при имени функ-
ции указывает число итераций (или номер итерации), и никогда не
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указывает степень, в которую следует возвести результат выполне-
ния функции. Когда следует сперва вычислить синус числа z, а по-
том результат возвести во вторую степень, то это записывается как
sin(z)2. Я надеюсь, что Читатель может отличить константу или пе-
ременную (или иное арифметическое выражение) в верхнем индексе
от штриха, который обозначает дифференцирование, и путаницы не
будет.

Иногда, при указании количества итераций, вместо fn(z) пишут
f ◦n(z), по аналогии с использованием операции “кружочек” ◦ в вы-
ражениях вроде sin(sin(z)) = sin ◦ sin(z) . В этой Книге, верхний
индекс после имени функции используется либо для указания про-
изводной, если это штрих, либо для указания количества итераций
(если это не штрих). Поэтому символ “кружочек” не использован.
В качестве оправдания для такой сокращенной записи можно на-
помнить, что в частном случае, когда число итераций равно минус
единице, обратную функцию от f записывают в виде f−1, и обычно
не пишут f ◦−1(z). Разумеется, символ ◦ может быть восстановлен
добавлением команды \circ в латексную версию Книги в тех местах,
где в формуле указано число итераций функции.

Выражения fn(z) , f(zn) и f(z)n не должны конфузироваться. В
первом случае функция f итерируется n раз, во втором функция
оценивается при значении аргумента zn, а в третьем - функция вы-
числяется при значении аргумента z, а результат возводится в nтую
степень.

Идея этой Книги в том, что функция может итерироваться не обя-
зательно целое число раз. Зависимость результата такого итериро-
вания от числа итераций и есть суперфункция. Для физических
приложений, особенно интересны случаи, когда такая суперфунк-
ция вещественно-голоморфна; то есть имеет вещественные значения
по крайней мере вдоль некоторой части вещественной оси и допус-
кает аналитическое продолжение в область комплексных значений
аргумента; это соответствует комплексному числу итераций.
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2 Гнездо

Для итераций в языке программирования “Математика” есть специ-
альная функция, которую можно назвать “гнездо”, делая не слиш-
ком удачную кальку с английского слова Nest [80]. Впрочем, можно
транслитерировать английское слово как “Нест” и склонять его в
соответствии с обычаями русского языка: Нест, Неста, Несту, Нест,
Нестом, о Несте. В некоторых текстовых редакторах при этом при-
ходится подавлять поползновения автоматических корректоров за-
менить букву Н на букву М. Нест используется для итераций.

При использовании Неста требуется указать три аргумента. Пер-
вый аргумент указывает имя функции, которая итерируется. Вто-
рой указывает начальное значение при итерациях, а последний, тре-
тий аргумент указывает число итераций. Обращение к Несту имеет
следующий вид:

Nest[ f , x , z ]

В программировании на Математике, аргумент функции указывают
в квадратных скобках; и такая запись обозначает выражение f z(x).

По крайней мере до 2014 года, имплементация Неста не позволяет
использовать его в случаях, когда последний аргумент не выражает-
ся целой константой, натуральным числом. (Даже нулевая и минус
первая итерация запрещены.)
Возникает естественный вопрос: “Какой смысл может иметь нецелая
итерация функции?” Этот вопрос обсуждается в следующей секции.

3 Волоконный усилитель

Рассмотрим волоконный лазерный усилитель. Предположим, Изго-
товитель дает Физику кусок активного оптического волокна длин-
ной, скажем, один метр, и систему накачки, с тем, чтобы Физик
узнал, как изменяется интенсивность света в волокне по мере уси-
ления, но не разрешает разрезать волокно и смотреть, что там у
него внутри; Физик лишь верит, что волокно однородно и равномер-
но освещено источником накачки. Для того, чтобы считать накачку
равномерной, предположим, что используется схема поперечной на-
качки [31, 32, 33, 38]. Физик может измерить передаточную функ-

24



цию T этого волокна. На основе этой передаточной функции, Физик
может сказать, какая будет передаточная функция у аналогичного
двухметрового волокна. В предположении, что накачка доставля-
ется вместе с волокном и поэтому её интенсивность не зависит от
длины усилителя, передаточная функция двухметрового усилителя
будет T 2, трехметрового T 3, четырехметрового T 4, и так далее. Но
какая будет при этом передаточная функция у волокна длины z

метров при нецелом значении z?

На языке “Математика”, такая функция могла бы выражаться в ви-
де T z(x) = Nest[T, x, z]. В современной реализации этого языка,
последний аргумент должен быть выражен целым числом; иначе
“Математика” выдает сообщение об ошибке!

Можно ли выразить нецелую итерацию предаточной функции в ви-
де уравнения? Оказывается, это сделать можно, и такое уравнение
представлено в следующей секции.

4 Передаточное уравнение

В этой Книге, передаточным уравнением (transfer equation) называ-
ется уравнение, которое указывает, как должен изменяется сигнал
внутри фильтра (усилителя) с тем, чтобы сигнал на выходе выра-
жался передаточной функцией от сигнала на входе. При переносе,
передаче сигнала в усилителе на единичную длину, сигнал преобра-
зуется функцией T :

F (z+1) = T
(
F (z)

)
(2.7)

Здесь, как и в предыдущей секции, буквой T обозначена переда-
точная функция, z - координата, вдоль которой распространяется
сигнал (усиливаемый свет, или звук, или ещё чего-нибудь эдакое),
и функция F выражает зависимость сигнала от этой координаты.
(В Лазерной Науке, сигналом называется усиливаемое излучение,
иногда видимый свет, даже если никакая информация с этим излу-
чением не передается.) Если длина усилителя не точно один метр, то
без ограничения общности можно взять длину усилителя за новую
единицу измерения. Решение f уравнения (2.7) называется супер-
функцией по отношению к передаточной функции T . В соответствии
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с Аксиомой ТОРИ номер 6, о простоте, я по умолчанию считаю, что
и передаточная функция T , и суперфункция F голоморфны в той
области, коротая требуется для рассмотрения.

Обратная функция, то есть G = F−1 называется абельфункцией,
или функцией Абеля, для передаточной функции T . Абельфункция
G=F−1 удовлетворяет уравнению Абеля

G(T (z)) = G(z) + 1 (2.8)

Уравнения (2.7) и (2.8) получаются одно из другого заменой пере-
менной. Читатели приглашаются проделать это несложное преоб-
разование в порядке упражнения (или подсмотреть этот вывод в
какой-нибудь Википедии [79] ).

Уравнение (2.7) тоже иногда называют уравнением Абеля, и это мо-
жет вызвать путаницу. Чтобы избежать путаницы, я называю соот-
ношение (2.7) передаточным уравнением, и лишь уравнение, похо-
жее на (2.8), - уравнением Абеля.

Решение F уравнения (2.7) я называю суперфункцией, а решение G
уравнения уравнение (2.8) называю aбельфункцией. В общем случае
решения не единственны. Я выбираю решения так, что F (G(z))=z

в некоторой области значений z; обычно в некоторой окрестности
вещественной оси или, хотя бы, в окрестности некоторого отрезка
вещественной оси.

Вернемся к задаче об Изготовителе и Физике, упомянутой в преды-
дущей секции. Допустим, Физику удалось найти решение F пере-
даточного уравнения (2.7), имеющее физический смысл. Тогда он
может построить абельфункцию G = F−1 и выразить передаточ-
ную функцию усилителя произвольной длины z:

T z(x) = F (z +G(x)) (2.9)

Таким образом, решение задачи о восстановлении передаточной функ-
ции усилителя произвольной длины по передаточной функции T

усилителя единичной длины сводится к нахождению подходящего
решения F передаточного уравнения (2.7) и построению соответ-
ствующей обратной функции G. Тогда передаточная функция уси-
лителя длины z выражается явным образом (2.9).
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5 Множественность решений

Решение F уравнения (2.7) не единственно. Можно сузить множе-
ство решений, если выбрать значение функции F в нуле, то есть
потребовать, чтобы

F (0) = F0 (2.10)

где F0 есть фиксированная константа. Во многих случаях, эта кон-
станта не влияет на восстановление нецелой итерации передаточной
функции по формуле (2.9) в том смысле, что при преобразовании

F̃ (z) = F (z) + F0 , G̃(z) = G(z−F0) (2.11)

и подстановке F → F̃ , G→ G̃ в уравнение (2.9) , получаемое значе-
ние для нецелой итерации передаточной функции не меняется.

Однако даже после такого сужения, решение не становится един-
ственным. Если F решение, то новое решение f̃ можно построить
по формуле

f̃(z) = F
(
z + θ(z)

)
(2.12)

где θ есть периодичная функция с периодом единица. При θ(0) = 0,
даже условие (2.10) для суперфункции f̃ сохраняется.

Рис. 2.1: Значок Физфака
МГУ и значок Мехмата

Неоднозначность указывает, что могут
быть разные способы восстановления неце-
лой итерации передаточной функции. По-
этому многие думали, что нецелые итера-
ции функций смысла не имеют. В частно-
сти, считалось [42], что не имеет смысла
выражение

√
! = Factorial1/2, означающее

половинную итерацию от факториала. Это выражение использует-
ся в качестве эмблемы Физфака МГУ (см.рис. 2.1) с 1950 года, и
было интересно придать ему четкий физический и математический
смысл. Это удалось сделать только в 2009 году [51], когда был по-
строен аппарат суперфункций.

Воображение у математиков развито сильнее, чем у физиков. В
частности, вопрос о математическом смысле нанизывания Мёбиуса
на знак интеграла, напрашивающийся при взгляде на эмблему Mех-
мата (правая часть рисунка 2.1), до сих пор не имеет ответа. Воз-
можно, значок Мехмата тоже приобретет смысл в ходе дальнейшего
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развития суперфункций, когда будет изобретён новый вид контур-
ного интеграла, в котором функция выворачивается наизнанку, и
для его обозначения потребуется Мёбиус.

Проблема нахождения нецелой и, частности, половинной итерации
передаточной функции возникает не только при феноменологиче-
ском рассмотрении идеализированного усилителя. Похожая задача
возникает при анализе неустойчивости работы реактивного двигате-
ля; в простейшем (одномерном) приближении, возникновение и ис-
чезновение неустойчивости по сценарию Помо-Манневиля (Pomeau-
Manneville scenario) [19, 43] описывается квадратичной передаточной
функцией. Сходные уравнения используются при анализе устойчи-
вости аттракторов [20]. По крайней мере для одномерных моделей,
при этом можно построить абельфункцию и суперфункцию [57], и,
соответственно, нецелые итерации передаточной функции.

Наблюдение сходства в построении суперфункций помогло сформу-
лировать задачу о построении суперфункций, абельфнкций и соот-
ветствующих нецелых итераций передаточной функции достаточ-
но общим образом. Принципиальным для построения решения (то
есть нахождения алгоритма для его вычисления с требуемой точно-
стью) является выбор дополнительных условий, которые обеспечи-
вают единственность этого решения.

6 Постановка задачи

Допустим, известна некоторая передаточная функция T , голоморф-
ная в некоторой достаточно широкой области значений аргумента...

Какие дополнительные условия надо наложить на суперфункцию
F (или на абельфункцию G = F−1) для того, чтобы передаточное
уравнение (2.7) (или уравнение Абеля (2.8)) имело единственное ре-
шение?

Как формулировать эти условия для того, чтобы это решение имело
физический смысл?

Как вычислять суперфункцию и абельфункцию, удовлетворяющие
сформулированным условиям?

Как проверить, то вычислена именно та функция, которая имеет
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физический смысл?

Целью Книги являются ответы на такие вопросы, изложение этих
ответов в максимально простой и подробной форме. По большей ча-
сти, эти ответы являются упрощенным пересказом опубликованных
ранее статей [44, 50, 52, 57, 54, 69, 78, 77, 74].

В следующей главе предложены примеры суперфункций и абель-
функций, а в последующих главах разобраны общие алгоритмы их
вычисления и применение к физическим задачам. Описание состоя-
ния физической системы с помощью одного параметра уже являет-
ся сильным приближением, и хотя бы для этого случая желательно
представить решение в простом и “точном” виде.

Рис. 2.2: Сухой Мартини

Для примеров хотелось бы использо-
вать не сложные функции. Имеется
некоторая терминологическая слож-
ность в том, чтобы квалифицировать
некоторые функции как не сложные
для рассмотрения. Хотелось бы ис-
пользовать привычное для физиков
(и не только) прилагательное “про-
стой”, однако в математике этот тер-
мин, применительно к функции, мо-
жет означать еще, что функция из-
мерима. 1 Таким образом, слова “не
сложный” приходится писать отдель-
но, так как слово “простой” может
иметь иной смысл. Примерно так же прилагательное “сухой”, при-
менённое к вину или к Мартини, радикально меняет своё значение
(см. рис. 2.2). Если Вы можете предложить ещё более простые (ме-
нее сложные, но всё ещё не тривиальные) примеры, дайте знать.

1 http://en.wikipedia.org/wiki/Simple_function Простая функция в математике — это
измеримая функция, заданная на некотором измеримом пространстве и принимающая конеч-
ное число значений.

29

http://en.wikipedia.org/wiki/Simple_function


Глава 3

Примеры суперфункций

Прежде чем вычислять суперфункции и абельфункции для каких
попало передаточных функций, имеет смысл посмотреть, в каких
случаях суперфункция и абельфункция могут быть представлены
в виде несложной комбинации хорошо известных функций. Книга
задумана как популярная, поэтому уместно начать с таких приме-
ров. Они рассмотрены в этой главе. Эта глава может рассматри-
ваться как продолжение введения: для анализа приведенных здесь
примеров не требуется каких-либо специальных методов построения
суперфункций.

В предыдущей главе суперфункция F для передаточной функции
T определяется как решение уравнения (2.7)

F (z + 1) = T (F (z))

Чтобы не тянуть кота в долгий ящик, ниже предлагается таблица су-
перфункций, представленных в этой Книге; в последующих секциях
и главах, свойства этих суперфункций рассмотрены более подробно.

1 Таблица суперфункций

В этой секции представлена таблицa суперфункций. Есть аналогии
между таблицей суперфункций и таблицей интегралов. Эта анало-
гия рассмотрена ниже.

Операция дифференцирования проще, чем операция интегрирова-
ния; по крайней мере в тех случаях, когда исходная функция вы-
ражена через несложную комбинацию специальных функций. Один
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Таблица 3.1: Примеры суперфункций, T (z) = f
(

1 + g(z)
)

T (z) f(z) g(z) = f−1(z) замечание

1 c c Не существует

2 z+1 b+ z z − b b ∈ C

3 b+ z bz + c (z − c)/b b 6= 0

4 bz + c bz + c
1−b logb

(
z − c

1−b

)
b 6=0, b 6= 1, [75]

5 bz tetb(z) ateb(z) [44, 50, 69]

6 zb exp(bz) logb
(

ln(z)
)

(4.20), b>0, b 6=−1

7 −a2/z a tan
( 2

π
z
) 2

π
arctan(z/a) a > 0

8
z

c+ z

1− c
1− cz

logc

(
1− 1− c

z

)
c 6= 0 , c 6= 1

9
z

1 + z
1/z 1/z f=g; T n(z)= z

1+nz

10 ln(b+ez) ln(bz) ez/b b 6= 0

11 (ab+zb)1/b az1/b (z/a)b a>0, b 6=0

12 2z
√

1−z2 sin(π2z) log2

(
arcsin(z)/π

)
13 2z

√
1+z2 sinh(2z) log2

(
ln
(
z +
√
z2+1

)
/π
)

14 2z2 − 1 cos(π2z) log2(arccos(z))

15 2z2 − 1 cosh(π2z) log2

(
ln
(
z +
√
z2−1

)
/π
)

16 2z/(1−z2) tan(2z) log2(arctan(z))

17 2z/(1+z2) tanh(2z) log2

(
2 ln

(
z+1

z−1

))
18 Factorial(z) SuFac(z) AuFac(z) (8.9), (8.17) ; [51]

19 b z (1−z) LogisticSequenceb(z) LogisticSequence−1
b (z) (7.8), (7.19) ; [57]

20 Doyat(z) Tania(tz) (z + ln(z)− 1)/t (5.12), (5.3)

21 Kellert(z) Shoka(tz) ArcShoka(z)/t (5.15), (5.19)

22 sin(z) SuSin(tz) AuSin(z)/t (13.8), [78]

23 z exp(z) SuZex(tz) AuZex(z)/t (12.1) [77]

24 z + exp(z) SuTra(tz) AuTra(z)/t (20.1) [77]

P (T (Q(z))) P (f(z)) g(Q(z)) P (Q(z))=z
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из моих учителей квантовой механики, Владимир Кривченков (и,
вероятно, не он первый) говорил, что дифференцировать можно на-
учить даже обезьяну, но с интегрированием труднее. В ту эпоху за-
дача считалась решенной, если решение удавалось выразить в виде
формулы, которую можно найти в Градштейне-Рыжике; так назы-
валась большая толстая черная книга “Таблицы интегралов, сумм,
рядов и произведений” [13]. Тогда еще не было настольных компью-
теров, умеющих дифференцировать и интегрировать, и такая книга
была одним из основных инструментов любого серьезного исследо-
вателя. Составление таблиц интегралов было важным, трудным (и,
вероятно, нудным) делом.

Одним из способов составления таблицы интегралов является со-
ставление таблиц производных. Берется абы-какая несложная ком-
бинация известных специальных функций и дифференцируется. Ес-
ли результат удается упростить настолько, что его можно уместить
на одной строчке таблицы, то он декларируется как интегранд, кото-
рый “удалось проинтегрировать”, а исходная “абы-какая несложная
комбинация” декларируется как результат интегрирования; такой
интегранд и такой “результат” заносятся в таблицу.

Аналогично можно поступать и с суперфункциями. Берётся абы-
какая несложная комбинация f специальных функций и обращает-
ся. Если g = f−1 удается представить в виде несложной комбинации
специальных функций (результат умещается в ячейке таблицы), и
если при этом в ячейке таблицы умещается выражение

T (z) = f(1 + g(z)) (3.1)

то функция T декларируется как передаточная функция, для кото-
рой удалось построить суперфункцию и абельфункцию и заносится
в первый столбец таблицы; функция f декларируется как постро-
енная для этой T суперфункция, а функция g декларируется как
соответствующая абельфункция.

Таким образом получена таблица 3.1, но туда добавлены еще некото-
рые функции, построение которых описано в последующих главах.
Если свойства функции известны, то есть известны её область голо-
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морфизма и асимптотические разложения, и имеется эффективный
алгоритм для её вычисления, то функция считается специальной;
в этом случае, вместо громоздкого представления, в таблице супер-
функций достаточно указать имя этой функции.

Таблица суперфункций – это базовый набор инструментов для вы-
числения нецелых итераций. Поэтому эта таблица выделена в осо-
бую главу. В последующих главах рассказывается, как вычислять
суперфункии и абельфункции таблицы 3.1.

2 Построение элементарных суперфункций

В этой секции рассказано, как получены первые строчки таблицы
3.1. Для поиска “подходящих” триад (передаточная функция, супер-
функция, абельфункция) использован сортвер Mathematica. В каче-
стве примера, ниже показано, как получена и проверена 12я строка
таблицы.

f[z_] = Sin[Pi 2^z]
g[z_] = Log[ArcSin[z]/Pi]/Log[2]
f[g[z]]
T[z_]=2 z Sqrt[1 - z^2]
Simplify[T[z] - f[1 + g[z]]]

В языке Mathematica, аргумент функции всегда указывается в квад-
ратных скобках. Каких-либо иных, специфичных для Математики,
трюков при этом не использовано, так что перевод такого кода на
другие языки прост. Я надеюсь, что каждый может легко запрограм-
мировать элементарные суперфункции из таблицы 3.1, и поэтому
здесь не привожу их графики.

Аналогичный поиск суперфункций проводился также с софтвером
“Maple”. Целью была проверка на буги софта “Математика”, а также
надежда, что канадский Клен выявит какие-нибудь новые неслож-
ные пары (f ,g), пропущенные американской программой. Несколько
бугов программы “Matematica” были выявлены, сообщены админи-
страторам Вольфрама и уже исправлены в текущей версии Мате-
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матики, но новых элементатных суперфункций обнаружить не уда-
лось. Я буду признателен коллегам, которые укажут новые, умеща-
ющиеся в одной строчке таблицы триады (T , f , g) элементарных
функций.

Для элементарных суперфункций из таблицы 3.1, проверка может
быть проведена и без компьютера, с карандашом и бумагой; для
этого достаточно знания математики в программе общеобразова-
тельной школы. Судя по запуску в 2008 году на околоземную орби-
ту спутника “Юбилейный” с вечным двигателем на борту, в России
даже министры не знают элементарных вещей, поэтому стараюсь
ориентироваться на самый базовый уровень читателей.. Если Вы не
можете воспроизвести какую-либо формулу их Книги, то Вам надо
обратиться ко мне за помощью. Я буду благодарен читателям, кото-
рые найдут и укажут мне на ошибки, и, в частности, в таблице 3.1,
если они там есть.

В таблице 3.1 собраны лишь самые простые из суперфункций. С по-
мощью последней строчки таблицы, эти функции могут быть моди-
фицированы. Любая пара взаимно-обратных функций P и Q опре-
деляет преобразование, которое может применяться к предыдущим
строчкам, давая новые передаточные функции и соответствующие
суперфункции и абельфункции.

Несложное масштабирование связывает квадратичную передаточ-
ную функцию в 14й и 15й строках таблицы с логистичеким опера-
тором (logistic operator) в 19 строке, если параметр b=4; в этом слу-
чае логистическоая последовательность выражается элементарной
функцией и её обобщение на случай нецелых значений аргумента
тривиально. С помощью аппарата суперфункций, такое континуаль-
ное обобщение логистической последовательности возможно и при
иных значениях параметра [57].

Частным случаем преобразования суперфункции является сдвиг её
аргумента на константу. В некоторых случаях трудно распознать та-
кой сдвиг: например, суперфункции в 14й и 15й строчках таблицы
соответствуют одной и той же передаточной функции T (z)=2z2−1;
и эти суперфункции получаются одна из другой трансляцией аргу-
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мента на константу iπ ln(2)/2. Сходные соотношения имеют место
и для других суперфункций. Для суперфункций от экспоненты по
основанию b при 1 < b < exp(1/e) [50], этот случай рассмотрен в
Девятой главе.

Аналогично, новые расширения таблицы суперфункций можно стро-
ить преобразованиями уже представленных в ней функций. Фор-
мулы для такого преобразования представлены в последней строке
таблицы 3.1.

3 Имплементация суперфункций

В простых случаях, имплементации суперфункций и абельфункций
тривиальны; их представления через элементарные функции могут
быть запрограммированы “как есть”. Для более сложных случаев,
особенно для комплексного аргумента, следует позаботиться о том,
как пройдут линии разреза области голоморфизма. Я статаюсь, что-
бы разрезы были прямыми и шли параллельно оси абсцисс в направ-
лении убывания абсцисс, хотя не всегда это возможно.

Обычно, для эффективной имплементации суперфункций приходит-
ся сшивать, склеивать несколько аппроксимаций; к представлению,
применимому вблизи вещественной оси, приклеиваются представле-
ния, адекватные при значительных значениях мнимой части аргу-
мента. Иногда к представлению, эффективному при больших отри-
цательных значениях вещественной части аргумента, приклеивает-
ся представление, полученное с помощью передаточного уравнения.
Если клей хорош, то не только значения функции, но и значения
всех её производных оказываются непрерывными, и можно говорить
о том, что аппроксимирована голоморфная функция. Когда погреш-
ность такой аппроксимации можно уменьшать до любого требуемого
значения, можно говорить, что построена точная суперфункция. 1

1 Задача математика, собирающего представление для голоморфной функции, проще, чем
задача хирурга, к которому привезли руки, ноги, животы и головы пассажиров и экипажа
самолета, сбитого террористами, и предложили собрать их них несколько сот здоровых граж-
дан. По крайней мере, кусочки функций можно начинать склеивать сразу, не дожидаясь, пока
их выкупят у террористов, сбивших самолет.
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Глава 4

Элементарные суперфункции

Для того, чтобы использовать суперфункции, рассмотренные в этой
главе, вовсе не обязательно знать, что они являются суперфункци-
ями. Примерно так же герой Мольера, Журден, использует в раз-
говорной речи прозу, и ему до поры нет надобности знать, что он
говорит прозой [2]. Однако как только появляется поэзия, для то-
го, как он говорит, нужен специальный термин “прoза”. Аналогично,
для того, чтобы объяснить свойства нетривиальных суперфункций,
мне сперва приходится рассказать о свойствах тривиальных. Таким
суперфункциям посвящена эта глава.

В начальной школе, изучение функций начинают с линейной функ-
ции. Это достаточно простой случай. Чтобы коллеги не говорили,
что формализм суперфункций слишком сложен, мне приходится на-
чинать именно с линейной функции. Приметы итераций линейной
функции рассмотрены в следующей секции.

1 Итерации линейной функции

Рассмотрим передаточную функцию

T (z) = A+Bz (4.1)

Пример такой функции показан на рисунке 4.1 для A= 1, B = 2 .
График y = T n(x) построен для различных значений n. Проведе-
ны также линии, соответствующие плюс бесконечной (вертикальная
прямая) и минус бесконечной (горизонтальная прямая) итерациям.
Энная итерация функции T может быть представлена в таком виде:

T n(z) = A
Bn − 1

B − 1
+Bnz (4.2)
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Рис. 4.1: Итерации линейной функции (4.1) при A= 1, B = 2 ; y =

T n(x) для различных n

Именно это представление использовано для генерации рисунка 4.1.

Все графики на рисунке представляют собой прямые линии, пере-
секающиеся в точке (L,L) координатной плоскости. Стационарная
точка (fixed point) L функции T , определенной формулой 4.1, зада-
ется уравнением A+BL = L, то есть

L = A/(1−B) (4.3)

При B→1, стационарная точка убегает на бесконечность, и графи-
ки итераций становятся параллельными прямыми. Для A=1, B=2 ,
получается значение L=−1, поэтому линии на рисунке 4.1 пересека-
ются в точке (−1,−1). Представление (4.2) можно получить также
по общей формуле (2.9) с суперфункцией

F (z) = A
1−Bz

1−B
(4.4)
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и абельфункцией

G(z) = logb

(
1 +

B − 1

A
z
)

(4.5)

В частном случае B = 1, передаточная функция не имеет стацио-
нарных точек, и представления (4.2), (4.4), (4.5) не применимы. Для
этого случая, то есть T (z) = A+z, суперфункция и абельфункция
могут быть записаны так:

F (z) = Az , G(z) = z/A (4.6)

их комбинация дает

T n(z) = F (1 +G(z)) = A (n+ z/A) = An+ z (4.7)

Это упражнение доступно даже школьнику, и пусть его проделает
тот, кто считает, что “формализм суперфункций слишком сложен”.

Рис. 4.2: Из пушки по воробьям

Для линейной передаточной функ-
ции (4.1), использование супер-
функции (4.4) и абельфункции
(4.5) соответствует термину “Стре-
лять из пушки по воробьям” (рис.
4.2). Однако этот пример показы-
вает, как работают в паре супер-
функция и абельфункция.

2 Рациональная функция

Обобщением линейной функции является дробно-линейная функ-
ция. Она же называется “рациональная функция”. Как пример, на
рисунке 4.3 показана карта функции

T (z) = −1/z (4.8)

Для такой функции, уровни постоянной вещественной части и уров-
ни постоянной мнимой части суть окружности, и все эти окружности
проходят через начало координат.

Для вещественного аргумента, итерации этой функции показаны на
рисунке 4.4. Передаточная функция по формуле (4.8) интересна тем,
что она самоинверсна (self-inverse), T−1 =T . Например, на рисунке
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Рис. 4.3: u+iv=T (x+iy) = 1/(x+iy)

4.4 нет специальной кривой, соответствующей n = 2: она совпада-
ет с прямой y = x. Ниже я рассказываю, как вычисляются такие
итерации и как строятся эти рисунки.

Нетрудно рассмотреть даже чуть более общий случай. Пусть

T (z) = −a2/z (4.9)

где a есть константа. Для a=1, комплексная карта такой передаточ-
ной функции представлена на рисунке 4.3. Итерации этой функции
показаны в правой части рисунка 4.4.

Для передаточной функции по формуле 4.9, суперфункция может
быть записана в виде

F (z) = a tan
(π

2
z
)

(4.10)
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Рис. 4.4: y=T n(x) для функции T (z)=−1/z при различных n

а соответствующая Абельфункция

G(z) = F−1(z) =
2

π
arctan

(z
a

)
(4.11)

При этом nная итерация записывается в виде

T n(z) =
−a2 − a cot

(
π
2

)
z

− a cot
(
π
2

)
+ z

(4.12)

Суперфункция и абельфункция для такой передаточной функции
представлены в седьмой строчке таблицы 3.1. При a=1, такое пред-
ставление может использоваться для рисунка 4.4.

Дробно-линейная функция общего вида может выглядеть так:

T (z) =
U + V z

W + z
(4.13)
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Рис. 4.5: y = tn(x) для (4.14) при c = 0.5

где U , V иW суть параметры. Случай линейной функции, рассмот-
ренный в предыдущей секции, может быть получен как предельный
переход W→∞ при постоянных значениях U/W и V/W .
Функция по формуле (4.8) получается при U=−1, V =0, W =0.

Предложу ещё пример передаточной функции, тоже специальный
случай формулы (4.13). Пусть

t(z) =
z

c+ z
(4.14)

тогда

tn(z) =
z

cn +
1−cn

1−c
z

(4.15)
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Рис. 4.6: y= tn(x) для (4.14) при c=1

Для c = 0.5, итерации функции t показаны на рисунке 4.5. Анало-
гичным образом, итерации функции f по формуле (4.15) для c= 1

показаны на рисунке 4.6, a для c = 2 такие итерации показаны на
рисунке 4.7. Я выделил целые итерации толстыми линиями; ина-
че, по рисунку, эта “целостность” не видна. Такое свойство типично
для итераций вещественно-голоморфных возрастающих функций:
их итерации выглядят столь же естественно, как и сами функции.

Для передаточной функции t в виде (4.14), суперфункция f может
быть выбрана так:

f(z) =
c− 1

cz − c
(4.16)
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Рис. 4.7: y= tn(x) для (4.14) при c=2

Соответствующая абельфункция g = f−1 записывается так:

g(z) = logc

(
1 +

c−1

z

)
(4.17)

Для значения c=2, комплексная карта суперфункции f по формуле
(4.16) показана на рисунке 4.8. Аналогичная карта соответствующей
абельфунции g показана на рисунке 4.9.
Функция f по формуле (4.16) периодична; её период

P = 2πi/ ln(c) (4.18)

При c = 2, этот период P = 2πi/ ln(2) ≈ 9.06472 i; на рисунке 4.8
уместилось чуть больше двух периодов. Для вещественных значений
параметра c, период P чисто мнимый; структура линий на рисунке
4.8 воспроизводится при трансляциях на |P | вдоль оси y.
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Рис. 4.8: u+iv = f(x+iy) по формулe (4.16) при c=2

Обратная функция g=f−1, то есть абельфункция по формуле (4.17)
имеет линию разреза между точками ветвления. Эти точки суть c−1

и ноль. Для вещественных значений c, эта линия разреза лежит на
вещественной оси. Линии на рисунке 4.9 симметричны по отноше-
нию к отражению относительно прямой <(x) = (c−1)/2.

С суперфункцией f и абельфункцией g по формулам (4.16) и (4.17),
итерации передаточной функции t могут быть записаны как обычно,

tn(z) = f(n+ g(z)) (4.19)

Читатели приглашаются проверить, что такое общее представление
согласуется со специальным выражением (4.15). Лучше начинать де-
лать такие проверки для формул этой главы, поскольку для функ-
ций последующих глав это чуть сложнее.
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Рис. 4.9: u+iv = g(x+iy)по формуле (4.17) при c=2

Рисунки этой секции достаточно элементарны. Тем не менее, я при-
глашаю Читателей стащить и воспроизвести их; возможно, с несколь-
ко иными значениями параметров.

Для читателей, которые интересуются суперфункциями, полезно про-
верить, что t1/2◦t1/2 = t, или что t1/3◦t1/3◦t1/3 = t или ещё что-нибудь
такое, что могло бы уличить меня, если я в чем-то ошибся. Требо-
вание опровержимости (Аксиома ТОРИ номер 3) предложено вовсе
не для того, чтобы им восхищаться и любоваться, а для того, чтобы
применять по мере изучения и развития наук.
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Рис. 4.10: u+iv = T (x+iy) = (x+iy)2, формулa (4.20) для a=2

3 Итерации возведения в степень

В этой секции рассмотрена функция “возведение в степень”, то есть

T (z) = Powa(z) = za (4.20)

Для a=2, карта функции T показана на рисунке 4.10.
Итерации степенной функции T по формуле (4.20) пишу так:

T n(z) = Powa
n(z) = zna = Powa

(
Powa

(
...Powa(z)..

))
(4.21)

В правой части формулы (4.21), операция Powa применяется n раз.
В соответствии с общей идеологией Второй главы, параметр n не
имеет необходимости быть целым.

На рисунке 4.11 функция T n по формуле (4.21) для a= 2 показана
для различных значений n.
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Рис. 4.11: y=T n(x)=Pow2
n(x) для различных n.

Итерации степенной функции вычисляются по общей формуле

T n(x) = F
(
n+G(x)

)
где F есть суперфункция для передаточной функции T ; её можно
представить в виде

F (z) = exp
(

exp(ln(a) z)
)

= exp2
(

ln(a) z
)

(4.22)

и G есть для неё же Абельфункция. Это абельфункция для пере-
даточной функции T по формуле (4.20). Эту абельфункцию можно
записать так:

G(z) = ln
(

ln(z)
)
/ ln(a) = ln2(z)/ ln(a) (4.23)

Tакое представлениe степенной функции соответствует шестой стро-
ке таблицы 3.1.
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Для T (z)=z2, имеют место соотношения

T 2(z) = T (z2) = T (z)2 (4.24)

Имеет место распространенное заблуждение, что соотношения (4.24)
или некоторые их несложные эквиваленты должны выполняться и
для других передаточных функций T тоже, не только для степенной
функции T по формуле (4.20) . Многие конфузии связаны с таким
заблуждением. Это обстоятельство обсуждается также в другой гла-
ве в связи с итерациями факториала, см. рис. 8.8.

Для передаточной функции T вида (4.20), итерация (10.16) может
быть упрощена;

T n(z) = exp2
(

ln(a)
(
n+ ln2(z)/ ln(a)

))
= za

n

(4.25)

Таким образом, итерации передаточной функции T по формуле (4.20)
можно выразить через несложную элементарную функцию.

На рисунке 4.11 представлены итерации степенной функции по фор-
муле (4.25). Толстые линии соответствуют целым итерациям. Тожде-
ственная функция y=x соответствуют нулевой итерации. В области
между нулем и единицей кривые сливаются, и поэтому проведены
только для n = 0 и для n = 1. С помощью экспоненты и логариф-
ма эти итерации выражаются в несложном и компактном виде по
формуле (4.25).

Глядя, как легко и красиво получаются (и упрощаются) итерации
передаточной функции T по формуле (4.20), можно ожидать, что
таким же образом можно строить нецелые итерации и других функ-
ций. При этом, при непрерывном изменении числа итераций от еди-
ницы до минус единицы, функция плавно переходит в свою обрат-
ную функцию.

Ниже, по мере построения новых суперфукций и абельфункций,
предлагаются ещё примеры нецелых итераций. При этом нецелая
итерация выражается не как дробная степень, но через соответству-
ющую комбинацию суперфункции и абельфункции. В соответствии
с декларациями Введения, я и дальше стараюсь обеспечить оппо-
нентов богатыми возможностями, инструментами, “туллами” (tools)
для эффективной и конструктивной критики. То есть подробно рас-
сказываю, как получаются красивые картинки.
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Глава 5

Таня и Шока
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Рис. 5.1: Функции Шока и Таня.

В этой главе рассмотрены некоторые почти элементарные супер-
функции, которые могут иметь приложения в лазерной науке; эти
функции можно выразить так:

Shoka(z) = z + ln(r−z+e−1) (5.1)
Tania(z) = WrightOmega(z+1) (5.2)

по крайней мере в некоторой окрестности вещественной оси. При
|=(z)| ≥ π, функция WrightOmega(z) ведет себя плохо (её разрезы
не там, где мне хотелось бы); поэтому приходится использовать для
функции имя Tania. Представления (5.1),(5.2) годятся, в частности,
для вещественных значений аргумента и могут быть использованы
для построения рисунка 5.1.

Ниже я объясняю, почему эти функции важны для лазерной науки и
интересны как примеры суперфункций. Практически, это пересказ
статей [73, 74]. Эта глава (за исключением первой секции) может
быть полезна узким специалистам, работающим в лазерной науке.
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1 Об узких специалистатах

Предупреждение. Узким специалистам лучше пропустить этy сек-
цию: она содержит критическое мнение об узких специалистах и
может оскорбить их религиозные чувства.

Рис. 5.2: Узкий
специалист

Узкие специалисты подобны инопланетянину зай-
цу Бо, которому кажется, что все только и дума-
ют, как бы сказать чего-нибудь нехорошее про зай-
цев 1. Известный классик Русской литературы Козь-
ма Прутков обнаружил и указал, что узкий специ-
алист подобен флюсу: его полнота односторонняя.
Узкий специалист может легко понять и даже про-
делать вычисления, если он видит за ними реали-
стичную жизненную ситуацию. Например, человек
может встретить трудности, складывая два числа,
250 и 250. Однако, если ему сказать, что речь идет о
граммах водки, он мгновенно проведет необходимые
рассчеты и сразу скажет ответ: “Да это же Пол-
литра!”; последнее слово будет произнесено с уваже-
нием и придыханием. Это придыхание укажет при-
сутствующим, что он любитель выбить, и вероятно, даже не про-
сто любитель, а профессионал и, возможно, даже узкий специалист
(рис. 5.2). Аналогично, узкому специалисту-лазерщику трудно по-
нять, что такое “передаточная функция”, до тех пор, пока ему не
скажут, что некоторый параметр (мощность, интенсивность, флю-
енция или энергия светового импульса) на выходе лазерного уси-
лителя рассматривается как функция аналогичного параметра на
входе в усилитель.

Функции Дойя и Келлер, определяемые в этой главе ниже, могут
быть интерпретированы как передаточные функции идеализирован-
ного лазерного усилителя. Читатели, равнодушные к лазерной на-
уке, могут рассматривать эти функции как абстрактные математи-
ческие объекты; или даже вовсе пропустить эту главу, за исключе-
нием, может быть, секции 5 (“О единственности решения”): секция
5 может помочь тем, кто собирается раскритиковать эту Книгу или
даже просто сказать что-нибудь нехорошее про лазерщиков.

1 http://www.youtube.com/watch?v=OCndqQqHlQo Магазинчик Бо. Эпизод 23. Сень Бо-Гэ.
Mar 1, 2013. А ещё он говорил что-то нехорошее про зайцев!..
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Рис. 5.3: u+iv=Tania(x+iy)

2 Таня и Арктаня

Пусть функция Tania будет решением f дифференциального урав-
нения

f ′(z) =
f(z)

1 + f(z)
(5.3)

с граничным условием f(0)=1, где контур интегрирования уравне-
ния (5.3) идет сперва от нуля до мнимой части z вдоль мнимой оси,
а затем вдоль прямой, параллельной вещественной оси, идет в точку
z. Рисунок 5.1 показывает свойства функции Tania для вещественно-
го аргумента. Эта функция положительна и монотонно возрастает.
В сторону отрицательных значений аргумента, функция экспонен-
циально затухает. При больших значениях аргумента, Таня растет
почти линейно. В нуле эта функция равна единице и растет с произ-
водной 1/2. Комплексная карта этого решения показана на рисунке
5.3.
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Рис. 5.4: u+iv=ArcTania(x+iy)

Изменение контура интегрирования уравнения (5.3) не влияет на
значение функции до тех пор, пока этот контур не пересекает ли-
нии разреза <(z)<−1, =(z) =±π. В частности, при вещественных
значениях x, для f(x), интегрирование может осуществляться от 0
до вдоль вещественной оси.

Уравнение (5.3) легко “решается” в том смысле, что обратную функ-
цию g=f−1 от решения удается выразить через элементарные функ-
ции. Чтобы не путать её с другими функциями, обозначаемыми тоже
буквой g, в этой Книге (хотя и не только здесь) я обозначаю её име-
нем ArcTania; то есть ArcTania = Tania−1, и эта АркТаня является
элементарной функцией:

ArcTania(z) = z + ln(z)− 1 (5.4)

Комплексная карта функции ArcTania представлена на рисунке 5.4.

В представлениях функций Tania и ArcTania нет комплексных кон-

52

http://mizugadro.mydns.jp/t/index.php/File:ArcTaniaMap.png


стант. Эти функции вещественно голоморфны:

Tania(z∗) = Tania(z)∗ , ArcTania(z∗) = ArcTania(z)∗ (5.5)

Функции Tania и ArcTania похожи на линейную функцию при боль-
ших значениях аргумента, но Таня имеет два разреза при мнимой
части аргумента ±π, a ArcTania имеет только один разрез вдоль от-
рицательной части вещественной оси. Асимптотическое (почти ли-
нейное) поведение функции Tania(z) при большиx значениях |z|�1

универсально почти для всей комплексной плоскости, за исключени-
ем полосы <(z)<0, |=(z)|≤π. В полосе |=(z)|<π, при <(z)→−∞,
функция Tania(z) экспоненциально убывает, что соответствует гра-
фику поведения этой функции при вещественных значениях аргу-
мента.

Для умеренных значений мнимой части аргумента, функция Tania

может быть выражена через известную [12, 98] специальную функ-
цию WrightOmega:

Tania(z) = WrightOmega(z+1) (5.6)

Есть несколько оправданий для введения новой функции, которая
легко выражается через известную функцию:
1. Для удобства оценок, желательно, чтобы суперфункция в нуле
принимала целое значение, Функция Tania будет такой суперфунк-
цией для примера, рассматриваемого ниже.
2. Имя Tania короче, чем WrightOmega, и допускает простую русско-
язычную транслитерацию “Таня”. При этом появляется возможность
склонять имя этой функции по падежам в соответствии с традици-
ями грамматики русского языка.
3. В комплексной плоскости Таня как решение уравнения (5.3) ведет
себя проще, чем функция WrightOmega, представленая в алгоритми-
ческих языках программирования.
Использование нового имени позволит избежать путаницы, если од-
новременно потребуются обе функции, функция WrightOmega со
счетным множеством разрезов и функция Таня с её двумя разреза-
ми, видными на левой карте рисунка (5.3). Читатели приглашаются
построить карты обеих функций, Тани и ВрайтОмеги[12, 98], и про-
верить, что только в полосе вдоль вещественной оси эти функции
получаются одна из другой трансляцией аргумента на единицу.
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Вдоль вещественной оси (и даже в её окрестности) нет надобности
как-то различать Tania(z) и WrightOmega(z+1). Однако, для супер-
функций, выход в комплексную область важен для единственности
решения, а иногда и для вычисления. Поэтому здесь суперфункции
сразу рассматриваются для комплексного переменного. При этом
функция Таня имеет меньше разрезов, чем функция WrightOmega,
и этим проще.

Для эффективного вычисления функции Tania могут использовать-
ся её асимптотические разложения. Объединение областей примени-
мости этих разложений накрывает всю комплексную плоскость.

При больших значениях аргумента, Таню можно разложить так:

Tania(z) = z + 1−ln(z) +
ln(z)−1

z
+

ln(z)2−4 ln(z)+3

2z2
+ .. (5.7)

При отрицательных значениях <(z), такое разложение годится, пока
|=(z)| > π. Для представления Тани между линиями разреза (см.
рис. 5.3) удобно ввести параметр ε = exp(1+z); тогда Таню можно
разложить так:

Tania(z) = ε− ε2 +
3

2
ε3 − 8

3
ε4 +

125

24
ε5 +O(ε6) (5.8)

Вблизи точки ветвления, годится разложение

Tania(z) = −1 + 3t− 3t2 +
3

4
t3 +

3

10
t4 +

9

160
t5 + .. (5.9)

где t = i

√
2

9
(z+2−πi) .

Кроме того, можно пользоваться разложением Тэйлора в нуле

Tania(z) = 1 +
z

2
+
z2

16
− z3

192
− z4

3072
+

13z5

61440
− 47z6

1474560
+ .. (5.10)

Комбинируя разложения выше, можно получить для Тани “нулевое”
приближение, пусть оно называется s0, с несколькими значащими
цифрами для всей комплексной плоскости. Затем, для достижения
предельной точности переменных “complex double”, требуется всего
три или четыре итерации по методу Ньютона

sn+1 = sn +
z − ArcTania(sn)

ArcTania′(sn)
(5.11)
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где ArcTania′(z)=1+1/z есть производная АркТани. При этом Та-
ню можно вычислять почти столь же быстро, как и элементарные
функции. Так устроена C++ имплементация Тани, загруженная по
урлю http://mizugadro.mydns.jp/t/index.php/Tania.cin

Элементарные функции, упомянутые в таблице 3.1, и, в частности,
Таня и АркТаня, имеют широкую область голоморфизма. Интуи-
тивно понятно, что если суперфункция выражена несложной эле-
ментарной функцией, то, вероятно, именно она имеет физический
смысл, а суперфункция, получаемая преобразованием (2.12), есть
что-то дополнительное, искусственное и менее физичное. Также,
можно ожидать, что преобразованная функция будет иметь более
узкую область голоморфизма; это даёт критерий “физичности” ре-
шения передаточного уравнения (2.7). Критерий простоты указан в
последней, Шестой аксиоме ТОРИ, упомянутой Главе 2. Согласно
этой аксиоме, от специальных суперфункций приходится ожидать
наиболее простого поведения в комплексной плоскости.

Функция Таня проще, чем специальная функция WrightOmega. По-
этому Таня может рассматириваться как первичная функция, и ис-
пользоваться для имплементации ВрайтОмеги, как, впрочем, и для
аппроксимации каких-либо зависимостей в Лазерной Физике и про-
чих науках.

Функция Tania имеет простой физический смысл. Это зависимость
интенсивности света от координаты в однородном усилителе с про-
стой моделью активной среды. При этом координата измеряется в
единицах, обратных ненасыщенному усилению, а интенсивность из-
меряется в единицах интенсивности насыщения.

Рис. 5.5: V.
Doya [99]

В этой Книге, функция Таня встречается много раз.
В этой главе, Таня появляется как суперфункция от
передаточной функции, рассмотренной в следующей
секции. При этом использован трюк, упомяный в опи-
сании таблицы 3.1: сперва выбирается суперфункция,
а потом для неё строится передаточная функция. Tа-
кая передаточная функция названа именем Doya. Я
благодарен Валерии Доуя (рис. 5.5), которая любезно
разрешила использовать её фамилию для обозначения
функции, нужной в Лазерной Науке и в этой Книге.
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Рис. 5.6: u+iv=Doya(x+iy), слева, и u+iv=Doya−1(x+iy), справа

3 Передаточная функция Doya

С рассмотренными выше функциями Tania и ArcTania, легко по-
строить “решабельную” передаточную функцию, пусть она называ-
ется Doya, в таком виде:

T (z) = Doya(z) = Tania
(
1 + ArcTania(z)

)
(5.12)

Комплексная карта фукции Doya, а также карта обратной функции
ArcDoya = Doya−1 показаны на рисунке 5.6. На бесконечности, эти
функции похожи на тождественную функцию, но имеют особенно-
сти (точки ветвления и разрезы) вблизи начала координат.

Свойства функции Doya описаны в ТОРИ [90]; представлен также
эффективный алгоритм для её вычисления. В окрестности веще-
ственной оси, Дойя может быть выражена через известную функ-
цию LambertW [94]:

Doya(z) = LambertW
(
z ez+1

)
(5.13)

В соответствии с определением (5.12), Таня является суперфунк-
цией Дойи, а АркТаня - её абельфункцией. Соответственно, nная
итерация Дойи выражается так:

Doyan(z) = Tania
(
n+ ArcTania(z)

)
(5.14)

Это представление использовано для построения рисунка 5.7; гра-
фики показывают y=Doyan(x) для различных значений n.
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Рис. 5.7: y=Doyan(x) по формуле (5.14)

Свойства функции Таня проще, чем свойства функции LambertW,
и поведение Тани в комплексной плоскости проще, чем поведение
функции WrightOmega. Поэтому здесь в качестве “основной” функ-
ции выбрана Таня.

Функции Дойя и Таня имеют ясный физический смысл. Они соот-
ветствуют простой модели однородного лазерного усилителя, рабо-
тающего в непрерывном режиме. Функция Дойя есть передаточная
функция такого усилителя; она выражает зависимость интенсивно-
сти сигнала на выходе от интенсивности сигнала на входе; интенсив-
ность накачки выбрана так, что в линейном режиме (для слабого
сигнала) сигнал усиливается ровно в e раз. (Здесь нтенсивность из-
меряется в единицах насыщения.) Функция Таня выражает зависи-
мость сигнала от координаты вдоль направления распространения
усиливаемого сигнала.

Функции, аналогичные функциям Дойя и Таня, могут быть построе-
ны также и для импульсного режима усиления сигнала. Такие функ-
ции рассмотрены в следующей секции.
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Рис. 5.8: u+v = Keller(x+iy).

4 Келлер, Шока и АркШока

Волновой пакет света в однородном усилителе характризуется его
энергией или флюенцией, если его можно считать однородным по
поперечному сечению. Грубо говоре, флюенция - это энергия на пло-
щадь. При этом передаточной функцией однородного усилителя яв-
ляется зависимость флюенции на выходе от флюенции на входе. В
простой модели, эта зависимость выражается функцией Келлера, и
она рассмотрена в этой секции. Функцию Келлера я определяю так:

Keller(z) = z + ln
(

e− e−z(e− 1)
)

(5.15)

Комплексная карта этой функции показана на рисунке 5.8.
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Рис. 5.9: u+v = ArcKeller(x+iy).

Обратная функция ArcKeller = Keller−1 записывается так

ArcKeller(z) = z + ln

(
1

e
+

e−1

e
e−z
)

(5.16)

Комлекснaя картa функциии ArcKeller показана на рисунке 5.9.
Карты функций Keller и ArcKeller выглядят похоже; имеет место
соотношение

ArcKeller(z) = Keller(z − iπ − 1)− 1 + iπ (5.17)

В работах Келлера [29, 34] используется иное представление,

Keller(z) = ln
(

1 + e (ez − 1)
)

(5.18)

Такое представление эквиваленто выражению (5.15), пока |=(z)|<π,
и, в частности, для вещественных значений аргумента.
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Рис. 5.10: Сравнение функций Keller и Doya, см.(5.15) и (5.12)

График функции Келлера вещественного аргумента показан на ри-
сунке 5.10 в сравнении с графиком функции Doya, рассмотренной в
предыдущей секции. Обе функции растут от нуля в нуле тангенсом
e; потом рост становится почти линейным, и на бесконечности каж-
дая их этих функций растет с тангенсом единица. При этом Келлер
принимает значения на несколько десятых больше, чем Дойя.

По аналогии с передаточной функцией Doya, функцию Keller тоже
можно интерпретировать как передаточную функцию. Эта функция
описывают усиление коротких световых импульсов в лазерной среде;
при этом, аргумент передаточной функции имеет смысл флюенции
(энергии на площадь) светового импульса на входе в усилитель, из-
меренной в единицах флюенции насыщения. Такой же смысл имеют
значения этой функции, эти значения соответствуют флюенции на
выходе.
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Рис. 5.11: y=Kellern(x) .

Oписание световых импульсов обычно сложнее, чем рассмотрение
стационарного режима (имеется дополнительный параметр, время).
Однако для простой модели импульсного усилителя, передаточная
функция, её суперфункция и абельфункция выражаются через эле-
ментарные функции; итерации функции Келлера тоже оказываются
элементарными функциями. В этом смысле передаточная функция
Келлера проще, чем передаточная функция Doya.

Итерации функции Keller, показанные на рисунке 5.11, также схо-
жи с итерациями функции Doya, показанными на рисунке 5.7. В
соответствии с общей формулой, итерации функции Келлера стро-
ятся через её суперфункцию и абельфункцию. Для функции Кел-
лера, суперфункцией и абельфункцией являются функции Shoka и
ArcShoka, задаваемые формулами

Shoka(z) = z + ln
(

e−z + e− 1
)

(5.19)

ArcShoka(z) = z + ln

(
1−e−z

e−1

)
(5.20)
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Рис. 5.12: u+iv=Shoka(x+iy)

Комплексные карты функцийШока и АркШока показаны на рисун-
ках 5.12 и 5.13. Эти функции аналогичны функциям Таня и АркТа-
ня, и тоже описывающим усиление света в активной лазерной среде
с простой кинетикой, но не для непрерывного режима, а для корот-
ких импульсов.

Функции Tania и Shoka сравниваются для вещественных значений
аргумента на рисунке 5.1. Обе эти функции в левой части графика
имеют экспоненциальный рост с единичным инкрементом; обе про-
ходят через точку (0,1), и обе растут почти линейно в правой части
графика.

Комплексные карты функций Шока и АркШока на рисункax 5.12
и 5.13 похожи. Одна из них получается из другой смещением на
константу аргумента и добавлением другой константы к значению.
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Рис. 5.13: u+iv=ArcShoka(x+iy).

Это можно выразить соотношением

ArcShoka(z) = Shoka
(
z − iπ − ln(e−1)

)
− ln(e−1) + iπ (5.21)

В окрестности положительной части вещественной оси, карты на
рисуное 5.12, похожи на карты рисунка 5.3 для функции Tania, хотя
простым преобразованием получить Таню из Арктани или из Шо-
ки не удается. Mне не известно аналога формулы 5.21 для Тани и
АркТани. Есть и качественные различия: функция Таня имеет всего
две линии разреза (и две точки ветвления), а функция Шока имеет
их счетное множество. Обратные функции, АркТаня и АркШока,
имеют сходные структуры разрезов.

Все четыре функции (Таня, АркТаня, Шока и АркШока) похожи
на линейную функцию при больших значениях вещественной ча-
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сти аргумента; в правой части кoмплексных карт, структура линий
уровня вещественной и мнимой части становится похожа на обыч-
ную прямоугольную сетку из прямых линий. Это же можно сказать
о функциях Дойя и Келлер.

Рис. 5.14: Эврика!

Сходства и различия в поведении четырех
функций (Дойя, Келлер, Шока и Таня) прояв-
ляется ярче всего в комплексной плоскости. В
качестве ещё одной особенности, типичной для
функции Дойя, на рисунке 5.14 показан зумин
из левой части рисунка 5.6. Изображена ком-
плексная карта функции Doya, u+iv=Doya(x+

iy). Карта повернута на 90 градусов против
часовой стрелки. Толстыми линиями показаны
уровни u=−0.4, v=±1.2 , v=±1.4 При этом
карта похожа на человека, который увидел в раскрытой книге нечто
удивительное. Генератор этого рисунка загружен по урлю
http://mizugadro.mydns.jp/t/index.php/File:Doya500.png
Читатели приглашаются проверить, что три параметра, указанные с
двумя значащими цифрами, воспроизводят структуру, показанную
на рисунке 5.14.

Схожесть передаточных функций Дойя и Келлер, и, соответственно,
схожесть их суперфункций Таня и Шока, указывают, что для ана-
лиза нелинейных сред по их передаточным функциям, эти функ-
ции должны измеряться с несколькими значащими цифрами. Это
представляется возможным, так как для измерения передаточных
функций не требуется регистрации малых изменений интенсивно-
сти или флюенции. В эпоху, когда частота измеряетеся с 18ю знача-
щими цифрами, можно померить передаточную функцию хотя бы с
шестью знаками. В принципе, для этого достаточно зарегистриро-
вать порядка 1012 фотонов на каждое значение; то есть, использовав
всего 1015 фотонов, можно затабулировать передаточную функцию
на тысяче значений. Тогда данные о передаточных функцииях и,
соответственно, их суперфункции (то есть распределение интенсив-
ности или флюенции, в зависимости от случая, вдоль усилителя)
можно использовать для выбора модели активной среды. При этом
количество параметров модели уменьшается на единицу, один из па-
раметров, а именно - длинна усилителя, может бытъ исключен из
модели.
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5 О единственности решения

Предыдущая секция подразумевает, что суперфункция для данной
передаточной функции успешно восстанавливается. В связи с этим,
имеет смысл вспомнить указание Введения о том, что для данной
передаточной функции, суперфункция не единственна.

Во Второй главе, в таблице 3.1 предложены примеры передаточных
функций и их суперфункции. Среди них есть два примера реали-
стичных функций, которые могут быть реализованы в лазерной на-
уке, в эксперименте, на оптической скамье. Это функции T = Doya

и T = Keller, рассмотренные в этой главе. Для этих функций су-
перфункциями являются функции F = Tania и, соответственно,
T = Shoka. Эти же функции можно получить как решения диффе-
ренциальных уравнений для несложных физических моделей нели-
нейной среды. Поэтому физичность таких решений не вызывает со-
мнений. Однако, легкость и красота, с которой получаются супер-
функции и абельфункции для передаточых функций T = Doya и
T = Keller, не должны вызывать иллюзий относительно единствен-
ности решения передаточного уравнения (2.7); ввиду важности этого
уравнения, оно повторено здесь:

F (z+1) = T
(
F (z)

)
Чтобы уменьшить многообразие решений, можно потребовать, что
вдоль вещественной оси суперфункция монотонна, что она асимпто-
тически стремится к стационарной точке передаточной функции (в
случае T =Doya и T =Keller, стационарной точкой является ноль), и
что значение суперфункции в некоторой точке зафиксировано (для
Тани и Шоки “руками” задано, что F (0)=1). Однако таких условий
для единственности решения недостаточно.

Как уже указано во Введении, для данной передаточной функции,
суперфункция не единственна. Здесь предложен критерий, как сре-
ди различных суперфункций распознать “настоящую”, то есть ту,
которая, как ожидается, соответствует физической ситуации.

Пусть θ - вещественно-голоморфная периодичная функция с перио-
дом единица, и пусть θ(0)=0. Пусть

F(z) = F
(
z + θ(z)

)
(5.22)
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В частности, можно положить

θ(z) = µ sin(2πz) (5.23)

где µ - вещественный малый параметр. Полученная функция F удо-
влетворяет тому же передаточному уравнению (2.7), что и F , и при-
нимает то же значение в нуле. При монотонной суперфункции F ,
для умеренных значений µ , полученная суперфункция F тоже мо-
нотонна, и, работая со значениями функций при вещественных зна-
чениях аргумента, трудно понять, какую из функций F , F считать
“настоящей”, и которая из них получена периодичной модификацией
аргумента.

Выбор “настоящей” функции упрощается, если рассмотреть ком-
плексные значения аргумента. По этой причине в этой Книге рас-
сматриваются комплексные значения аргумента и строятся комплекс-
ные карты передаточных функций, а также их обратных функций,
суперфункций и абельфункций.

Если θ в комплексной плоскости имеет сингулярности, то можно
ожидать, что в тех же точках модифицированная функция F тоже
сингулярна. Если θ - целая функция, то есть не имеет сингулярно-
стей, то можно ожидать, что в полосе, например, 0≤<(z)<1, выра-
жение z+θ(z) принимает почти все значения, в том числе и такие,
при которых либо T , либо её обратная функция T−1 сингулярны 2.
Тогда в полосе −1≤<(z)<2 функция F(z) имеет особенности.

Критерий “истинности”, физичности суперфункции может быть по-
строен на основе её поведения в комплексной плоскости: “настоя-
щая” суперфункция та, которая имеет меньше сингулярностей (либо
не имеет их вовсе). Голоморфная периодичная добавка к аргументу
суперфункции изменяет её асимптотические свойства в направлении
мнимой оси. Поэтому спецификация ешгуларного поведения супер-
функции в комплексной плоскости существенно уменьшает много-
образие решений или даже обеспечивает единственность решения.

2Это типичный случай, когда по крайней мере одна из функций T и T−1 имеет особенности.
Исключением является лишь линейная функция
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6 Конжекция о почти идентичной функции

Я и мои коллеги предпринимали попытки доказать (или опроверг-
нуть) рассуждение, использованное выше, о том, что функция F(z)

вида (5.22) в полосе 0 ≤ <(z) ≤ 1 принимает все значения, за исклю-
чением, быть может, одного; но пока у нас нет строгого доказатель-
ства. Такое рассуждение можно сформулировать в виде конжекции:

Для голоморфной периодичной функции θ с вещественным перио-
дом τ , функция z 7→ z+ θ(z) в области {z ∈ C : |<(z)| ≤ τ/2}
принимает все значения из C, за исключением, быть может, одного.

Я надеюсь, что эта гипотеза, эта концепция не потребует столь-
ких усилий, сколько потребовала знаменитая Теорема Ферма, хо-
тя до сих пор мне не удалось найти ни одного математика, кото-
рый бы взялся строго доказать её или предложил бы пример функ-
ции, которая эту гипотезу опровергает. После доказательства, такое
утверждение могло бы называться Теорема о почти идентичной
функции. Смысл такого названия в том, что даже небольшое пе-
риодичное искажение идентичной функции дают функцию, которая
принимает все значения даже на одном периоде. Пока эта теорема
не доказана, её уместно называть гипотезой.

Гипотеза о почти идентичной функции важна для единственности
решения передаточного уравнения. Если передаточная функция, или
её обратная функция, имеет хотя бы одну сингулярность, то пре-
образование голоморфной суперфункции по формуле (2.12) сужает
область голоморфизма. В этом смысле требование голоморфизма
является ключевым для единственности суперфункций.

Рассуждения предыдущей секции, главы, да и всей Книги, не яв-
ляются строгими доказательствами. Они лишь указывают, почему
для голоморфной передаточной функции обычно удается построить
единственную суперфункцию. Неограниченный рост “почти иден-
тичной” функции объясняет, как, почему и в каких случаях можно
ожидать единственности суперфункции.

В следующих главах рассмотрены и другие передаточные функции.
Для них тоже строятся суперфункции, даже если они не выража-
ются простым образом через функции, известные в 20м веке.
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Глава 6

Регулярная итерация

Регулярная итерация есть способ построения нецелых итераций пе-
редаточной функции, которые регулярны в окрестности её стацио-
нарной точки. Обычно имеется в виду, что стационарная точка ве-
щественна.

В принципе, регулярная итерация может использоваться и для слу-
чаев, когда стационарная точка передаточной функции не веще-
ственна. При этом суперфункция может строиться по тем же форму-
лам, но получаемая суперфункция тоже не вещественна и её приме-
нение в физике проблематично. Поэтому в этой главе я в первую оче-
редь имею в виду случай вещественно-голоморфной передаточной
функции, её вещественной стационарной точки и её вещественно-
голоморфной суперфункции.

Речь идет о решениях F передаточного уравнения (2.7)

F (z+1) = T
(
F (z)

)
Я считаю, что передаточная функция T реально-голоморфна и ста-
ционарная точка L вещественна; T (L) = L. Для определенности
предположим, что T ′(L)> 0. 1 Ниже, рассмотрена общая формула,
а потом предлагаются несколько её реализаций для специфических
передаточных функций.

1Предположение T ′(L)>0 естественно. Случай T ′(L)<0 трудно интерпретировать в тер-
минах вещественных значений нецелой итерации, так как Tn′(L) должна стремиться к единце
при n→0. Читатели могут рассмотреть также случай, когда T ′(L)=0.
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1 Общая формула

Для передаточного уравнения (2.7), решение F , экспоненциально
стремящееся к L, можно аппроксимировать так:

F̃ (z) = L+ ε+ a2ε
2 + a2ε

3 + .. (6.1)

где

ε = exp(kz) (6.2)

Здесь k есть константа, имеющая смысл инкремента, и a суть тоже
константы, не зависящие от z. Имея в виду приложения к физике
(и, в частности, к лазерной науке), здесь рассматривается случай,
когда передаточная функция T и её суперфункция F вещественно-
голоморфны, то есть T (z∗) = T (z)∗ и F (z∗) = F (z)∗.

В принципе, рассмотрение можно обобщить, добавляя в правую часть
уравнения (6.1) слагаемые, не полиномиальные по ε. Следуя декла-
рациям Введения, здесь я рассматриваю простой (хотя и нетриви-
альный) случай.

При подстановке F → F̃ в передаточное уравнение (2.7)

F (z + 1) = T (F (z))

в левой части уравнения оказывается выражение

F̃ (z+1) = L+ ekε+ a2e
2kε2 + a3e

3kε3 + .. (6.3)

а в правой -

T (F̃ (z)) = L+ T ′ · ε+ T ′ · a2ε
2 + T ′ · a3ε

3 + ..

+
T ′′

2
(ε+a2ε

2+..)2 +
T ′′′

6
(ε+..)3 + .. (6.4)

где T ′ = T ′(L), T ′′ = T ′′(L), T ′′′ = T ′′′(L), ..

Приравнивание коэффициентов при одинаковых степенях ε в выра-
жениях (6.3) и (6.4) дает уравнение для параметра k и коэффици-
ентов a:

ek = T ′ (6.5)
e2ka2 = T ′a2 + T ′′/2 (6.6)
e3ka3 = T ′a3 + T ′′a2 + T ′′′/6 (6.7)

..
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Цепочка таких уравнений легко решается и определает

k = ln(T ′) (6.8)

a2 =
T ′′/2

(T ′ − 1)T ′
(6.9)

a3 =
T ′′a2 + T ′′′/6

((T ′)2 − 1)T ′
(6.10)

..

Для несложных передаточных функций, встроенные операции асимп-
тотического анализа в таких пакетах как Математика и Клен поз-
воляют в реальном времени вычислять десятки коэффициентов a.
Оборванный ряд в представлении (6.1) дает хорошую аппроксима-
цию для F при ε � 1. Для положительных значений k, это соот-
ветствует большим отрицательным значениям <(z). Для иных зна-
чений, для аппроксимации суперфункции используется итерация

F (z) ≈ T n
(
F̃ (z − n)

)
(6.11)

при достаточно больших положительных значениях n для положи-
тельного k и при достаточно больших отрицательных значениях n
для отрицательного k. (Случай k= 0 квалифицируется как экзоти-
ческий и рассматривается ниже в специальной главе про экзотиче-
ские итерации.) Tакое представление во многих случаях позволяет
оценивать суперфункцию с требуемой точностью. В частности, так
оценивается суперэкспонента по основанию b < exp(1/e) [50], супер-
факториал [51] и голоморфные расширения логистической последо-
вательности [57] и подпоследовательности Коллатза [93].

Этот случай называется регулярной итерацией, так как итерация по
формуле (2.9), то есть T n(z) = F

(
n+F−1(z)

)
оказывается голоморф-

ной (“регулярной”) функцией в окрестности стационарной точки z=

L. В случае вещественных значений L, можно ожидать, что именно
регулярная итерация соответствует физически-осмысленному реше-
нию F передаточного уравнения (2.7). Следуя аксиомам ТОРИ, я
пытаюсь подтвердить или опровергнуть эту конжекцию. Подтвер-
ждения получились, а насчет опровержения - после нескольких лет
поисков, мне не удалось найти ни одного случая, когда физически-
осмысленное решение передаточного уравнения (2.7) для T (L) =L,
T ′(L)>0, L=L∗ не выражалось бы через регулярную итерацию. В
этом смысле можно считать научным фактом, что именно регуляр-
ная итерация дает физически-осмысленное решение.
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2 Метод проб и ошибок против дедукции

Этот раздел пишется для тех математиков, которые считают дедук-
цию царицей доказательств, а все проверки с частными случаями
считают упражнениями ниже своего достоинства. Ниже предлагает-
ся философское (и несколько лирическое) отступление от генераль-
ной линии изложения. Речь идет об интерпретации термина “науч-
ный факт”, использованного в предыдущей секции.

Мне приходилось иметь дело с математиками, которые в качестве
подтверждения концепции признают только её строгий математиче-
ский вывод. Я был склонен принять такую точку зрения, но меня
отвратило одно неумолимое эмпирическое наблюдение: Результаты,
полученные в результате “чистой”, строгой дедукции, чаще оказыва-
ются ошибочными, чем “догадки” (конжекции), сделанные на основе
анализа частных случаев и подтвержденные попытками опроверг-
нуть результат.

Об одном случае, иллюстрирующем упомянутую выше закономер-
ность, рассказал Юрий Широков. Он работал с одной Аспиранткой,
и предложил ей рассчитать некоторую физическую зависимость. Ас-
пирантка долго мучилась с выводом, но провела рассчет и принесла
формулу. Юрий посмотрел и сказал: “У вас ошибка”. Аспирантка
повторила свои выкладки, и стала настаивать на своем результате.
Она требовала, чтобыЮрий проверил её рассчеты. Юрий проверять
рассчеты не хотел. Аспирантка почти насильно заставила Юрия
проследить её дедукцию. Они вместе проверяли строчку за строч-
кой, Юрий читал и говорил “Угу”, но в последней строчке, когда
потребовалось применить формулу из справочника, Юрий сказал:
“Здесь ошибка”. Аспирантка открыла Градштейна-Рыжика и пока-
зала формулу. Юрий посмотрел на формулу и повторил, что фор-
мула неверна. В той формуле было достаточно положить параметр
равным нулю, чтобы увидеть, что равенство нарушено. Аспирантка
обиделась: в списке опечаток, который добавлялся к каждому ново-
му переизданию, про пресловутую формулу ничего не было. Юрий
сказал:“Значит, будет”. Но он не смог убедить Аспирантку, что если
она пользуется неверной формулой, и не считает нужным сделать
проверку, хотя бы для частных случаев, то это её вина.
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Я тоже не без греха. В рассчет усиления при выжигании простран-
ственных дыр закралась ошибка [36, 37]. Общая формула не исполь-
зовалась для оценок, и ошибка не была выявлена сразу. С тех пор
я не надеюсь, что соавторы выловят ошибки, и стараюсь не предла-
гать рассчеты, которые не используются для построения рисунков и
формулировки основного “мессаджа” (абстракта и заключения) ста-
тьи. Это соответствует аксиоме 6: надо рассматривать самые про-
стые построения, которые всё ещё приводят к нетривиальной кон-
цепции.

Иногда мне не удавалось убедить коллег, указывая на противоречия
их концепций; приходилось продираться сквозь выкладки и публи-
ковать соответствующий ерратум. Некоторые такие примеры упо-
мянуты в УФН [55] и J.Mod.Phys.[72]. На основе этих наблюдений, я
считаю, что применение аксиом ТОРИ более эффективно и надеж-
но, чем громоздкая дедукция, претендующая на математическую
строгость. В идеале, конечно, желательно сочетать и математиче-
скую строгость, и всяческие проверки частных случаев, асимптотик
и численных рассчетов.

Всего один раз я столкнулся со случаем, когда четырнадцати зна-
чащих цифр оказалось недостаточно для численного опровержения
гипотезы о том, что две голоморфные функции тождественно сов-
падают [50]. Я был почти уверен в том, что эта разница вылезет при
достаточно аккуратных рассчетах, так как две голоморфных функ-
ции не могут совпадать на вещественной оси, если они отличаются
хоть где-то в связной области их голоморфизма. Для вещественнoго
аргумента, разница между значениями функций проявляется в 25-м
десятичном знаке. Этот случай упомянут ниже в главе 16.

В физической математике, строгая дедукция не является царицей
доказательств; примерно так же, как в правовом обществе призна-
ние обвиняемого не является царицей доказательств его вины. Если
утверждение удается доказать строго, то есть вывести на основе чет-
кой математической выкладки - хорошо, но это не избавляет иссле-
дователя от необходимости проверять частные случаи и пытаться
построить хотя бы один опровергающий пример. В следующей сек-
ции я пытаюсь построить такой опровергающий пример.
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3 Пример с известным ответом: опять Doya.

y
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y = e z − e(e−1)z2

Рис. 6.1: T =Doya и её линейная
и квадратичная аппроксимации

В этой секции я показываю, как ра-
ботает регулярная итерация. Для это-
го используется пример с известным
ответом, а именно - функция Doya
из предыдыщей главы, формула (5.12).
График этой функции повторен на ри-
сунке 6.1 толстой кривой.

Для функции Doya, суперфункцией яв-
ляется F = Tania; свойства этих функ-
ций и способы их вычисления описа-
ны [74, 89, 90]. Однако допустим, что
мы (Читатель и я) не знаем простого
аналитического представления супер-
функции F не знаем её асимптотиче-
ского поведения, разложения в ряд и
т.п.; однако из физических соображе-
ний подозреваем, что на минус беско-
нечности F экспоненциально стремится к стационарной точке L=0

функции Doya, и пытаемся вычислять суперфункцию F с помощью
регулярной итерации.

Пусть вдоль вещественной оси и её окрестностей, передаточная функ-
ция выражается по формуле (5.13), я повторю её ещё раз:

T (z) = Doya(z) = LambertW(1+z ez) (6.12)

Свойства функции LambertW [94, 95, 96, 97] известны; в принципе,
эта функция может рассматриваться без ссылок на функцию Tania,
эмулируя ситуацию, когда суперфункция F неизвестна.

Передаточная функция T =Doya может описывать некоторый идеа-
лизированный усилитель с насыщением, в пренебрежении спонтан-
ной эмиссией излучения; при этом стационарная точка L = 0, по-
скольку T (0)=0. При малой интенсивности на входе, коэффициент
усиления равен e, но при интенсивностях порядка единицы, усиле-
ние насыщается; тогда приращение интенсивности при прохождении
усилителя слабо зависит от интенсивности на входе.

При малых значениях аргумента, функция T может быть аппрок-
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Рис. 6.2: суперфункция F и её аппроксимации F̃ по формуле (6.11) для n=0..4

симирована полиномом;

Doya(z) = ez − e(e−1)z2 +O(z2) (6.13)

при этом T ′(0) = e и T ′′(0) =−2e(e−1). Линейная и квадратичная
аппроксимации функции T тоже показаны на рисунке 6.1.

Для регулярной итерации, по формулам (6.8) и (6.9) находим, что
для такой передаточной функции k = 1, и a2 = −1. Таким обра-
зом, первичное приближение с одним слагаемым для передаточной
функции - это просто экспонента,

F̃ (z) = exp(z) (6.14)

а учет двух слагаемых дает

F̃ (z) = exp(z)− exp(2z) (6.15)

Эти первичные аппроксимации показаны в правой части рисунка 6.2
верхней и нижней кривыми. На этом же графике построены четыре
итерации этих первичных аппроксимаций по формуле (6.11) для n=

0..4. Эти аппроксимации приближаются к точному решению

F (z) = Tania(z−1) = WrightOmega(z) (6.16)

показанному в правой части рисунка 6.2 чуть более толстой кривой.

Пример с передаточной функцией Doya показывает эффективность
регулярной итерации. В последующих главах Книги рассмотрены
ещё передаточные функции, для которых регулярная итерация даёт
красивые суперфункции.
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4 Уравнение Шрёдера

Именно для регулярной итерации, наряду с формализмом супер-
функций (представленным в этой Книге), может использоваться фор-
мализм функций Шрёдера [11, 27] (не представленный в этой Кни-
ге). По английски функция Шрёдера называется Schroeder Function,
а по-германски - Schröderfunction. Можно предложить также рус-
ский аналог, составное слово шрёдерфункция.

Вероятно, даже самые страстные секретутки знают, в чем заклю-
чается функция шрёдера, а именно, в том, чтобы резать бумагу.
Однако в математике (и даже физической математике), для переда-
точной функции T , функцией Шрёдера называется не уничтожение
документов, а решение g уравнения Шрёдера

g(T (z)) = s g(z) (6.17)

где s есть некоторая константа. Обычно предполагают, что T (0)=0,
то есть ноль является стационарной точкой передаточной функции.
Решение уравнения (6.17) можно искать в виде асимптотического
разложения

g(z) =
∞∑
p=1

ap z
p (6.18)

где коэффициенты a не зависят от z. Даже если серия в правой части
выражения (6.18) расходится, такое представление можно использо-
вать для аппроксимации g при малых значениях модуля аргумента.
При этом сколь угодно точное (с любой требуемой точностью) реше-
ние g может быть получено применением уравнения (6.17) или его
обратного

g(z) = s g
(
T−1(z)

)
(6.19)

в зависимости от того, что меньше, |T (z)| или |T−1(z)|.

Чтобы не повторять здесь формализм функций Шрёдера, отмечу,
что имеет место аналогия между функцией Шрёдера и функцией
Абеля. Пусть

G(z) = logs(g(z)) (6.20)
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логарифмируя обе части уравнения (6.17), я получаю уравнение

G(T (z)) = 1 +G(z) (6.21)

что есть ничто иное как уравнение Абеля для той же самой пере-
даточной функции T . Похожим образом выражается аналог супер-
функции. Читателю предлагается построить регулярные итерации
каких-либо передаточных функций, рассмотренных в этой Книге,
используя функцию Шрёдера и её обратную функцию вместо стан-
дартного (по крайней мере для этой Книги) использования абель-
функции и суперфункции. Регулярные итерации, построенные для
стационарной точки ноль с помощью функции Шрёдера и её обрат-
ной функции, совпадают с итерациями, построенными через функ-
цию Абеля и суперфункцию.

Таким образом, использование формализма Шрёдера, там, где он
применим, не дает ничего нового по сравнению с использованием
формализма суперфункций. Поэтому в этой Книге я решил воздер-
жаться от рассмотрения этого формализма. Впрочем, если кто-либо
предложит пример, который решается с помощью функций Шрёде-
ра, но не решается через функции Абеля, я готов пересмотреть моё
отношение к функции Шрёдера и уравнению Шрёдера.

На этом я заканчиваю спекуляции на тему Шрёдера и возращаюсь
к суперфункциям, абельфункциям и итерациям. В следующей гла-
ве рассмотрены регулярные итерации относительно простой квад-
ратичной функции, а именно - логистического оператора, или логи-
стического отображения.

O
H H

Рис. 6.3: Дигидрогена моноксид

Название “логистическое отображе-
ние” выглядит абсурдно длинным,
примерно как “дигедрогена моноксид”
(рис. 6.3), но именно термин “логисти-
ческое отображение” использется кол-
легами. Когда устоится более короткое
название, я готов использовать более
удобные обозначения.
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Глава 7

Логистическoe отображение

Термином “логистический оператор” или “логистическое отображе-
ние” (http://en.wikipedia.org/wiki/Logistic_map) обозначается
квадратичная функция

T (z) = s z (1−z) (7.1)

Параметр s обычно считается положительным числом. Логистиче-
ская последовательность F определяется логистическим уравнением

F (z+1) = T (F (z)) (7.2)

которое дословно совпадает с передаточным уравнением (2.7), и, по
существу, таковым и является; ещё требуется задать начальное усло-
вие F (0). Обычно подразумевается, что 0<F (0)<1.

В публикациях про уравнение (7.2) с передаточной функцией (7.1),
аргумент функции F считается целым числом [25, 28, 30, 46]. Урав-
нение (7.2) “ухватывает” некоторые свойства перехода физических
систем к хаосу [45, 22, 21]. Итерации передаточной функции (7.1)
можно рассматривать как грубое приближение для описания стоха-
стических физических систем и задач гидро- и аэро- динамики, а
также переходного поведения стохастических лазеров, в частности,
вблизи одномодового режима генерации.

Мой учитель квантовой механики Елютин Павел Вячеславович, узнав
о моих амбициях в связи с суперфункциями, попросил [48] меня по-
строить половинную итерацию логистического отображения и кон-
тинуальное обобщение логистической последовательности (7.1), что
я и сделал [57]. Oсновныe результаты упомянутой статьи представ-
лены в этой главе.
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Рис. 7.1: Итерации логистического отображения (7.1): y = T n(x) для s = 3,
слева; для s=4, по центру; для s=5, справа

1 Логистичесская последовательность

Графики итераций логистического отображения T , определенного
формулой (7.1), как функций вещественного аргумента, представ-
лены на рисунке 7.1 для s= 3 (левая картинка) s= 4 (центральная
картинка) и s= 5 (правая картинка); показаны итерации y=T n(x)

для n=0.2, n=0.5, n=0.8 и n=1.

Все графики рисунке 7.1 построены по одной и той же формуле,

T n(z) = F (n+G(z)) (7.3)

где F есть суперфункция, решение уравнения (7.2), а G=F−1 есть
её обратная функция (то есть абельфункция логистического уравне-
ния). Суперфункция F , собственно, и есть “голоморфное расшире-
ние логистической последовательности”. Суперфункция F построе-
на с помощью регулярной итерации, описанной в предыдущей главе.

При построении суперфункции, ключевым является вопрос о стаци-
онарных точках передаточной функции. Для квадратичной переда-
точной функции T по формуле (7.1), уравнение T (z) = z имеет два
решения, z=0 и z=1−1/s. Первое из этих решений не зависит от s.
Это решение используется для вычисления “голоморфного расшире-
ния логистической последоветельности”, то есть суперфункции F , и
абельфункции G= F−1 и, соответственно, для построения рисунка
7.1 по формуле (7.3). Это вычисление описано ниже.
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Рис. 7.2: F (x) = LogisticSequences(x) по формулам (7.4),(6.11), (7.8)
для s=3, s=3.4, s=3.8, вверху и для s=3.9, s=4, s=4.1, внизу

2 Стационарная точка L=0

Для логистической передаточной функции T по формуле (7.1), в
разложении (6.1) можно положить k = log s; тогда ε= sz; это дает
разложение для начальной аппроксимации суперфункции в виде

F̃ (z) =
N−1∑
n=1

ans
nz +O(sNz) (7.4)

Для соответствия с представлением (6.1), удобно положить a1 = 1.
Выбор этого коэффициента влияет лишь на трансляцию аргумента
полученной суперфункции. Формулы (6.9) определяют коэффици-
енты a. В частности,

a2 =
1

1−s
(7.5)

a3 =
2

(1−s)(1−s2)
(7.6)

a4 =
5 + s

(1−s)(1−s2)(1− s3)
(7.7)

Первичное приближение F̃ (z) по формуле (7.4) пригодно для акку-
ратного (прецизионного) вычисления суперфункции F (z) для боль-
ших отрицательных значений <(z). Логистическая последователь-
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Рис. 7.3: u+iv = LogisticSequane3(x+iy).

ность F , показанная на рисунке 7.2, получается как предел

F (z) = LogisticSequences(z)

= lim
n→∞

LogisticOperator n
s

(
F̃ (z−n)

)
(7.8)

Для вещественных значений аргумента, графики суперфункции F =

LogisticSequences построены на рисунке 7.2 при s = 3, s = 3.4, s =

3.8 на верхней картинке и при s = 3.9, s = 4, s = 4.1 на нижней
картинке. Для s = 3, s = 4 и s = 5, комплексные карты функции
F =LogisticSequences пoказаны на рисунках 7.3, 7.4, 7.5.

Пока s < 3.5 (то есть не превышает “констант Помо-Манневилля”
[57, 19, 43] ), голоморфное расширение F логистической последова-
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Рис. 7.4: u+iv = LogisticSequane4(x+iy)

тельности, как и сама последоветельность, демонстрирует достаточ-
но однообразные осцилляции. При бóльших значениях этого пара-
метра, осцилляции, по мере увеличения аргумента, становятся бо-
лее сложными и более тесными; наблюдения поведения функции F
лишь при целочисленных значениях аргумента создает впечатление
квазислучайной последовательности. Пока s≤4, при вещественном
x, функция F (x) колеблется, не выходя из сегмента [0,1], и лишь
при s = 4 касается краев этого сегмента при каждом колебании.
При s>4, функция имеет “провалы”, которые становятся все более
глубокими при увеличении значений аргумента и/или параметра s.

При s= 4, голоморфное расширение логистической последователь-
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Рис. 7.5: u+iv = LogisticSequane5(x+iy)

ности можно представить в виде элементарной функции,

F (z) = (1− cos(2z))/2 (7.9)

Для s = 4, соответствующую кривую в нижней части рисунка 7.2
можно было бы провести и без метода регулярной итерации. Совпа-
дение значений для случая, когда ответ известен, является тестом,
независимым подтверждением адекватности регулярной итерации
как метода построения физически-осмысленных суперфункций.

При рассмотрении голоморфного расширения F в комплексной плос-
кости, её поведение полностью регулярно. Разумеется, колебания
этой функции становятся все более частыми по мере увеличения

82

http://mizugadro.mydns.jp/t/index.php/File:Logi2c5T1000.jpg


вещественной части аргумента.

Функция F , построенная на основе регулярной итерации, периодича;
её период

P = 2πi/ ln(s) (7.10)

Эта периодичность видна на комплексных картах рисунков 7.5, 7.5,
7.5: изолинии воспроизводятся при соответствующих трансляциях
вдоль оси ординат. На этих картах помещается чуть больше одного
периода.

Голоморфное расширение логистической последовательности устра-
няет мистику стохастичности. Последовательности при различных
начальных условиях (причем не обязательно вещественных) умеща-
ются на одной комплексной карте.

На основе голоморфного расширения логистической последователь-
ности, можно строить, в частности, половинную итерацию пере-
даточной функции, упомянутую в преамбуле этой главы; но для
этого нужна ещё обратная функция, G = ArcLogisticSequences =

LogisticSequence−1
s , то есть функция Абеля (или абельфункция) ло-

гистического оператора (7.1). Карты этой абельфункции показаны
на рисунках 7.6, 7.7, 7.8 для s= 3, s= 4 и s= 3. Эта абельфункция
рассмотрена в следующей секции.

3 Абельфункция для логистического оператора

Функция, обратная к суперфункции F , или абельфункция G = F−1,
удовлетворяет уравнению Абеля

G(T (z)) = G(z) + 1 (7.11)

Комплексные карты функции G представлены на рисункax 7.6, 7.7,
7.8 . Асимптотическое разложение G̃ для абельфункции G может
быть получено обращением разложения (7.4) для суперфункции F ;

G̃(z) = logu

(
N−1∑
n=1

Cnz
n +O(zN)

)
(7.12)
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Рис. 7.6: u+iv = ArcLogistic3(x+iy)

На языке Matematica для этого есть процедура InverseSeries.

Коэффициенты C можно получить также подстановкой разложения
(7.12) в уравнение Абеля (7.11) при T (z) = s z (1−z) и приравнива-
нием коэффициентов при равных степенях z. В частности,

C1 = 1 (7.13)

C2 =
1

s− 1
(7.14)

C3 =
3s

(s− 1)(s2 − 1)
(7.15)

C3 =
(s2−5)s

(s−1)(s2−1)(s3−1)
(7.16)

Оборванная серия разложения (7.12) дает способ вычисления абель-
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Рис. 7.7: u+iv = ArcLogistic4(x+iy).

функции G при малых значениях аргумента. При больших значени-
ях аргумента используется представление

G(z) ≈ G̃(T−n(z)) + n (7.17)

для целого n. Целые отрицательные итерации передаточной функ-
ции вычисляются с использованием обратной функции

T−1(z) = ArcLogisticOperators(z) =
1

2
−
√

1

4
− z

s
(7.18)

Абельфункция логистического оператора получается как предел

ArcLogisticSequences(z) = G(z) = lim
n→∞

(
G̃(T−n(z)) + n

)
(7.19)

где символ G̃ обозначает оборванную серию в разложении (7.12).
Такое представление используется для построения рисунков 7.6, 7.7,
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Рис. 7.8: u+iv = ArcLogistic5(x+iy).

7.8 . Это же представление использовано для итераций, показанных
на рисунке 7.1. при s=3, s=4 и s=5.

Функция ArcLogisticOperators(z) по формуле (7.18) имеет точку
ветвления z=s/4. Это ветвление обуславливает ветвление логисти-
ческой последовательнности ArcLogistics и разрезы в правых частях
карт, показанных на рисунках 7.6, 7.7, 7.8 . Соответствующее ветв-
ление имеют и нецелые итерации, показанные на рисунке 7.1.

Частным случаем нецелой итерации явлается половинная итерация,
упомянутая в преамбуле этой главы. Kарты половинной итерации
показаны на рисунках 7.9, 7.10, 7.11. Следующая секция посвящена
этой половинной итерации.
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Рис. 7.9: u+iv = LogisticOperator
1/2
3 (x+iy).

4 Половинная итерация

С функциями F и G = F−1, итерации передаточной функции T

выражаются по формуле (7.3). Именно так построены графики на
рисунке 7.1. В частности, T 0.5 по формуле (7.3) являeтся решением
задачи, поставленной Елютиным: построена функция

h=LogisticOperator0.5
s (7.20)

такая, что её вторая итерация дает логистический оператор (7.1); то
есть для некоторого множества значений z, имеет место соотноше-
ние

h2(z) = h(h(z)) = T (z) = LogisticOperators(z) = s z (1−z) (7.21)
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Рис. 7.10: u+iv = LogisticOperator0.5
4 (x+iy)

Комплексные карты функции h представлены на рисункax 7.9, 7.10
и 7.11 для различных s.

LogisticOperators(z) ≈ τ(z) = −s(−z)2 (7.22)

Итерации функции τ могут вычисляться по аналогии с итерациями
передаточной функции по формуле (4.20). Читатели приглашаются
построить для такой тау суперфункцию и абельфункцию. Половин-
ная итерация может быть записана так

τ 1/2(z) = −α(−z)
√

2 (7.23)

где α = s1/(1+
√

2) есть константа, и эта константа медленно зависит
от параметра s. На рисунке 7.12 показана карта функции τ 1/2 по
формуле 7.23 при α = 1.8; она похожа на все три карты на рисун-
ках 7.9, 7.10 и 7.11 , соответствующих различным значениям s. В
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Рис. 7.11: u+iv = LogisticOperator0.5
5 (x+iy)

этих рисунках не удается направить линию разреза влево, и линии
разреза, отмеченные пунктиром, пришлось направить вправо.

При больших значениях x2+y2, карта рисунка 7.12 похожа на карты
рисунков 7.9, 7.10 и 7.11 ; лучше даже сказать, что все эти четыре
карты похожи между собой. Различие заметно лишь при значениях
аргумента порядка единицы. Карты пришлось сделать во всю ши-
рину страницы для того, чтобы это различие было видно без лупы.

После того, как нецелая итерация какой-либо функции построена,
полезно проверить, что дают итерации такой итерации. В частно-
сти, вторая итерация половинной итерации какой-либо передаточ-
ной функции должна давать эту передаточную функцию. Для пе-
редаточной функции LogisticOperators и её половинной итерации

89

http://mizugadro.mydns.jp/t/index.php/File:Logi2s5t.jpg


y

2

1

0

−1

−2

−2 −1 0 1 2 x
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√
2

h = LogisticOperator0.5
s , такая проверка представлена на рисунке

7.13. Показана карта функции h2 для s=3, s=4 и s=5, то есть для
тех же значений параметра, для которых явные графики половин-
ной (и не только половинной) итерации логистического оператора
построены на рисунке 7.1. В левой части карт рисунка 7.13, вто-
рая итерация функции h совпадает с логистическим отображением.
Драные линии указывают границы области применимости соотно-
шения (7.21).

Формула h(h(z))=T (z) годится по крайней мере при <(z)<1/2 . Oб
этом можно догадаться также из рисунка Таким образом, голоморф-
ное расширение логистической последовательности и соответствую-
щие нецелые итерации логистического отображения соответствуют
интуитивным ожиданиям насчет таких функций.
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Рис. 7.13: u+iv=h(h(x+iy)) по формуле (7.20) для s=3, s=4 и s=5
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(7.25),(6.11) и комплексная карта этого расширения для s=4; u+iv = F (x+iy)

5 Иная стационарная точка, L = 1− 1/s

Голоморфное расширение F логистической последовательности по
формулам (7.4),(6.11) регулярно и периодично, причем период (7.10)
чисто мнимый и слабо (логарифмически) зависит от параметра s.
Однако такое расширение далеко не единственно. По аналогии с
регулярной итерацией на основе стационарной точки L= 0, можно
построить решение, которое на минус бесконечности стремится к
другой стационарной точке передаточной функции, а именно, L =

1−1/s. Tакое решение показано на рисунке 7.14.

По аналогии с регулярной итерацией, описанной в начале этой гла-
вы, асимптотическое решение передаточного уравнения (2.7) для ло-
гистической передаточной функции (7.1) около стационарной точки
L = 1− 1/s может строиться в виде

F̃ (z) =
s− 1

s
+

N−1∑
n=1

dn

(
(s−2)z cos(πz + ϕ)

)n
(7.24)

F (z) = F̃ (z) +O
(

(s−2)z cos(πz + ϕ)
)N

(7.25)

где d суть вещественные коэффициенты и ϕ есть вещественный па-
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раметр. Подстановка такого разложения в передаточное уравнение
2.7 и приравнивание коэффициентов при z в одинаковых степенях
дает цепочку уравнений для коэффициентов d. Как и ранее, удобно
положить d1 = 1; тогда

d2 =
−s

(s− 1)(s− 2)

d3 =
−s2

(s− 1)(s− 2)(s− 3)
(7.26)

d4 =
−(s− 7)3 s3

(s− 2)(s− 3)(s3 − 8s2 + 22s− 21)

Такой ряд дает аккуратную аппроксимацию суперфункции F (z), по-
ка эффективный параметр разложения, то есть (s−2)z cos(πz + ϕ),
мал. Оборванная серия (7.25) обеспечивает порядка десятка знача-
щих цифр при

π|=(z)|+ln(s−2)<(z) < 4 (7.27)

Расширения области адекватности с помощью итераций (6.11) дает
определение алгоритм вычисления такой суперфункции F :

F (z) = lim
n→∞

Factorial|n(F̃ (z−n)) (7.28)

Суперфункция по формуле (7.28) асимптотически периодична; асимп-
тотический период

P =
2π

ln(s−2) i + π
(7.29)

в верхней полуплоскости и P ∗ в нижней полуплоскости.

В отличие от суперфункции, построенной регулярной итерацией око-
ло нуля, выбор обратной функции (то есть абельфункции) для функ-
ции с разложением (7.25) достаточно сложен; трудно решить, кото-
рая из осцилляций “настоящая”; но в принципе функция, показанная
на рисунке тоже может считаться голоморфным обобщением логи-
стического оператора. В соответствии с Шестой аксиомой ТОРИ,
наиболее простое из решений я считаю основным, а более сложное
- дополнительным.

Как и во многих случаях, обычная регулярная итерация (в данном
случае около нуля) дает наиболее простое (и в этом смысле “фи-
зичное") решение. Ещё один такой случай рассмотрен в следующей
главе.
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Глава 8

Корень из факториалa

Ещё во время СССР, мой учитель квантовой механики, П.В.Елютин,
в порядке издевательства над несчастными студентами, предложил
дать физический смысл оператору “корень из факториала”, уже то-
гда известному как символ Физфака МГУ (рис. 2.1). Я предложил,
что корень из факториала - это такая функция, вторая итерация
которой есть факториал. То есть решение h уравнения

h(h(z))=z! (8.1)

Однако тогда я не смог указать способа вычисления этой функции;
я не знал, что формализм для вычисления таких функций будет
создан лишь в 21м веке.

После успешного вычисления тетрации по основанию
√

2, опублико-
ванного в журнале “Mathematics of Computation” [50], задача Елю-
тина оказалась вполне решабельной; решение опубликовано в Вест-
нике МГУ (Moscow University Physics Bulletin) за 2009 год [54]. Уже
после публикации про факториал, выяснилось, что Елютина больше
интересует не половинная итерация факториала, а половинная ите-
рация логистического отображения и, соответственнно, континуаль-
ное обобщение логистической последовательности [57]. Такое обоб-
щение оказалось даже проще факториала, и поэтому в этой Книге
изложено раньше, в предыдущей главе. А в этой главе я пересказы-
ваю основые идеи публикации [54] про корень из факториала.

Прежде, чем итерировать факториал, полезно посмотреть на гра-
фик факториала (рисунок 8.1) и вспомнить его свойства. Эти свой-
ства перечислены в следующей секции.
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Рис. 8.1: Факториал и похожие функции
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Рис. 8.2: u+iv = Factorial(x+iy)

1 Факториал и его стационарные точки

Для построения суперфункции какой бы то ни было передаточной
функции, вопрос о её стационарных точках очень важен. Веществен-
ные стационарные точки факториала суть решения L уравнения

Factorial(L) = L (8.2)

Для вещественных значений аргумента, график факториала постро-
ен на рисунке 8.1 толстой кривой, y = Factorial(x). Стационарные
точки соответствуют пересечениям этой кривой с прямой y=x.
Для сравнения, на рисунке показаны также графики функций Factorial−1

и z 7→Factorial(z)−1.

Kомплексные карты факториала и аркфакториала показаны на ри-
сунках 8.2 и 8.3.
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Рис. 8.3: u+iv = ArcFactorial(x+iy)

Численные имплементации факториала и аркфакториала, необхо-
димые для регулярной итерации, в интернете найти было слож-
но. Софтвер “Mathematica” распознает факториал как встроенную
функцию, но вычисляет её медленно, “To press a key, to have a tea”.
Пакет “Maple” оказался не лучше [41].

При вычисления суперфункции, передаточная функция вызывается
несколько раз, и важно, чтобы она вычислялась быстро. Рутины для
факториала и аркфакториала типа “Complex double” на языке C++
загружены по урлям
http://mizugadro.mydns.jp/t/index.php/Fac.cin и
http://mizugadro.mydns.jp/t/index.php/Afacc.cin

График факториала представлен на рисунке 8.1. На этом же ри-
сунке представлены графики y=Factorial−1(x) и y=Factorial−1(x).
Отмечены также первые экстремальные точки факториала, локаль-
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ный минимум в точке x=ν0 и локальный максимум в точке x=ν1;
значения функции факториал в этих точках обозначены соответ-
ственно, как µ0 и µ1. Функция Factorial−1(x) в точке x= µ0 имеет
точку ветвления, и в этой точке имеет значение ν0.

В широкой области значений аргумента, комбинация факториала
и аркфакториала эквивалентна тождественной функции, значение
которой равно её аргументу. Эта функция показана на рисунке 8.1
тонкой линией. Эта линия проведена на рисунке 8.1 не для того,
чтобы напомнить читателю, что такое тождественная функция 1, а
чтобы показать, выделить вещественные стационарные точки фак-
ториала. Поэтому на рисунке 8.1 прямая y = x продолжена влево,
где соотношение Factorial(ArcFactorial(x))=x вызывает сомнения.

Стационарными точками факториала являются решения L уравне-
ния

Factorial(L) = L (8.3)

На рисунке 8.1 поместилось четыре такие точки: L = 2, L = 1,
L≈−3.15 и L≈−3.95; и ещё счетное множество таких точек оста-
лось слева, за пределами рисунка. В принципе, каждая из этих точек
может быть использована для регулярной итерации. То есть для по-
строения асимптотического разложения суперфункции и вычисле-
ния этой суперфункции, суперфакториала. В этой главе, в качестве
стационарной точки для регулярной итерации выбрано только од-
но значение, а именно L= 2. Именно эта стационарная точка дает
вещественно-голоморфную суперфункцию, неограниченно (и весьма
быстро) растущую на бесконечности.

Kомплексные карты факториала и аркфакториала представлены на
рисунке 8.2. Свойства факториала можно найти, в частности,
в ТОРИ http://mizugadro.mydns.jp/t/Factorial,
на Ситизендиуме http://en.citizendium.org/wiki/factorial,
в Википедии http://en.wikipedia.org/wiki/Factorial
В связи с подавлением науки в России [71], англоязычные описания
специальных функций лучше русскоязычных. В следующей секции,
свойства факториала используются для построения его суперфунк-
ции, то есть суперфакториала.

1предполагается, что это каждый младенец знает. У нас почему-то никто не знает, от чего
умер Пушкин и чем фудоки отличаются от нибелунгов, а как очищают политуру [15] и что
такое тождественная функция, и нас все знают.
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2 Регулярная итерация для суперфакториала

Имеется счетное множество вещественных стационарных точек фак-
ториала. Интуитивно представляется, что суперфункция фактори-
ала, как и его абельфункция, должна быть монотонно растущей
функцией по крайней мере в направлении вещественной оси. Чтобы
обеспечить такой рост, выбрана наибольшая вещественная стацио-
нарная точка, а именно, L=2. Здесь описано построение суперфак-
ториала, который стремится к этой стационарной точке при боль-
ших отрицательных значениях вещественной части аргумента.

В соответствии с общей формулой (6.1), для регулярной итерации
вблизи стационарной точки L=2 используется асимптотическое раз-
ложение суперфункции F от факториала:

F (z) = L+ exp(kx) + a2 exp(2kz) + .. = L+ ε+ a2ε
2 + .. (8.4)

В соответствии с общими формулами (6.8), (6.9), .., подстановка та-
кого разложения в передаточное уравнение

Factorial
(
F (z)

)
= F (z+1) (8.5)

дает значение инкремента

k = ln(K) = ln
(
3 + 2 Factorial′(0)

)
= ln(3− 2γ)

≈ 0.61278745233070836381366079016859252 (8.6)

где γ=−Γ′(1)≈0.5772156649 есть постоянная Эйлера.
Для коэффициентов a получаются такие выражения:

a2 =
π2 + 6γ2 − 18γ + 6

12(3− 5γ + 2γ2)
≈ 0.798731835172434541585621 (8.7)

a3 =
(
− 36− 39π2 − 738γ2 + 324γ + 99π2γ − 60π2γ2 − π4 + 24γ5

+594γ3 − 120ζ(3)γ + 48ζ(3)γ2 + 12γ3π2 + 72ζ(3)− 204γ4
)
/(

144(−18 + 69γ − 104γ2 + 77γ3 − 28γ4 + 4γ5)
)

≈ 0.5778809754764832358038 (8.8)

где букой ζ обозначена Дзета-функция Римана [18], ζ(z)=
∞∑
n=1

1

nz
.

Здесь используется только ζ(3)≈1.202056903 , то есть значение этой
функции в одной точке.
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Таблица 2. Коэффициенты a и U в разложениях (8.4) и (8.12).
n an Un

2 0.7987318351724345 −0.7987318351724345

3 0.5778809754764832 0.6980641135593670

4 0.3939788096629718 −0.6339640557572815

5 0.2575339580323327 0.5884152357911399

6 0.1629019581037053 −0.5538887519936520

7 0.1002824191713524 0.5265479025985924

8 0.0603184725913977 −0.5041914604280215

9 0.0355544582258062 0.4854529800293392

10 0.0205859954874424 −0.4694346809094714

Похожие (но более громоздкие) выражения получаются и для дру-
гих коэффициентов a; приближенные значения этих коэффициентов
приведены в первом столбце таблицы 2. Кроме того, для численных
имплементаций, удобно принять a0 = 2 и a1 = 1; тогда частичная
сумма в асимптотическом разложении (8.4) программируется в од-
ну строчку.

Ввиду положительности параметра k, разложение (8.4) дает хоро-
шее приближение F̃ для суперфункции F от факториала при боль-
ших отрицательных значениях аргумента. Для иных значений ар-
гумента, используется выражение

F (z) ≈ Factorialn
(
F̃ (z−n)

)
(8.9)

при достаточно большом натуральном n. Для значений <(z) по-
рядка единицы, достаточно итерировать факториал всего несколько
раз, чтобы требуемое значение ε стало порядка одной десятой; тогда
полтора десятка слагаемых в разложении (8.4) дают около четыр-
надцати верных значащих цифр в оценке значения F (z).

Удобно, когда в нуле функция принимает целочисленное значение.
Для растущей передаточной функции, это значение должно быть
все ещё больше соответствующей стационарной точки. Если стацио-
нарная точка L=2, то естественно положить суперфакториал в нуле
равным трем. Чтобы зафиксировать это значение суперфункции в
нуле, пусть

SuFac(z) = F (z3+z) (8.10)
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где z3 ≈ −0.91938596545217788 есть вещественное решение уравне-
ния F (z3)=3. Тогда SuFac(0)=3 .

Суперфункция от факториала может называться суперфакториа-
лом, а обратная функция - абельфакториалом. Однако названия
SuperFactorial и AbelFactorial длинные; вместо них я пишу SuFac
и AuFac. Такие имена соответствуют простой мнемонике: имя пе-
редаточной функции сокращается до трех букв; приставка Su со-
ответствует суперфункции, построенной на максимальной (upper)
стационарной точке, а приставка Au указывает на соответствующую
абельфункцию. В случае успешного применения абельфункций в зо-
лотодобывающей промышленности, целью которой декларируется
золото, Au, такое обозначений примет особенно пикантный смысл,
и тогда систему обознечений прийдется пересмотреть.
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Рис. 8.4: Суперфакториал и факториал

Вдоль вещественной оси,
суперфакториал быст-
ро растет, далеко об-
гоняя факториал (ко-
торый иногда приводят
как пример быстро рас-
тущей функции). Гра-
фик суперфакториала по
формуле (8.10) в сравне-
нии с факториалом по-
казан на рисунке 8.4.

График факториала про-
ходит через точки
(0,1), (1,1), (2,2), (3,6).
График суперфактори-
ала проходит через точ-
ки (0,3), (1,6), (2,720);
последняя точка не по-
местилась на рисунке.

Комплексная карта суперфакториала представлена на рисунке 8.5.
Суперфакториал является периодичной функцией. Как и у других
суперфукций, построенных регулярной итерацией у вещественной
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стационарной точки вещественно-голоморфной передаточной функ-
ции, период P чисто мнимый. На рисунке 8.5 уместилось чуть мень-
ше двух периодов.
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Рис. 8.5: u+iv=SuFac(x+iy) и зумин центральной части карты

102

http://mizugadro.mydns.jp/t/index.php/File:Sfaczoo300.png


Для суперфакториала, период

P =
2πi

k
= 2πi ln

(
3+2 Factorial′(0)

)
≈ 10.253449681156 i (8.11)

В полосax x > 2, |=(z) + nP | < 1, для целых n, суперфакториал
имеет счетное множество сингулярностей. При пересчете значения
от кривой v = 0 с помощью передаточного уравнения на единицу
вправо, каждый полюс функции факториал дает сигнулярность су-
перфакториала. Как и другие сингулярные суперфункции, карта
суперфакториала имеет фрактальный характер: структуры, обра-
зованные линиями v= 0, воспроизводятся при единичных трансля-
циях вправо, и обрастают новыми деталями. Эти детали видны на
нижней карте рисунка 8.5. Вне указанных полос, суперфакториал
голоморфен, и стремится к стационарной точке факториала L=2 в
левой полуплоскости и к стационарной точке L= 1 в правой полу-
плоскости.

Быстрому росту суперфакториала можно противопоставить медлен-
ный рост обратной функции, то есть абельфакториала. Его карта
показана на рисунке 8.6; эта функция строится в следующей сек-
ции.

3 АбельФакториал

Обращение серии асимптотического разложения суперфакториала
дает разложение обратной функции, то есть абельфакториала, ( или
арксуперфакториала), в виде

G̃(z) =
1

k
ln

(
N−1∑
n=1

Un(z−2)n +O(z−2)N

)
(8.12)

Значение параметра k определяется тем же выражением (8.6), что
и в разложении суперфакториала;

U1 = 1 (8.13)

U2 = −π
2 + 6γ2 − 18γ + 6

12(3− 5γ + 2γ2)
≈ 0.7987318 (8.14)

и так далее. Приближенные значения коэффициентов U предложе-
ны в правом столбце таблицы 2.
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Рис. 8.6: u+iv = AbelFactorial(x+iy).

Для значений z, сильно отличающихся от 2, рекуррентно применя-
ется формула

G(z) = G
(

ArcFactorial(z)
)

+ 1 (8.15)

до тех пор, пока |z−2| станет малым и разложение (8.12) начнет
давать аккуратные значения. Такая рекурренция определяет разрез
абельфакториала; разрез идет вдоль вещественной оси и уходит на
минус бесконечность.

Ввиду того, что SuFac(3)=Factorialz(3) и, соответственно, SuFac(0)=

3, для абельфункции от факториала, назову её AuFac=AbelFactorial=

SuFac−1, надо обеспечить условие AuFac(3)=0. Для этого надо сдви-
нуть значение функцииG на константу z3 =G(0)≈−0.91938596545218;
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то есть абельфакториал аппроксимируется как

AuFac(z) ≈ AuFacn(z) = G
(

ArcFactorialn(z)
)

+ n+ z3 (8.16)

для достаточно большого натурального числа n.

Такая аппроксимация не должна создавать впечатления, что постро-
ено лишь приближенное решение. Точную формулу можно выразить
через предел, то есть

AuFac(z) = lim
n→∞

AuFacn(z) (8.17)

При этом абельфакториал оказывается обратной функцией супер-
факториала. В частности, такой алгоритм использован для постро-
ения рисунка 8.6.
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Рис. 8.7: Aркфакториал и абельфакториал

Абельфакториал сравни-
вается с аркфактори-
алом на рисунке 8.7.
График аркфакториала
проходит через точки
(1,1), (2,2), (6,3), (24,4),
хотя последняя точка
уже за пределами рисун-
ка и страницы. График
абельфакториала прохо-
дит через точки (3,0),
(6,1), (720,2), хотя по-
следняя точка находится не только за пределами страницы, но и
за пределами комнаты, в которой пишется эта книга; а следующая
точка, в которой абельфакториал принимает целое значение, то есть
(720!,3), оказывается далеко за пределами нашей Галактики.

Абельфакториал растет очень медленно. Если аргумент этой функ-
ции реализован как некоторая физическая величина (расстояние,
масса, заряд и т.п.), измеренная в сколько-нибудь разумных едини-
цах, то не в человеческих возможностях сделать эту величину такой
большой, что абельфакториал от нее достигнет трех.

Когда функции SuFac и AuFac построены, можно строить итерации
факториала. Эти итерации рассмотрены в следующей секции.
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Рис. 8.8: y=Factorialn(x) при различных значениях n

4 Итерации факториала

С помощью суперфакториала и Абельфакториала, итерация номер
n факториала записывается в виде

h(z) = Factorialn(z) = SuFac
(
n+ AuFac(z)

)
(8.18)

В таком представлении, параметр n не имеет надобности быть це-
лым числом. На рисунке 8.8 показан график y = Factorialn(x) для
различных значений n. Рисунок 8.8 аналогичен рисункам 4.1, 4.4,
4.5, 4.11, 5.11, где показаны итерации других функций, хотя для
нецелых итераций факториала нет компактного представления че-
рез специальные функции, описанные в справочниках 20го века.
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Рис. 8.9: u+iv = Factorial0.5(x+iy)

При n=1/2, формула (8.18) дает корень из факториала, то есть по-
ловинную итерацию факториала. Карта функции h=Factorial1/2 по-
казана на рисунке 8.9. Именно эта функция может быть обозначена
символом

√
! , используемoм на знаке Физфака МГУ, обсуждаемом

во Введении и показанном на рисунке 2.1.

Концепция корня из факториала вызвала конфузии и дискуссии.
Некоторые коллеги отказывались видеть разницу между выраже-
ниями Factorial1/2(z) и Factorial(z)1/2, интерпретируя

√
Factorial(z)

как эквивалент
√

Factorial(z). Чтобы устранить, наконец, путаницу,
функция h=Factorial1/2 рассмотрена здесь более подробно.

Ключевым для проверки и верификации предлагаемой здесь интер-
претации функции

√
! , корня из факториала, является исследова-
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Рис. 8.10: u+iv = h2(x+iy).

ние области применимости соотношения

h(h(z)) = Factorial(z) = z! (8.19)

Карта функции h2 в левой части уравнения (8.19) показана на рисун-
ке 8.10. Этот рисунок можно сравнить с рисунком 8.2, где показана
карта факториала.

В правой части рисунка 8.10, карта функции h◦h совпадает с картой
факториала. По крайней мере в полосе <(z)> 1, |=(z)|≤ 4, соотно-
шение (8.19) выполняется; полученный “корень из факториала” ве-
дет себя в соответствии с интуитивными ожиданиями относительно
этой функции. Область применимости соотношения (8.19) ограниче-
на разрезами. Такие разрезы типичны при итерации функций, если
номер итерации не выражается натуральным числом.
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5 Применение и спекуляции

Факториал не является экзотикой, исключением. С помощью фор-
мализма суперфункций, нецелые итерации можно строить для лю-
бой сколько-нибудь осмысленной голоморфной передаточной функ-
ции.

Нецелые итерации функций расширяют инструментарий, например,
для аппроксимации (фиттинга) различных неизвестных функций. К
любой аппроксимирующей функции добавляется возможность ите-
рировать её произвольное количество раз.

Рис. 8.11: Что значит гнать пургу

Расширение инструментария важ-
но для экстраполяций. Удач-
ная фитирующая функция име-
ет мало параметров, это улуч-
шает предсказательную способ-
ность экстраполяции. Безграмот-
ное (или жульническое) исполь-
зование примитивных аппрокси-
маций с множеством параметров
ведет к неверным результатам.
Примером такой концепции является “глобальное потепление” 2, с
помощью которого жулики гонят пургу (рис. 8.11) и пилят бюджет.
Я надеюсь, что нецелые итерации факториала не будут использо-
ваться для такого мошенничества - хотя бы потому, что суперфунк-
ции позволят уменьшить число подгоночных параметров и ограни-
чить возможности для всяческих артефактов в предсказаниях - как
умышкенных, так и невольных. .

Факториал является быстро растущей функции с вещественной ста-
ционарной точкой. Стационарная точка 4 использована для постро-
ения суперфакториала, абельфакториала и нецелых итераций фак-
ториала. Ещё пример быстрорастущей передаточной функции с ве-
щественной стационарной точкой рассмотрен в следующей главе.

2 http://mizugadro.mydns.jp/t/index.php/File:Purgu.png Глобальное потепление
http://rus.ruvr.ru/2009/12/18/3089576/ 18 декабря 2009, 18:22. Россия будет бороться с
потеплением вне зависимости от результатов саммита. Дмитрий Медведев рассказал о лиди-
рующей роли России в борьбе с глобальным потеплением.
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Глава 9

Экспонента по основанию sqrt(2)
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Рис. 9.1: Экспонента по основанию b=
√

2

Экспонента по основанию
√

2 оказалась первой в истории человече-
ства передаточной функцией, для которой методом регулярной ите-
рации была построена суперфункция [50]. Экспонента по основанию√

2 определяется через обычную, натуральную экспоненту;

T (z) = exp√2(z) = exp
(

ln(
√

2)z
)

= exp

(
ln(2)

2
z

)
(9.1)

График такой передаточной функции T показан на рисунке 9.1. Ос-
нование

√
2 привлекательно тем, что, для такой экспоненты работа-

ет метод регулярной итерации, причем стационарные точки L=2 и
L= 4 выражаются натуральными числами. Эти точки обозначены
пересечением кривой y=T (x) и прямой y=x.
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Рис. 9.2: u+iv = exp√2(x+ iy)

Комплексная карта экспоненты по основанию b =
√

2 показанa на
рисунке 9.2. Эта функция периодична, её период

P =
2 π i

ln(b)
=

2 π i

ln
(√

2
) ≈ 18.1294405673 i (9.2)

На рисунке 9.2 уместилось чуть меньше одного периода.

Чтобы вычислять экспоненту, нужно знать свойства умножения и
его обратной операции, то есть деления. Примерно так же, для того,
чтобы вычислять итерации экспоненты и суперэкспоненту, нужно
знать свойства экспоненты её обратной функции. Иначе может слу-
читься, что после лекции об устройстве паровоза, курсант-машинист
спросит, куда в паровозе запрягаются лошади, а после курса атом-
ной физики - о том, как откачивают воздух из пространства между
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Рис. 9.3: u+iv = log√2(x+ iy)

ядром и электронами. Для экспоненты по основанию b, обратной
функцией является логарифм по основанию b, то есть минус первая
итерация:

T−1(z) = log√2(z) = logb(z) =
2

ln(2)
ln(z) (9.3)

Комплексная карта логарифма по основанию b =
√

2 показана на
рисунке 9.3. Эта функция имеет разрез вдоль отрицательной части
вещественной оси, и её скачок на этом разрезе определяется перио-
дом экспоненты:

log√2(x+ io)− log√2(x− io) = P ≈ 18.1294405673 i (9.4)

для x < 0. На рисунке 9.3, уровни v = =(log√2(x+iy) = −9 и v =

=(log√2(x+iy)=9 близки к отрицательной части вещественной оси.

112

http://mizugadro.mydns.jp/t/index.php/File:ExpQ2mapT.png


Стационарные точки экспоненты L = 2 и L = 4 являются также и
стационарными точками логарифма, их видно на рисункax 9.1, 9.2 и
9.3. В этой главе описано построение суперэкспоненты по основанию√

2 регулярной итерацией на стационарной точке L=4. Следующая
секция рассказывает, как строится такая суперэкспонента.

1 Суперфункция на стационарной точке L=4
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Рис. 9.4: y=SuExp√2,5(x) по фор-
муле (9.13)

В главе 6 рассказано, как строят-
ся итерации, регулярные в окрест-
ности стационарной точки. Здесь
этот метод адаптирован для по-
строения суперэкспоненты по ос-
нованию

√
2, асимптотически стре-

мящейся к стационарной точке
L=4 при больших отрицательных
значениях аргумента, и неограни-
ченно растущей при положитель-
ных значениях аргумента. Эта
функция названа SuExp√2,5 и её
график показан на рисунке 9.4.
Ниже рассказывается, как строит-
ся эта функция.

Я использую общую формулу
(6.1) асимптотического разложе-
ния суперфункции F , которая на
минус бесконечности стремится к
этой стационарной точке. Для пе-
редаточной фуникции T = exp√2,
эту формулу можно записать так:

f(z)=
N−1∑
n=0

an enkz+O
(
eNkz

)
(9.5)

причем a0 =L=4, a1 =1.

Kоэффициент a1 можно было бы
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Таблица 9.1: Kоэффициенты a и U в разложениях (9.5), (9.15)

n an Un

1 1.0000000000000000 1.0000000000000000

2 0.4485874311952612 −0.4485874311952612

3 0.1903722467978068 0.2120891200549197

4 0.0778295765369683 −0.1021843675069717

5 0.0309358603057080 0.0496986830373718

6 0.0120221257690659 −0.0243075903261196

7 0.0045849888965617 0.0119330883965109

8 0.0017207423310577 −0.0058736976420089

9 0.0006368109038799 0.0028968672871058

10 0.0002327696003030 −0.0014309081060793

11 0.0000841455118381 0.0007076637148566

12 0.0000301156464937 −0.0003503296158730

13 0.0000106807458130 0.0001735756004664

14 0.0000037565713616 −0.0000860610119291

15 0.0000013111367785 0.0000426959089013

16 0.0000004543791625 −0.0000211930290682

17 0.0000001564298463 0.0000105244225996

18 0.0000000535232764 −0.0000052285174354

19 0.0000000182077863 0.0000025984499916

20 0.0000000061604765 −0.0000012917821121

выбрать произвольно, но тогда все остальные коэффициенты оказа-
лись бы зависимыми от a1. Поэтому удобно положить a1 = 1. Под-
становка разложения (9.5) в передаточное уравнение

F (z+1) =
(√

2
)F (z)

(9.6)

в соответствии с общeй формулой (6.8) дает

k=ln
(

expb
′(4)
)

=ln
(

4 ln(
√

2)
)

=ln(2 ln(2))≈0.32663425997828 (9.7)

определяя период суперфункции

P = P4 =
2π i

k
=

2πi

ln(2 ln(2))
≈ 19.236149042042854712 i (9.8)
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Затем, учет высших слагаемых в разложении по малому параметру
ekz определяет коэффициенты a; в частности

a2 =
ln(2)/4

1− 2 ln(2)
≈0.448587431195261 (9.9)

a3 =

(
1−ln(2)

)
ln(2)2/12

1−2 ln(2)−4 ln(2)2+8 ln(2)3
≈0.1903722467978067 (9.10)

Для более высоких коэффициентов получаются более громоздкие
выражения. В первом столбце таблицы 9.1 предложены приближен-
ные значения коэффициентов a в разложении (9.5). На основеN=20

таких коэффициентов построено первичное приближение f̃ для су-
перфункции f , то есть

f̃(z) =
19∑
n=0

an exp(nkz) (9.11)

Аппроксимация f̃ показана на рисунке 9.5. Для удобства сравнения
с другими картами, аргумент функции на этом рисунке сдвинут на
вещественную константу x45≈−1.11520724513161; смысл этой кон-
станты объясняется ниже.

Невязка при подстановке приближения (9.11) в передаточное урав-
нение (9.6) становится порядка ошибок округления при <(z)<−3.
Приближение (9.11) уже позволяет построить комплексную карту
суперфункции в левой части комплексной полуплоскости.

Суперфункция f получается как предел

f(z) = lim
n→∞

expb
n
(
f̃(z−n)

)
(9.12)

Ввиду того, что f̃ есть асимптотическое решение, этот предел не
зависит от числа слагаемых в приближении (9.11). Вместо девятна-
дцати, можно было бы выбрать иную константу. Однако, чем больше
слагаемых, тем быстрее сходится предел. Выбирая число 19, я имел
в виду имплементацию Complex double. Тогда, для аппроксимации
f с 14ю значащими цифрами, достаточно выбрать n><(z)+3.

Удобно, когда в нуле суперфункция принимает значение 5. Это наи-
меньшее целое число, большее использованной стационарной точки
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Рис. 9.5: u+iv = f̃(x−1.11520724513161 + i y) ;

L = 4. Такую функцию можно записать как

SuExp√2,5 = F (z) = f(x45 + z) (9.13)

где x45 ≈ −1.11520724513161 есть решение уравнения f(x45) = 0.
Карта функции F = SuExp√2,5 по формуле (9.13) показана на ри-
сунке 9.6. В левой комплексной полуплоскости карты функций z 7→
f̃(z+45 и SuExp√2,5 практически совпадают. (Надеюсь, что рисун-
ки 9.5 и 9.6 окажутся на одном развороте Книги.) Таким образом,
первичная аппроксимация f̃ распространяется на всю комплексную
плоскость.

Для передаточной функции в виде экспоненты по основанию b =√
2, регулярная итерация на основе стационарной точки L = 4 да-

ет голоморфную во всей комплексной плоскости суперфункцию F =
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Рис. 9.6: u+iv = SuExp√2,5(x+iy) .

SuExp√2,5. График этой функции показан на рисунке 9.4. Комплекс-
ная карта функции SuExp√2,5 показана на рисунке 9.6.

Значение в нуле, выбрано в виде наименьшего целого числа, превы-
шающего L, то есть F (0)=5. Тогда функцию F можно интерпрети-
ровать как итерацию экспоненты с начальным значением 5:

F (z) = SuExp√2,5(z) = expz√
2,u

(5) (9.14)

где индекс u указывает, что имеется в виду регулярная итерация,
построенная на верхней (upper) стационарной точке. Для такой ите-
рации требуется абельэкспонента G= F−1 = AuExp√2,5. Эта абель-
экспонента строится в следующей секции.
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2 Абельфункция на стационарной точке L=4

Для того, чтобы вычислять нецелые итерации передаточной функ-
ции, рассмотеренной выше, то есть экспоненты по основанию b=

√
2,

требуется построить соответствующую абельфункцию G = F−1, то
есть обратить функцию F в формуле (9.14). Построение такой абель-
функции описано ниже.

Разложение для Абельфункции g = f−1 можно получить, обращая
асимптотику (9.5). Это дает для абельфункции g разложение g̃, для
которого

exp(kg̃(z)) =
N−1∑
n=1

Um (z−L)n +O(z−4)N (9.15)

Для рассчета коэффициентов U следует отметить, что U0 = 0; это
означает, что стационарная точка в качестве аргумента должна уво-
дить абельфункцию на бесконечность. Далее, в соответствии с раз-
ложением (9.5), U1 =1 и U2 =−a2. Пока коэффициенты a представ-
лены в символьном виде (то есть бесконечно точно), Математика
или Клен без потери точности может вычислять по ним коэффи-
циенты U разложения (9.15). Функция, которая осуществляет такое
преобразование, называется InverseSeries. В частности,

U2 =
ln(2)/4

1− 2 ln(2)
≈−0.4485874311952612289 (9.16)

U3 =

(
1+4 ln(2)

)
ln(2)2/24

1−2 ln(2)−4 ln(2)2+8 ln(2)3
≈ 0.21208912005491969757 (9.17)

Приближенные значения коэффициентов U предложены в правом
столбце таблицы 9.1. Эти же коэффициенты можно получить также
и независимо от разложения для суперфункции, а именно, подстав-
ляя разложение

g̃(z) =
1

k
ln

(
N−1∑
n=1

Um (z−L)n +O(z−4)N

)
(9.18)

в уравнение Абеля

g(expb(z)) = g(z) + 1 (9.19)

Для того, чтобы несколько термов разложения g̃(z) по формуле
(9.18) умещались на экране или в тетради, имеет смысл ввести но-
вую переменную для малого параметра z−L= z−4. Тогда первые
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Рис. 9.7: u+iv = AuExp√2,5(x+iy) по формуле (9.20)

коэффициенты U в разложении (9.15) можно найти даже без помо-
щи компьютера.

Первичное разложение g̃(z) аппроксимирует абельфункцию g(z) при
|z−4| < 2. Для иных значений, используется итерация с помощью
уравнения Абеля. Абельфункция G = F−1, карта которой показана
на рисунке 9.7, получается как предел таких итераций:

AuExp√2,5(z) = G(z) = lim
n→∞

g̃
(

logb(z−n)
)

+ n+ x45 (9.20)

где x45 ≈ −1.11520724513161 есть та же самая константа, которая
появилась в представлении для суперфункции F , чтобы обеспечить
условие F (0) = 5. В уравнениии (9.20), эта константа обеспечивает
условие G(5)=0, которое должно выполняться для обратной функ-
ции от функции F .
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На рисунке 9.7, символ cut указывает разрез области голоморфиз-
ма. Это общее правило: если некоторая нетривиальная голоморфная
функция не имеет особых точек, то хотя бы один разрез есть у её
обратной функции. В случае функции G, разрез идет вдоль веще-
ственной оси от стационарной точки L=4 до минус бесконечности.
В этой стационарной точке, абельфункция G имеет логарифмиче-
скую особенность. Эта особенность соответствует экспоненциально-
му стремлению суперфункции F к стационарной точке L = 4 на
минус бесконечности.

Читатели приглашаются построить карту области, в которой выпол-
няется соотношение

SuExp√2,5

(
AuExp√2,5(z)

)
= z (9.21)

Ниже предлагается небольшое лирическое отступление про обозна-
чения. В этой Книге используются короткие имена для передаточ-
ной функции, F для суперфункции и G=F−1 для суперфункции в
тех случаях, когда понятно, о какой передаточной функции идет
речь и которая из суперфункций имеется в виду. Такие краткие
обозначения удобны, чтобы формула умещалась на одной строч-
ке. Однако, для того, чтобы на функции этой главы было удоб-
но ссылаться и из других глав, предложены также более длинные
имена SuExp√2,5 = F и AuExp√2,5 =G. Мнемоника этих имен про-
ста. Первая буква указывает на то, что речь идет о суперфункции
(Superfunction) или, соответственно об абельфункции (Abel function).
Вторая буква указывает на то, что использована наибольшая (“верх-
няя”, “Upper”) стационарная точка передаточной функции. Последу-
ющие три символа указывают имя передаточной функции, exp. Для
того, чтобы не путать такую запись с экспонентой, первая буква
капитализирована, то есть сделана заглавной. Индекс указывает ос-
нование экспоненты и значение суперэкспоненты в нуле.

Длинные названия SuExp√2,5 и AuExp√2,5 существенны для срав-
нения различных итераций экспоненты, предложенного в последу-
ющих главах. Для начала, в следующей секции рассмотрена такая
итерация, которая неограниченно растет вдоль вещественной оси;
поведение такой итерации экспоненты похоже на поведение итера-
ций других функций, рассмотренных в предыдущих главах.
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Рис. 9.8: y=exp n√
2,u

(x) по формуле (9.22) для различных n.

3 Итерации экспоненты по основанию
√
2

На основе суперфункции и абельфункции, итерация номер n экспо-
ненты по основанию

√
2 может быть предствлена так:

T n(z) = exp n√
2,u

(z) = SuExp√2,5

(
n+AuExp√2,5(z)

)
(9.22)

Эта формула годится по крайней мере для <(z) > 4, а практи-
чески (если выбрать верхний или нижний берег разреза функции
AuExp√2,5) и для всей комплексной плоскости за исключением по-
лупрямой z≤ 2. Для вещественных значений аргумента, такие ите-
рации показаны на рисунке 9.8. Эти итерации монотонно растут.

Для n=1/2, комплексная карта этой функция показана на рисунке
9.9. Это половинная итерация экспоненты.
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Рис. 9.9: u+iv=T 1/2(x+iy) по формуле (9.23).

Итерацию, показанную на рисунке 9.9, можно записать так:

T 1/2(z)=exp
1/2√

2,u
=F

(
1

2
+G(z)

)
=SuExp√2,5

(
1

2
+AuExp√2,5(z)

)
(9.23)

Символ u в индексе указывает, что для регулярной итерации экспо-
ненты использована бóльшая (высшая, “upper”) среди её веществен-
ных стационарных точек.

Абельфункция G, построенная на стационарной точке L = 4, име-
ет в этой точке логарифмическую особенность и, соответственно,
точку ветвления. Однако, суперфункция F периодична; эта перио-
дичность “нейтрализует” ветвление, и поэтому итерация передаточ-
ной функции в этой точке особенности не имеет. При этом в другой
стационарной точке имеется ещё одна точа ветвления, которая пе-
риодичностью суперфункции не нейтрализуется. Поэтому нецелые
итерации передаточной функции, построенные по формуле (9.22),
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имеют только одну точку ветвления, а именно, 2. Функция T 1/2(z)

по формуле (9.23) голоморфна в комплексной плоскости с разрезом
z≤2.

Примерно так же, как в этой секции построены итерации экспонен-
ты по основанию b=

√
2 на стационарной точке L=4, можно строить

итерации и на другой стационарной точке, L=2, и для нецелых ите-
раций получаются, вообще говоря, разные функции. Поэтому, если
у передаточной функции есть более одной вещественной стационар-
ной точки, то при нецелом итерировании желательно указывать, к
которой из стационарных точек относится итерация.

4 Результаты этой главы

Теперь я постараюсь собрать остновные результаты этой главы. Для
функций этой главы используются обозначения

F = SuExp√2,5 (9.24)
G = AuExp√2,5 (9.25)

exp n
b = exp n√

2,u
(9.26)

Первые буквы S и A использованных имен указывают, что речь идет
о суперфункции или об абельфункции от экспоненты по основанию
b=
√

2. Вторая буква названия указывает, что использована верхняя
(upper) стационарная точка такой экспоненты. Цифра 5 в индексе
указывает значение в нуле, выбранное для суперфункции. В случая
итерации экспоненты, результат не зависит от того, какое значение
выбрано в нуле (предполагается, что G=F−1), и поэтому в формуле
(9.26) значение суперфункции в нуле можно не указывать.

Возможность итерирования какой попало функции сильно расши-
ряет инструментарий доступных голоморфных функций. В частно-
сти, нецелые итерации экспоненты или факториала могут использо-
ваться для описания процессов, растущих быстрее любой степенной
функции, но медленнее любой растущей экспоненциальной функ-
ции. Формализм суперфункций может вывести теорию и практику
аппроксимации (то есть моделирования) физических процессов на
качественно новый уровень.

123



5 Большой камень

Путешественник или восходитель, вскарабкавшийся на хребет или
каменистый перевал, и чуток оборзевший от тяжёлого подъема, мо-
жет обозреть дальнейший путь. Так же Читатель (а также и автор),
прочтя, как получилось изложение регулярной итерации, может обо-
зреть, какие ещё случаи итераций можно (и нужно) рассмотреть.
Такое обозрение предлагается ниже.

В этой секции представлен своего рода “промежуточный финиш”. То
есть обзор нескольких глав Книги. Представленные выше результа-
ты могут создать впечатление, что изучение итераций, суперфунк-
ций и абельфункций закончено, и осталось только применять общую
формулу регулярной итерации к всяческим специальным функциям.
Однако это не совсем так, и построенная выше “регулярная итера-
ция” работает не всегда. Чтобы указать на это, я пишу эту секцию.

Итерации быстро растущих функций ведут себя похожим образом.
Можно сравнить рисунок 9.8 с рисунком 4.11 для итераций степен-
ной функции и с рисунком 8.8 для итераций факториала. Итерации
степенной функции выражаются через степенную же функцию (с
другим показателем), Итерации рациональной функции выражают-
ся рациональнуп же функцию (с другими параметрами). Однало
для многих других передаточных функций аналогичных представ-
лений для итераций нет. При этом многие свойства суперфункций,
то есть поведение на бесконечности, периодичность, голоморфизм
и т.п., для разных случаев сходны. На основе такого сходства было
предложено нахальное утверждение, что я умею строить физически-
осмысленные суперфункции, соответствующие абельфункции и, со-
ответственно, нецелые итерации для какой попало возрастающей
вещественно-голоморфной передаточной функции.

С тех пор я сравниваю себя Богом Всемогущим, и задаюсь вопро-
сом о том, может ли такой Бог создать столь большой камень, что
сам не сможет сдвинуть его с места. То есть пытаюсь придумать та-
кую голоморфную передаточную функцию, для которой я не могу
построить физически-осмысленную суперфункцию.

В качестве кандидата на упомянутый “камень” можно рассмотреть
какую-нибудь передаточную функцию с сингулярностью, с тем, что-
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бы при применении передаточной функции к значениям суперфунк-
ции получались значения, которые заставляет функцию “скакать”
через её сингулярность. При этом алгоритм наткнется на необходи-
мость вычислять передаточную функцию от значения, которое не
входит в область её голоморфизма, и вместо суперфункции выдаст
сообщение об ошибке. То есть я не смогу предложить итерацию, ко-
торая непрерывным (голоморфным) образом переходит через сингу-
лярность передаточной фукции и буду вынужден признать, что мое
заявление про “какую попало функцию” слишком претенциозно. И
оппоненты восторжествуют.

Простым примером упомянутой сингулярной передаточной функ-
ции является T (z) = −1/z, рассмотренная в Главе 4. Такая функция
растет, и столь быстро, что в нуле имеет сингулярность, и непрерыв-
ная (и голоморфная) итерация сквозь эту сингулярность могла бы
вызвать трудности. Впрочем, оказалось, что именно для этого слу-
чая суперфункция не только существует, но выражается в терминах
элементарных функций.

В принципе, сингулярную передаточную функцию можно модифи-
цировать, чтобы её запись становилась сложнее, чтобы я запутался
в алгебре, и декларировал такую передаточную функцию как “нере-
шабельную”. Вероятно, такая передаточная функция будет иметь
точки ветвления, чтобы алгоритм не смог обойти сингулярности, а
попытки использовать интеграл Коши 1, расмотренный ниже (см.
формулу (14.21)), натыкались на разрезы области голоморфизма.
Тогда можно будет говорить, что эта передаточная функция и есть
камень, который Бог не может сдвинуть с места. И я буду вынужден
признать, что оппоненты закинули в мой огород Оочень большой ка-
мень.

В качестве других примеров можно предложить передаточную функ-
цию, которая не имеет удобных для рассчетов стационарных точек;
тогда регулярная итерация, предложенная в этой секции, не приме-
нима. Простым примером функции с “неудобными” стационарными

1Суть формулы Коши в том, что F (z) = 1
2πi

∮ F (t) d t
t−z . Коши (кошки) обходят “свою” тер-

риторию по замкнутому контуру; если на этом контуре с функцией всё в порядке, то коши
считают, что и внутри контура всё тоже слава Богу. Эта концепция является научной и имеет
ограниченную область применимости; она применима только для голоморфных функций F .
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точками является экспонента по основанию b> exp(1/e), и, в част-
ности, натуральная экспонента, которая получается при b = e. То
есть передаточная функция T=exp.

Исторически получилось так, что именно для натуральной экспо-
ненты комплексная карта суперфункции, а именно - тетрации [44],
оказалась построена раньше, чем для других оснований b. После это-
го встал вопрос о применимости использованного при этом алгорит-
ма для случаев 0<b≤exp(1/e). Алгоритм оказался не применимым,
и пришлось строить формализм регулярной итерации, предложен-
ный в этой главе. Этот алгоритм оказался проще, чем формализм
для натуральной тетрации [44], и поэтому в этой Книге изложен
раньше. Как указано в Предисловии, для этой Книги я сразу и ка-
тегорично отвергаю исторический порядок изложения, хотя упоря-
дочиваю цитируемую литературу в хронологическом порядке.

Профессиональные историки могут поднять работы Абеля [3], Фато
[6], Кнезера [10], Сзекереса [11], Экале [17] и других коллег, чтобы
представить исторический процесс создания аппарата суперфунк-
ций во всех деликатных подробностях. Я надеюсь, что в цивили-
зованных странах цензура не будет препятствовать публикации и
распространению подробной монографии по истории создания су-
перфункций. Однако это всё-таки “совсем другая история” [14], и
такая история выходит за рамки декларированной темы этой Кни-
ги. Таким образом, я оставляю историю создания формализма су-
перфункций для соответствующих узких специалистов 2.

Таким образом, я начинаю с совсем простого, и торжественно заяв-
ляю: предложенный выше метод построения суперфункции и абель-
функции (и нецелых итераций) не универсален. Может статься, что
передаточная функция хоть и имеет вещественную стационарную
точку, но применение регулярной итерации, как она изложена выше,
невозможно, так как знаменатели формул (6.9) принимают значение
ноль. Такой случай рассмотрен в следующей главе.

2Узкая специализация вполне соответствует общему направлению развития человеческой
цивилизации. В современных больницах даже клизму ставят два специалиста: один их них
знает, как, а другой - куда.

126



Глава 10

Экзотические итерации

Регулярная итерация по формулам (6.1)-(6.11) не является универ-
сальным способом построения суперфункции. В частности, разло-
жение (6.1) становится недопустимым, когда производная переда-
точной функции в стационарной точке становится единицей, то есть

T (L) = L , T ′(L) = 1 (10.1)

При этом выражение T ′−1 = T ′(L)−1 в знаменателе правой части
формулы (6.9) обращается в ноль, лишая смысла коэффициенты в
разложении (6.1). Такое совпадение можно назвать экзотикой (рис.
10.1); это определяет название главы.

На основе указанного выше обстоятельства, ожидалось, что вычис-
ление суперфункций для случая T ′(L) = 1 будет сложным, медлен-
ным и с большой погрешностью. В этой главе показано, что эф-
фективные способы вычисления суперфункций, абельфункций, и,
соответственно, нецелых итераций существуют и для этого случая.

Рис. 10.1: Экзотикой называется то, что встречается нечасто, если вообще
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1 Единичая производная

В этой секции показано, как по коэффициентам разложения пере-
даточной функции в стационарной точке построить алгоритм для
вычисления суперфункции. Для простоты предположим, что стаци-
онарная точка равна нулю, то есть L=0. Если это условие по каким-
либо причинам не выполнено, то суперфункцию F можно предста-
вить в виде

F (z) = f(z) + L (10.2)

и тогда для функции f получаются формулы

f(z+1) = F (z+1)− L = T (F (z))−L = T (L+f(z))− L (10.3)

При этом можно определить

Tnew(z) = T (L+ z)− L (10.4)

и интерпретировать эту Tnew как новую передаточную функцию, для
которой f будет суперфункцией. В дальнейшем, в этой секции, ин-
декс new не пишется. Фактически предполагается, что

T (0) = 0 (10.5)

Пусть разложение Тэйлора передаточной функции в нуле имеет вид

T (z) = z + vz2 + wz3 + .. (10.6)

причём v 6= 0. Для такой передаточной функции невозможно по-
строить суперфункцию, на бесконечности экспоненциально стремя-
щуюся к нулю. Однако можно построить функцию, которая убывает
примерно как обратная пропорциональная зависимость. Пусть

f(z) =
a

z
+
b`

z2
+
α`2+β`+γ

z3
+ .. (10.7)

a, b, α, β и γ суть константы, a `=ln(z). Ниже показано, как, зная ко-
эффициенты v и w разложения (10.6) передаточной функции, найти
коэффициенты a и b в разложении (10.7).

Для преобразования аргумента z 7→ z+1, преобразование выраже-
ний в асимптотическом представлении (10.7) осуществляется следу-
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ющим образом:

1

z
7→ 1

z+1
=

1

z

(
1 +

1

z

)−1

=
1

z
− 1

z2
+

1

z3
+ .. (10.8)

1

z2
7→ 1

(z+1)2
=

1

z

(
1 +

1

z

)−2

=
1

z
− 2

z2
+

3

z3
+ .. (10.9)

`=ln(z) 7→ ln(z+1) = ln

(
z ·
(

1 +
1

z

))
= ln(z) + ln

(
1 +

1

z

)
= `+

1

z
− 1

2z2
+ .. (10.10)

С этими заготовками, левая часть передаточного уравнения

f(z+1) = T (f(z)) (10.11)

записывается в таком виде:

f(z+1)=
a

z
− a

z2
+
a

z3
+
b`+ b/z

z2

(
1− 2

z

)
+
α`2+β`+γ

z3
+ ..

=
a

z
+

1

z2

(
−a+b`

)
+

1

z3

(
a+b− 2b`+ α`2+β`+γ

)
+ .. (10.12)

Тогда правая часть уравнения (10.11) записывается так:

T (f(z)) =
a

z
+
b`

z2
+
α`2+β`+γ

z3
+ v ·

(
a

z
+
b`

z2

)
+ ..

=
a

z
+

1

z2

(
b`+ ba2

)
+

1

z3

(
α`2+β`+γ+2vab`+wa3

)
+.. (10.13)

Следует приравнять правые части уравнений (10.12) и (10.13). Ко-
эффициенты при 1

z совпадают сами. Для того, чтобы совпадали ко-
эффициенты при 1

z2 , следует потребовать, чтобы

−a = va2 (10.14)

Для того, чтобы совпадали коэффициенты при 1
z3 , следует потребо-

вать, чтобы

a+ b− 2b` = 2vab`+ wa3 (10.15)

Ввиду того, что ` = ln(z), то есть зависит от z, а уравнение (10.15)
должно иметь место для разных z, из этого уравнения получаются
два требования:

−2b = 2vab (10.16)
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которое, при b 6=0, дает то же, что и (10.14), а также

a+ b = wa3 (10.17)

Решая эти уравнения, получаю:

a =
−1

v
, b =

−w
v3

+
1

v
(10.18)

Таким образом, коэффициенты асимптотического разложения (10.7)
f (10.6) разложения передаточной функции.

Далее, как в случае обычной регулярной итерации, асимптотическое
решение распространяется на всю комплексую плоскость примене-
нием одной из формул

f(z) = T n
(
f(z − n)

)
(10.19)

или

f(z) = T−n
(
f(z + n)

)
(10.20)

с тем, чтобы сделать аргумент суперфункции большим, приводя его
в область, где асимптотическое разложение (10.7) дает требуемую
точность. Выбор одной из формул (10.19) или (10.20) определяет
разрезы получаемой функции. Для того, чтобы изменить направ-
ление линии разреза, может потребоваться заменить ` = ln(z) на
` = ln(−z).

В принципе, с даже с двумя слагаемыми, такое представление су-
перфункции позволяет строить качественные карты суперфункций
в реальном времени. Вероятно, такое представление достаточно для
применений в физике и других науках, где точность измерения пере-
даточной функции обычно существенно меньше 14 значащих цифр.

Для проверочных рассчетов с высокой точностью желательно под-
считать ещё несколько коэффициентов разложения суперфункции,
тогда параметр n можно брать меньше и погрешность уменьша-
ется. С помощью пакета “Mathematica”, десятки коэффициентов в
разложении (10.7) могут быть вычислены. Затем, через уравнения
(10.19) или (10.20), асимптотическое представление решения опреде-
ляет точную суперфункцию и распространяется на всю (или почти
всю) комплексную плоскость.
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2 Отличная от нуля стационарная точка

Формулы предыдущей секции написаны для передаточной функции,
стационарнарной точкой которой является ноль, и производная в
этой стационарной функции в нуле равна единице. При этом упо-
мянуто, что эти формулы допускают обобщение на случай, когда
стационарная точка не равна нулю. Такой случай рассмотрен ниже.

Допустим, требуется построить суперфункцию F для передаточной
функции T , которая на бесконечности стремится к её стационарной
точке L, то есть T (L) = L, и при этом T ′(L) = 1.

Пусть новая передаточная функция T связана с исходной переда-
точной функцией T соотношением

T (z) = T (z + L)− L (10.21)

Если L есть стационарная точка передаточной функции T , то L = 0

есть стационарная точка передаточной функции T .
Суперфункция F для передаточной функции T

F (z) = F(z)− L (10.22)

Схожим образом преобразуется и абельфункция G = F−1:

G(z) = G(z + L) (10.23)

Читатель может проверить, что если в некоторой области значений
z выполняется F (G(z)) = 1, то и в некоторой области значений z

выполняется F(G(z))=1, и наоборот. Таким образом, рассмотрения
случая T (L)=L, T ′(L)=1 сводится к рассмотрению случая T (0)=0,
T ′(0)=1, рассмотренного в предыдущей секции.

В следующей главе, предложенные здесь формулы применяются для
вычисления суперфункции экспоненты по основанию b = exp(1/e).
Этот случай рассмотрен по просьбе Генрика Траппманна, и констан-
ту η=exp(1/e)≈1.44466786101 можно назвать константой Генрика
или основанием Генрика 1. Карта такой экспоненты, карта её обрат-
ной функции и явный график для вещественных значений аргумен-
та показаны в следующей главе на рисунке 11.1.

1 Название “Основание Генрика” несколько двусмысленно, примерно как “Защита Лу-
жина”, или “Изобретение Вальса”, или комбинация “РОЙМЕДВЕДЕВ — Они кружи-
лись вокруг Сталина”. Вероятно, удачное название и должно быть двусмысленым, чтобы
читатель подумал, как бы такое защитить Лужина, или о том, где и когда изобретён Вальс,
или представил себе медведей (или даже “медведёв”), которые, как пчёлы, роем кружат во-
круг Сталина, или попытался вспомнить, кто и как основал Генрика.
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Глава 11

Экспонента по основанию exp(1/e)

y
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2
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y
=
η
x

y
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(
√ 2)

x

y=
x

http://mizugadro.mydns.jp/t/index.php/File:Expe1eplotT.jpg

Рис. 11.1: y=bx для b=η=e1/e≈1.44466786 и b=
√

2≈1.41421356

В этой главе рассмотрен специальный случай экспоненты по осно-
ванию b= η= exp(1/e)≈ 1.44466786 . То есть речь идет о функции
T по формуле

T (z) = ηz = expη(z) = exp(ln(η) z) = exp(z/e) (11.1)

График этой экспоненты показан на рисунке 11.1 толстой кривой.
Для сравнения, тонкой кривой показана также экспонента по осно-
ванию

√
2, рассмотренная в главе 9; тонкая кривая воспроизводит

график рисунка 9.1. Кривые на рисунка 11.1 близки; при умеренных
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Рис. 11.2: u+iv = expη(x+iy)

и отрицательных значениях абсциссы они почти сливаются. Однако
поведение в окрестностях стационарных точек различно, и это пред-
определяет различное поведениие соответствующих суперфункций
в комплексной плоскости.

Комплексная карта функции expη показана на рисунке 11.2. Эта
карта похожа на карту рисунка 9.2; незначительно отличается лишь
период. Для основания η, этот период

Pexpη = 2π i e ≈ 17.0794684453 i (11.2)

Забавно, что такая простая формула объединяет сразу три фунда-
ментальные математические константы: π, i, и e. К тому же, основа-
ние Герника η= exp2(−1)= exp(1/e)≈1.44466786101 тоже является
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Рис. 11.3: u+iv=logη(x+iy)

математической константой. Чуть меньше одного периода умести-
лось на карте 11.2.

Комплексная картa обратной функции, то есть logη=exp−1
η , показа-

на на рисунке 11.3. Эта карта похожа на карту логарифма по осно-
ванию

√
2, представленную в главе 9 на рисунке 9.3; на том рисунке

сетка изолиний чуть гуще: линия уровня u= 6 целиком умещается
на карте, а на карте рисунка 11.3 она уместилась лишь частично; а
уровень v=±9 оказался за линией разреза.

Значение b = η есть максимальное основание, при котором экспо-
нента всё ещё имеет вещественную стационарную точку. Для такой
экспоненты в этой главе строятся суперфункция, абельфункция и
итерации.
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1 Суперэкспонента по основанию η=e1/e=exp2(−1)

Генрик Траппманн считал, что для экспоненты по основанию

η = exp(1/e) = exp2(−1) ≈ 1.44466786101 (11.3)

эффективный алгоритм вычисления суперфункций построить нель-
зя. Генрик был далеко не одинок в таком мнении; такое же мение
высказывали многие коллеги, в том числе участники его форума.
Это же мнение в публикации 1991 года выражал Петр Волкер (Peter
L Walker) [24]. Чтобы переубедить Генрика, нам с ним пришлось пи-
сать специальную статью для журнала Mathematics of Computation
[69]; её часть перессказана в этой главе.

Пусть передаточная фукция T определяется формулой 11.1 преды-
дущей секции; пусть

T (z)=ηz=expη(z)=exp
(

ln(η) z
)

=exp(z/e) (11.4)

Чтобы применить формализм экзотической итерации, следует опре-
делить новую передаточную функцию по формуле (10.21); для слу-
чая (11.4) получается передаточная функция

T (z) = exp
(
(z+e)/e

)
− e = exp(z/e + 1)− e (11.5)

Для такой передаточной функции

T (0) = 0 (11.6)
T ′(0) = 1 (11.7)
T ′′(0) = 2 v = 1/e (11.8)
T ′′′(0) = 6w = 1/e2 (11.9)

... (11.10)
T (n)(0) = 1/en−1 (11.11)

В последней строчке, в левой части, верхний индекс указывает не
номер итерации, а номер производной.

В принципе, для этого случая, экзотические итерации, описанные в
начале главы, можно применять как есть. Разложение (10.6) запи-
сывается так:

T (z) = z +
1

2e
z2 +

1

6e
z3 + .. (11.12)
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Для v = 1
2e и w = 1

6e2 , формулы (10.18) дают

a = −2e ≈ −5.43656365691809 (11.13)

b = −e

3
+

1

8e3
≈ 1.604598172578777 (11.14)

При этом первичнaя аппроксимация f для суперфункции (10.7) при-
обретает такой вид:

f̃(z) = −1

z
+
(

1 +
1

e

) ln(±z)

z2
+ .. (11.15)

Ещё несколько слагаемых в этом разложении можно вычислить ана-
литически; особенно если при этом используются какие-нибудь Ма-
тематики или Клены. Оборванный ряд, даже с двумя слагаемыми,
аппроксимирует суперфункцою. Для |z| > 100, такая формула да-
ет несколько корректных значащих цифр. Для остальных значений
следует многократно использовать передаточное уравнение, выра-
жая суперфункцию требуемого аргумента через суперфункцию от
достаточно большого аргумента, сдвигая значение, при котором ис-
пользуется первичное приближение, вправо или влево, параллельно
вещественной оси. Такой алгоритм позволяет строить комплексные
карты суперфункции с хорошим разрешением и в реальном времени.

Для аккуратного приближения суперфункции и проверки, имеет
смысл несколько модифицировать разложение. Для вычисления су-
перфункций от экспоненты по основанию Генрика, лучше использо-
вать разложение

F̃ (z) =
−2e

z

(
1 +

M∑
m=1

Pm
(
− ln(±z)

)
(3z)m

+O
(

ln(±z)/z
)M+1

)
(11.16)

где

Pm(x) =
m∑
n=0

cm,nx
n (11.17)

Koэффициенты c получаются при подстановке разложения (11.16) в
передаточное уравнение

F̃ (z+1) = exp
(
F̃ (z)/e + 1

)
− e

и приравнивании коэффициентов при одинаковых степенях z в пра-
вой и левой частях равенства. Первые пять полиномов P представ-
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лены ниже:

P1(t) = t (11.18)
P2(t) = t2 + t+ 1/2 (11.19)

P3(t) = t3 +
5

2
t2 +

5

2
t+

7

10
(11.20)

P4(t) = t4 +
13

3
t3 +

45

6
t2 +

53

10
t+

67

60
(11.21)

P5(t) = t5 +
77

12
t4 +

101

6
t3 +

83

4
t2 +

653

60
t+

2701

1680
(11.22)

Как и для регулярных итераций, используется предел

F (z) = lim
n→±∞

T n(f(z − n)) (11.23)

где функция f получена обрывом асимптотигеского ряда в формуле
(11.16), а n выбирается положительным или отрицательным в зави-
симости от того, верхний или нижний знак использован в аргументе
полиномов P в формуле (11.16).

Удобно определить такие суперфункции, которые имеют целочис-
ленное значение в нуле, используя трансляцию аргумента:

tetη(z) = F1(z) = f(z+x1) (11.24)
SuExpη,3(z) = F3(z) = f(z+x3) (11.25)

где константы x1 ≈ 2.798248154231454 и x3 ≈ −20.28740458994004

выбраны так, чтобы обеспечить соотношения F1(0)=1 и F3(0)=3.
Функция tetη соответствует верхнему значению выражения± в фор-
мулах (11.16), (11.23), a функция (11.25) - нижнему. Таким образом,
F1 и F3 суть совсем разные функции, и их трудно выразить одну че-
рез другую простым преобразованием. В формулах (11.24) и (11.25),
для этих функций предложены новые и чуть более длинные имена
tetexp(1/e) и SuExpexp(1/e). Это делается для того, чтобы облегчить
их идентификацию при использовании в других главах этой Книги,
где рассматриваются суперфункции от экспоненты по другим осно-
ваниям, то есть где не обязательно b= η. Первое из этих названий,
tetη, совершенно естественно, и указывает, что речь идет о тетра-
ции; для тетрации по любому основанию b, подразумевается усло-
вие tetb(0)=1. Более подробно свойства тетрации рассматриваются
в специальной главе.

Выбор значения в нуле для растущей суперфункции F3 не так прост.
В работах [50, 69] (и не только там), для растущей вещественно-
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Рис. 11.4: Две суперэкспоненты по основанию b=exp(1/e)

голоморфной суперфункции, построенной на некоторой веществен-
ной стационарной точке L передаточной фукции, в качестве значе-
ния в нуле выбирается наименьшее целое число, бóльшее L. Такой
выбор оправдан, когда в работе рассматривается лишь одна переда-
точная функция без параметров (или с фиксированными значени-
ями параметров). Однако такой выбор приводит к кусочно-непре-
рывной (то есть не голоморфной) функции при рассмотрении зави-
симости суперфункции от этого параметра. Поэтому, на случай если
такая зависимость потребуется, предлагается обозначение SuExpη,3;
при этом значение в нуле указывается в виде дополнительного ин-
декса.

Для вещественного аргумента, графики функций F1 и F3 показаны
на рисунке 11.4. Комплексные карты этих суперфункций показаны
на рисунке 11.5. Эти функции весьма различны. Чтобы освободить
обозначения F с индексами для других функций, рассматриваемых
в других главах, пришлось дать им специальные именa, tetη=F1, и
SuExpη,3 =F3.

Вдоль вещественной оси, функция SuExpη,3 неограниченно возрас-
тает при положительных значениях аргумента, и стремится к пре-
дельному значению e при больших отрицательных значениях аргу-
мента. K этому же значению функция стремится и в остальной части
комплексной плоскости, за исключением полосы вдоль положитель-
ного направления вещественной оси.
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Рис. 11.5: u+iv= tetη(x+iy) =F1(x+iy) по формуле (11.24), сверху, и
u+iv=SuExpη,3(x+iy)=F3(x+iy) по формуле (11.25), снизу
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Функция tetη, наоборот, при больших значениях аргумента прибли-
жается к предельному значению η, но в точке −2 имеет логариф-
мическую особенность, при приближении к ней вдоль вещественной
оси, функция уходит на минус бесконечность. Это свойство типич-
но для класса функций, которые я называю термином тетрация; это
суперфункции от экспоненты по некоторому фиксированному осно-
ванию (в данном случае - по основанию Генрика), удовлетворяющие
определенным дополнительным условиям: в нуле эта функция равна
единице и остается ограниченной по крайней мере в полосе шириной
2 вдоль мнимой оси. Более подробно, тетрации рассмотрены ниже, в
последующих главах. Я упоминаю их здесь, лишь чтобы обосновать
обозначение η.

С помощью суперфункций от экспоненты по основанию Генрика η,
можно выразить итерации этой эксспоненты. Но для этого нужны
ещё абельфункции. Эти абельфункции рассмотрены в следующей
секции.

2 Абельэкспонента по основанию Генрика

Исторически, экспонента по основанию Генрика η была первой пе-
редаточной функцией, для которой построены итерации, которые я
назвал “экзотическими”. Экзотика в том, что регулярная итерация,
голоморфная в окрестности стационарной точки, для таких функ-
ций невозможна [69]. Однако итерации, голоморфные в широкой об-
ласти значений аргумента, существуют. Для построения таких ите-
раций, кроме суперфункции, требуется также функция Абеля. Эта
функция рассмотрена ниже.

Пусть G1 = F−1
1 and G3 = F−1

3 . Комплексные карты этих функ-
ций показаны на рисунке 11.6. Для вычисления функций G1 и G3,
использованы асимптотические представления

g±(z) = α(g) ≈ ln(±t)
3

+
2

t
+

15∑
n=1

cnt
n +O(t16) (11.26)

где g=(z − e)/e. Коэффициенты c можно найти, обращая разложе-
ние (11.16) для суперфункции. Эти же коэффициенты получаются
при подстановке разложения (11.26) в уравнение Абеля

g(z) + 1 = g
(

exp
(
g(z)/e

))
(11.27)
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Рис. 11.6: u+iv=G1(x+iy) = ateη(x+iy) по формуле (11.28), сверху,
и u+iv=G3(x+iy)=AuExpη,3(x+iy)по формуле (11.29), снизу
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Обрывание асимптотической серии, то есть выкидывание символа O
из правой части уравнения (11.26), дает алгоритм для вычисления
абельфункции g примерно с 15 значащими цифрами, пока |t| < 1/2.
Для иных значений аргумента, для вычисления функции g следует
использовать уравнение (11.27). Я хочу рассматривать такое заявле-
ние как определение, и надеюсь, что Читатель сам может написать
соответствующий предел как представление точной абельфункции.

Абельфункции G1 =F−1
1 и G3 =F−1

3 можно определить, добавляя к
значениям функций g соответствующие константы,

ateη(z) = G1(z) = g(z)− g(1) ≈ g(z)− 3.029297214418 (11.28)

где использован верхний знак в формуле (11.26), и

AuExpη,3 =G3(z)=g(z)−g(3)≈g(z)+20.0563555297533789 (11.29)

где использован нижний знак в формуле (11.26).

Дополнительные более длинные имена AuExp и ate вводятся здесь
для того, чтобы упростить ссылки на эти функции из других глав
и, возможно, из других публикаций. Мнемоника этих имен проста.
AuExp указывает, что речь идет о функции Абеля; следующая бук-
ва указывает, что суперфункция голоморфна по крайней мере для
значений аргумента над, сверху (“up”) от стационарной точки. Имя
ate указывает, что речь идет об арктетрации. Эти более длинные
имена позволяют избежать путаницы при использовании букв F и
G для обозначения других функций в других главах.

Представления (11.28) и (11.29) автоматически обеспечивают выпол-
нения соотношений G1(1)=0 and G3(3)=0, как это и должно быть
для обратных функций от F1 и F3. Численная проверка подтвер-
ждает, что в широких областах значений z, сотношения

F1(G1(z))=z , F3(G3(z))=z , F1(G1(z))=z , G3(F3(z))=z (11.30)

воспроизводятся с четырнадцатью значащими цифрами. Читатели
приглашаются построить функции согласия

A(z) = − lg

(
|F (G(z))− z|
|F (G(z))|+ |z|

)
(11.31)

добавляя в этой формуле подходящие индексы 1 или 3 к функци-
ям F и G и заменяя F ↔ G. Такое построение дает численную
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проверку соотношения (11.30). Уровни A(x+ iy) в плоскости x, y

подтверждают, что алгоритмы работают вблизи максимальной точ-
ности, достижимой с переменными complex double.

Абельфункция AuExpη,3 =G3, вместе с суперфункцией SuExpη,3 =F3

из предыдущей секции, позволяет определить неограниченно воз-
растающие итерации экспоненты по основанию Генрика η = exp(1/e).
Эти итерации рассмотрены в следующей секции.

3 Итерации

С функциями F3 = SuExpη,3 и G3 = AuExpη,3, можно выразить рас-
тущие итерации экспоненты по основанию η=exp(1/e). В этой гла-
ве рассмотрены лишь неограниченно растущие (вдоль вещественной
оси) итерации; такие итерации похожи на растущие итерации дру-
гих функций, рассмотренные в предыдущих главах.

Для T (z)=exp(z/e) = expη(z),

T n(z)=expnη,u(z)=F3(n+G3(z))=SuExpη,3

(
n+AuExpη,3(z)

)
(11.32)

Индекс u у итераций экспоненты указывает, что для итераций ис-
пользована растущая суперфункция (та, которая, для вещественных
значений аргумента, на бесконечности идет вверх, “up”).

В представлении (11.32), ни номер итерации n, ни аргументz не име-
ют надобности быть целыми, ни даже вещественными. Но, разуме-
ется, они могут и быть таковыми.

На рисунке 11.7 показаны итерации T n(x) по формуле (11.32) как
функции вещественного аргумента x, для нескольких вещественных
значений номера итерации n. Толстые курвы соответствуют целым
значениям n. Нецелые итерации голоморфны по крайней мере в
некоторой окрестности луча x>e. При целых неотрицательных зна-
чениях n, итерации голоморфны для любых значений аргумента.
Диагональ Первого квадранта координатной плоскости соответству-
ет нулевой итерации и идентичной функции.

Нецелые итерации показаны тонкими линиями. Такие нецелые ите-
рации определены для случая комплексного аргумента, либо для
положительного аргумента, большего e, но они не определены для
вещественного аргумента, меньшего e. Поэтому тонкие кривые на
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Рис. 11.7: y = exp n
η,u(x) по формуле (11.32) для различных n

рисунке 11.7 остаются в области x>η, y>η; их нельзя продолжить
в третий квадрант.

Нецелые итерация по формуле (11.32) имеют разрез вдоль веще-
ственной оси от −∞ до e ≈ 2.71; поэтому тонкие курвы на рисунке
11.7 нельзя продолжить за стационарную точку. Чтобы пояснить
неизбежность этого разреза, на рисунке 11.8 показан пример поло-
винной итерации, n=1/2. На комплексной карте половинной итера-
ции этот разрез обозначен символом cut.

Как и другие комплексные карты вещественно-голоморфных функ-
ций, карта на рисунке 11.8 симметрична “верх-низ”, так как

exp1/2
η,u (z∗) = exp1/2

η,u (z)∗ (11.33)

Для того, чтобы напомнить эту симметрию, я строю карты, помещая
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начало координат в середку изображения. Однако, когда места на
странице не хватает, приходится жертвовать такой наглядностью, и
строить лишь верхнюю половину карты. Я надеюсь, что у Читате-
ля достаточно воображения для того, чтобы мыслено приставить к
экрану зеркало и столь же мысленно увидеть в нем нижнюю часть
комплексной карты. С рассчетом на это, на рисунке 11.9 показаны
итерации экспоненты по основанию η и для других n. В частности,
карта, соответствующая n=0.5, соответствует зумину из централь-
ной части рисунка 11.8.

Рисунок 11.9 показывает, как непрерывно и постепенно, при увели-
чении номера итерации от минус единицы до единицы, комплекс-
ная карта итерации изменяется от карты логарифма по основанию
η (верхняя правая карта) к карте тождественной функции (кото-
рая есть однородная прямоугольная сетка и поэтому не нарисована
внизу) и затем к карте экспоненты по основанию η (верхняя левая
карта).

Аналогичные карты можно построить и для других передаточных
функций. Одна из них рассмотрена в следующей главе.
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Глава 12

Функции LambertW и zex

y
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Рис. 12.1: y=zex(x)=x exp(x)

В этой главе рассматривается функция ArcLambertW,

ArcLambertW(z) = ArcProductLog(z) = zex(z) = z exp(z) (12.1)

Длинное имя ArcLambertW эквивалентно ещё более длинному обо-
значению ArcProductLog. Такие имена напоминают “монохид ди-
гедрогена” (см. рис. 6.3). То есть формально, вроде, правильно, об-
ратная функция по отношению к функции ProductLog вполне мо-
жет называться ArcProductLog, но использовать такое обозначение
в формулах неудобно. Поэтому я использую обозначение zex. Для
вещественного аргумента, график функции zex по формуле (12.1)
представлен на рисунке 12.1.

Короткое имя zex образовано из первых трех букв последнего выра-
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жения в формуле (12.1). Эта функция используется для иллюстра-
ции общей идеи построения “экзотических” итераций передаточной
функции, у которой производная в стационарной точке равна еди-
нице. То есть как бы для закрепления материала.

Название этой Главы указывает, что речь идет о функция LambertW.
Однако мне удобнее работать с функцией zex, которая проще; хотя
бы потому, что у неё нет особых точек. В моё оправдание замечу, что
построение итераций функции zex эквивалентно построению итера-
ций функции LambertW. И даже эквивалентно построению итера-
ций функции ProductLog, которая то же, что и LambertW. Потому
как zex−n = LambertWn, и номер итерации n может принимать не
только что отрицательные, а ажно комлексные значения. Так что
если кто умеет итериривать функцию zex, то он/она умеет итериро-
вать и функцию LambertW. И наоборот.

Название главы должно быть видным и гуглебельным. Название
LambertW известно широко, а в названии zex поисковики пытают-
ся исправлять первую букву, чтобы предложить миллионы коммер-
ческих ссылок. Содержание таких ссылок выходит за пределы те-
мы этой Книги, поэтому в названии главы упоминаeтся не zex, а
LambertW.

Я надеюсь, что Читатель не смутится названием, и сам сможет про-
вести все рассчеты этой главы, по аналогии с тем, как в предыдущей
секции это сделано для экспоненты по основанию Генрика (η=e1/e).
Однако я помню старое правило, что если на докладе за первой
партой сидят Софья Ковалевская и Леонард Эйлер, а на послед-
ней парте — Надя Кискина и Вася Пупкин, то обращаться надо к
Наде и Васе; тогда, может быть, Софья и Леонард поймут хотя бы
основную идею доклада и зададут “самые мучительные социальные
вопросы” [15].

Адаптируя такое правило к этой Книге, в этой главе я описываю,
как для функции zex строятся суперфункция, абельфункция и неце-
лые итерации. Потому как повторение, хоть и не мать остроумия, но
всё ещё мать учения. Я рекомендую Читателям делать выкладки са-
мостоятельно, и лишь иногда подглядывать в книгу, чтобы выудить
хинт (подсказку) или подтвердить правильность формулы.

148



y

5

4

3

2

1

0

−1

−2

−3

−4

−5

−6−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 x

u=0

v=0

u=0

v=0

u
=
−

0.
2

v=16
v=−16

u=16
u=−16

u=0

v=0

u=0

http://mizugadro.mydns.jp/t/index.php/File:ZexD6mapT100.png

Рис. 12.2: u+iv=zex(x+iy) by (12.1)

1 Голоморфный zex

График функции zex по формуле (12.1) показан на рисунке 12.1.
При больших отрицательных значениях аргумента zex стремится к
нулю, и убывает от нуля на минус бесконечности до значения −1/e в
точке −1, затем растет. График проходит через точку (0, 0), и в нуле
производная функции zex равна единице. Именно поэтому итерации
зекса квалифицируются как экзотические. При бóльших значениях
аргумента zex продолжает быстро расти до бесконечности.

Комплексная карта функции zex представлена на рисунке 12.2. Эта
функция является целой. То есть голоморфна где ни попади.
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Рис. 12.3: u+iv=ArcZex(x+iy)=LambertW(x+iy)

Карта обратной функции, то есть

zex−1 = ArcZex = zex−1 = LambertW (12.2)

показана на рисунке 12.3. Эта функция имеет разрез, обозначенный
символом cut.

Функцию LambertW можно определить как решение F дифферен-
циального уравнения

F ′(z) =
F (z)

(1 + F (z)) z
(12.3)

с дополнительным условием F (0) = 0, где контур интегрирования
идет от нуля вдоль мнимой оси до мнимой части аргумента, а по-
том, параллельно вещественной оси, до значения аргумента. Решая
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уравнение (12.3), Читатель может проследить, что обратная функ-
ция от решения есть zex.

Функцию LambertW можно выразить через функцию Таня, опреде-
ленную формулой (5.3):

LambertW(z) = Tania
(

ln(z)− 1
)

(12.4)

Мнимая часть значений логарифма всегда находится в интервале
от −π до π. Поэтому в выражении (12.4), разрезы функции Таня
(см. рисунок 5.3) не добавляют разрезов к области голоморфизма
функции LambertW. Эта функция имеет только один разрез, от ло-
гарифма в аргументе Тани в правой части уравнения (12.4). Этот
разрез идет от точки ветвления −1/e до минус бесконечности.

Мне не попалось хорошей имплементации complex double для фун-
ции LambertW на языке C++, на котором у меня написаны хорошие
графопостроители. Поэтому мне пришлось делать такую имплемен-
тацию самому. Для этой имплементации использованы вполне оче-
видные разложения. Эти разложения перечислены ниже.

Для малых значений аргумента, есть разложение в нуле:

LambertW(z) = z

∞∑
n=0

(n+1)n−1

n!
(−z)n

= z−z2+
3z3

2
−8z4

3
+

125z5

24
−54z6

5
+

16807z7

720
+ ..(12.5)

Ряд сходится при |z| < 1/e ≈ 0.367879 . При учете 48 слагаемых,
для |z| ≤ 0.2, такая суммя дает для LambertW(z) по крайней мере
16 корректных значащих цифр.

Разложение вблизи точки ветвления можно записать так:

LambertW
(−1

e
+
t2

2e

)
= −1 + t− t2

3
+

11t3

72
− 43t4

540
+

769t5

17280
− 221t6

8505

+
680863t7

43545600
− 1963t8

204120
+

226287557t9

37623398400
− 5776369t10

1515591000
+ .. (12.6)

Такое разложение можно использовать для аппроксимации функ-
ции LambertW при |t|<1, то есть когда аргумент функции LambertW
близок к значению − exp(−1)≈−0.367879 .

Для больших значений |z|, обозначу L= ln(z) и M = ln(L) = ln2(z);
тогда разложение для LambertW(z) можно записать так:
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LambertW(z) = L−M +
M

L
+

M(−2 +M)

2L2

+
M(6− 9M + 2M 2)

6L3

+
M(−12 + 36M − 22M 2 + 3M 3)

12L4

+
M(60− 300M + 350M 2 − 125M 3 + 12M 4)

60L5

+
M(−120 + 900M − 1700M 2 + 1125M 3 − 274M 4 + 20M 5)

120L6

+ O
(M
L

)7

(12.7)

При этом малым параметрoм разложения является ε=ln2(z)/ ln(z);
при |ε| � 1, разложение (12.7) дает аккуратную аппроксимацию
функции LambertW.

Как обычно, верхний индекс после имени функции указывает номер
итерации, вычисление второй (то есть целой) итерации логарифма
не вызывает сложностей, а верхний индекс после того, как указан
аргумент и закрыта скобка, указывает степень, в которую следует
возвести результат вычисления функции. Таким образом, выраже-
ние ln−1(z) = exp(z) не следует путать с выражением 1/ ln(z), а
выражение ln2(z)=ln(ln(z)) не должно конфузироваться с выраже-
нием ln(z)2. Это соответствует общей системе обозначений, приня-
тых в этой Книге.

Предлагаемые выше разложения позволяют написать эффективный
(быстрый и аккуратный) алгоритм для вычисления обратной функ-
ции для zex, то есть функции LambertW. Его имплементация на
языке C++ загружена по урлю
http://mizugadro.mydns.jp/t/index.php/LambertW.cin.

Функция LambertW = zex−1 требуется для вычисления итераций
функции zex через её суперфукцию и абельфункцию. Суперфункция
для передаточной функции zex рассмотрена в следующей секции.
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2 SuZex

Суперфункцией для передаточной функции zex по формуле (12.1)
является решение F передаточного уравнения

F (z+1) = zex
(
F (z)

)
(12.8)

Для некоторого целого числа M>1, ищу решение F в таком виде:

F (z) = FM(z) +O

(
ln(±z)M+1

zM+2

)
(12.9)

где

FM(z) = −1

z
+

1
2 ln(±z)

z2
+

1

z

M∑
m=2

Pm

(
ln(±z)

)
zm

(12.10)

Pm(z) =
m∑
n=0

cm,n(−z)n (12.11)

Коэффициенты c в формуле (12.11) можно найти подстановкой раз-
ложения (12.9) в передаточное уравнение (12.8). Для этого может
использоваться следующая программа на языке Математика:

zex[z_] = z Exp[z];
Foo[z_] = -1/z + a Log[z]/z^2
Soo = Series[Foo[z+1]-zex[Foo[z]], {z,Infinity,3}]
Eoo = Coefficient[Soo,1/z^3]
Ao = Extract[Solve[Eoo==0, a], 1]
F2o[z_] = ReplaceAll[Foo[z], Ao]
F20[z_] = F2o[z] + (a Log[z]^2 + b Log[z] + c)/z^3
S2o = Series[F20[z+1] - zex[F20[z]], {z,Infinity,4}]
S20 = ReplaceAll[S2o, Log[1/z] -> -L]
E2o = Coefficient[S20, 1/z^4]
E22 = Coefficient[E2o, L^2]
A1 = Extract[Extract[Solve[E22==0, a], 1], 1]
E2A = ReplaceAll[E2o, A1]
E21 = Coefficient[E2A, L]
B1 = Extract[Extract[Solve[E21==0, b], 1], 1]
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E2B = ReplaceAll[E2A, B1]
C1 = Extract[Extract[Solve[E2B==0, c], 1], 1]
F3o[z_] = ReplaceAll[F20[z], {A1, B1, C1}]
F30[z_] = F3o[z]+(a Log[z]^3+b Log[z]^2+c Log[z]+d)/z^4
S3o = Series[F30[z+1] - zex[F30[z]], {z, Infinity, 5}]
S30 = ReplaceAll[S3o, Log[1/z] -> -L]
E3o = Coefficient[S30, 1/z^5]
E33 = Coefficient[E3o, L^3]
A3 = Extract[Extract[Solve[E33==0, a], 1], 1]
E3a = ReplaceAll[E3o, A3]
E32 = Coefficient[E3a, L^2]
B3 = Extract[Extract[Solve[E32==0, b], 1], 1]
E3b = ReplaceAll[E3a, B3]
E31 = Coefficient[E3b, L]
C3 = Extract[Extract[Solve[E31==0, c], 1], 1]
E3c = ReplaceAll[E3b, C3]
D3 = Extract[Extract[Solve[E3c == 0, d], 1], 1]
F4o[z_] = ReplaceAll[F30[z], {A3, B3, C3, D3}]
F40[z_] = F4o[z] +

(a Log[z]^4+b Log[z]^3+c Log[z]^2+d Log[z]+e)/z^5
S4o = Series[F40[z+1] - zex[F40[z]], {z, Infinity, 6}]

Такой рассчет дает следующую асиммптотику:

F (z) = −1

z
+

1
2`

z2
+
−1
4 `

2 + 1
4`−

1
6

z3
+

1
8`

3 + −5
16 `

2 + 3
8`+ −7

48

z4

+
−1
16 `

4 + 13
48`

3 + −17
32 `

2 + 23
48`+ −707

4320

z5

+
1
32`

5 + −77
384 `

4 + 37
64`

3 + −83
96 `

2 + 1121
1728`+ −1637

8640

z6

+
−1
64 `

6 + 87
640`

5 + −205
384 `

4 + 443
384`

3 + −1619
1152 `

2 + 15427
17280`+ −274133

1209600

z6

+ O

(
`7

z8

)
(12.12)
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Рис. 12.4: y = SuZex(x)

по формуле (12.14)

Для некоторого фиксированного чис-
ла M , суперфункцию F можно выра-
зить через еёMную асимптотику в та-
ком виде:

F (z) = lim
n→∞

zexn
(
FM(z−n)

)
(12.13)

Поскольку FM является асимптотиче-
ским решением, получающаяся супер-
функция F не зависит от числа M

термов, принимаемых во внимание в
первичном приближении. Разумеется,
с увеличением числа M скорость схо-
димости увеличивается.

Чтобы упростить сравнения различ-
ных суперфункций, удобно опреде-
лить “сдвинутую” функцию

SuZex(z) = F (z1+z) (12.14)

где z1≈−1.1259817765745026 есть ре-
шение уравнения F (z1) = 0. Импле-
ментация такого алгоритма на C++

загружена в http://mizugadro.mydns.jp/t/index.php/SuZex.cin

График функции SuZex показан на рисунке 12.4 толстой кривой.
Для сравнения, тонкая линия показывает функцию zex. Эти кур-
вы пересекаются в точке (1, e), а также вблизи точки (1.4, 6.2). Для
вещественных значений аргумента, SuZexp есть положительная мо-
нотонно возрастающая функция. На минус бесконечности она при-
ближается к нулю, как предписывает асимптотика (12.10). SuZex
принимает значение единица в нуле, и затем быстро растет при по-
ложительных значениях аргумента.

Комплексная карта функции SuZex показана на рисунке 12.5. Ввиду
быстрого роста этой функции при положительных значениях аргу-
мента, уровни не удалось провести в окрестности луча x > 1; эта
полоса осталась пустой. Функция SuZex голоморфна во всей ком-
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Рис. 12.5: u+iv = SuZex(x+iy)

плексной плоскости. То есть это целая функция. В следующей сек-
ции, для неё строится обратная функция.

3 AuZex

Комплексная карта функции AuZex = SuZex−1, то есть абельфунк-
ции для передаточной функции zex(z)=z exp(z), показана в правой
части рисунка 12.6. Эта секция описывает свойства функции AuZex.

Асимптотическое разложение функции AuZex можно получить, об-
ращая разложение функции SuZex, рассмотренное в предыдущей
секции. Однако тот же результат можно получить проще, рассмот-
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Рис. 12.6: u+iv = AuZex(x+iy)

рев уравнение Абеля

G(zex(z)) = G(z) + 1 (12.15)

Асимптотика ршения G = AuZex может быть записана так:

G(z) ≈ −1

z
+

1

2
ln(z) +

N∑
n=0

bnz
n + .. (12.16)

Коэффициенты bn для n > 1 можно найти, подставляя такое раз-
ложение в уравнение Аблея (12.15). Такая асимптотика дает акку-
ратные значения функции для малых z; при больших значениях
аргумента можно использовать уравнение Абеля, чтобы выразить
значение функции через функцию от меньшего значения аргумен-
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та. Для некоторого фиксированного натурального числа M , пусть

GM(z) ≈ −1

z
+

1

2
ln(z) +

M∑
m=0

bnz
n (12.17)

и пусть

AuZex(z) = lim
n→∞

FM

(
zex−n(z)

)
+ n

= lim
n→∞

FM

(
LambertW n(z)

)
+ n (12.18)

Коэффициент b0 выбирается так, чтобы AuZex(1) = 0; тогда соот-
ношение

SuZex
(

AuZex(z)
)

= z (12.19)

выполняется в широкой области значений z, за исключением нуля
и отрицательной части вещественной оси.
Коэффициенты b разложения (12.17) можно вычислять с помощью
копипастнутой ниже программы на языке Mathematica:

zex[z_] = z Exp[z];

S[k_, L_] = Sum[a[k, m] L^m, {m, 0, k}]

F[K_, z_, L_] = Sum[S[k, L]/z^(k + 1), {k, 0, K}]

Series[zex[F[4,z,L]] - F[4, z+1,L+Log[1+1/z]], {z,Infinity,3}]

a[0,0] = -1;

Series[zex[F[4, z, L]] - F[4, z+1, L+Log[1+1/z]], {z,Infinity,3}]

a[1, 1] = 1/2; a[1, 0] = 0;

Simplify[Series[zex[F[5,z,L]] - F[5,z+1, L+Log[1+1/z]], {z,Infinity,4}]]

n = 2;

s[n]=Series[zex[F[n+3,z,L]]-F[n+3,z+1,L+Log[1+1/z]],{z,Infinity,n+2}];

For[k = 0, k<=n,k++,m=n-k;

a[n,m] = ReplaceAll[a[n, m],So1[Coefficient[s[n] L,L*L^m] == 0, a[n,m]]];

Print[n, Space, k, Space, m, Space, a[n, m] ] ]

n = 3;

s[n]=Series[zex[F[n+3,z,L]]-F[n+3,z+1,L+Log[1+1/z]],{z,Infinity,n+2}];

For[k = 0, k<=n,k++,m=n-k;

a[n,m] = ReplaceAll[a[n, m],So1[Coefficient[s[n] L,L*L^m] == 0, a[n,m]]];

Print[n, Space, k, Space, m, Space, a[n, m] ] ]

и так далее для бóльших значений n.

Первые 9 коэффициентов разложения (12.17) собраны в таблице:
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n bn approximation of bn

1 −1/6 ≈ −0.1666666666666666667

2 1/16 ≈ 0.0625

3 −19/540 ≈ −0.0351851851851851852

4 1/48 ≈ 0.0208333333333333333

5 −41/4200 ≈ −0.0097619047619047619

6 37/103680 ≈ 0.00035686728395061728

7 18349/3175200 ≈ 0.005778848576467624

8 −443/80640 ≈ −0.005493551587301587

9 55721/21555072 ≈ −0.002585052835824441

(12.20)

Читатели приглашашаются проверить, что асимптотически, а также
и численно, выполняется соотношение

SuZex(AuZex(z)) = z (12.21)

4 Итерации функции zex

С функциями SuZex и AuZex, описанными в предыдущих секциях,
итерации функции zex выражаются так:

zexn(z) = SuZex
(
n+ AuZex(z)

)
(12.22)

Как обычно, номер n итерации не имеет надобности быть целым;
это число может быть даже комплексным.

Итерации y= zexn(x) как функции x для некоторых вещественных
значений n показаны на рисунке 12.7. Курвы для целых значений n
выделены толстыми линиями.

Читателям предлагается проверить соотношение

zexn
(

zexm(z)
)

= zexm+n(z) (12.23)

хотя бы для нескольких значений чисел m и n. Это можно сделать с
помощью асимптотического анализа (особенно если у читателя ин-
сталлирована какая-нибудь Математика или Клен). Кроме того, это
можно сделать численно, причем даже для комплексных значений
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m, n и z, и охарактеризовать область применимости соотношения
(12.23).

Итерации функции zex выглядят похоже на итерации других быстро
растущих функций с вещественной стационарной точкой. Итериро-
вание сохраняет единичную производную в этой точке, поэтому все
кривые на рисунке 12.7 подходят к стационарной точке (то есть к
началу координат) под углом 45 градусов к оси абсцисс. Такое свой-
ство сохраняется и для других передаточных функций с единичной
производной в стационарной точке. Ещё одна такая передаточной
функции рассмотрена в следующей главе.
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Рис. 12.7: y=zexn(x) по формуле (12.22) для различных n
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Глава 13

Суперсинус и итерации синуса

В этой главе рассмотрена передаточная функция T =sin. Это хоро-
ший пример для иллюстрации нетривиальных итераций; потому как
иногда коллега, когда ему предлагают привести пример элементар-
ной функции, долго думает, а потом говорит: “Ну,.. скажем, синус.”

Итерации синуса рассматриваются давно, но лишь в 2011 году бы-
ли предложены простые (хотя и грубые) аппроксимации для таких
итераций [66, 67]. Затем, в 2014 году, вычисление нецелых итераций
синуса доложено в журнале Far East Journal of Mathematical Science
[78]. Ниже пересказываются ключевые моменты этой публикации.

Я надеюсь, что Читатель может сам построить комплексные кар-
ты синуса и арксинуса; арксинус в этой главе тоже понадобится. Я
рекомендую проделать это упражнение, ибо без таких упражнений
чтение превращается в пустую забаву. Полюбовавшись на карты си-
нуса и арксинуса, можно переходить к чтению следующей секции, в
которой строится суперсинус, показанный на рисунке 13.1.

y
π
2

1

0
0 1 2 3 4 5 6 7 8 9 x

y=
√

3/x

y=SuSin(x)

http://mizugadro.mydns.jp/t/index.php/File:Susinplot.jpg

Рис. 13.1: y=SuSin(x) по формуле (13.8) и асимптотика (13.3)
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1 Суперсинус SuSin

Суперфункция синуса, я назвал её SuSin, показана на рисунке 13.1.
Здесь я рассказываю, как строится эта функция.

Для суперфукции F oт синуса, передаточное уравнение таково:

F (z+1) = sin
(
F (z)

)
(13.1)

Ниже строится решение F = SuSin с такими свойствами:

SuSun(0) = π/2 (13.2)

SuSun(z) =

√
3

z

(
1 +O

(
ln(z)

z

))
(13.3)

Лидирующий терм в правой части асимптотики (13.3) можно уга-
дать, заменяя в левой части уравнения (13.1) выражение F (z+1)

на F (z)+F ′(z) . Получающееся при этом дифференциальное урав-
нение легко решается и дает F (z) =

√
3/z. При подстановке такого

эвристического решения в исходное передаточное уравнение (13.1),
получается невязка. Эта невязка позволяет угадать следующий терм
разложения (13.3). Тогда Дьявол-искуситель утрет свою пасть и ска-
жет: “Ну вот, дело сделано. Можете преспокойно повторить его и
продолжать в том же духе!”.. 1 В результате получается следующее
асимптотическое разложение для суперфункции F :

F (z) = FM(z) +O

(
ln(z)M+1

zM+3/2

)
(13.4)

где

FM(z) =

√
3

z

(
1− 3

10
ln(z) +

M∑
m=2

Pm(ln(z)) z−m

)
(13.5)

PM(z) =
m∑
n=0

am,n(−z)m (13.6)

и коэффициенты a суть константы. Эти константы можно вычис-
лить с помощью программы на языке Mathematica:

1http://www.dolit.net/author/7649/ebook/25941/mann_tomas/izbrannik/read/3 Томас
Манн. Божий избранник. Собрание сочинений. Том 6. Государственное издательство художе-
ственной литературы; Москва; 1960.
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P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]
F[z_] = Sqrt[3/z] ( 1 + Sum[P[m, Log[z]]/z^m, {m, 1, M}])
M = 9; a[1, 0] = 0;
F1x = F[1 + 1/x];
Ftx = Sin[F[1/x]];
s[1] = Series[(F1x - Ftx)/Sqrt[x], {x, 0, 2}]
t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]
A[1, 1] = ReplaceAll[a[1, 1], t[1]]
su[1] = t[1]

m=2;
s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3 x],{x,0,m+1}], su[m-1]]]
t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]
u[m] = Simplify[Collect[t[m], L]]
v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]
w[m] = Table[a[m, n], {n, 0, m}]
ad[m] = Extract[Solve[v[m], w[m]], 1]
su[m] = Join[su[m - 1], ad[m]]

m=3;
s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3 x],{x,0,m+1}],su[m-1]]]
t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]
u[m] = Simplify[Collect[t[m], L]]
v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]
w[m] = Table[a[m, n], {n, 0, m}]
ad[m] = Extract[Solve[v[m], w[m]], 1]
su[m] = Join[su[m - 1], ad[m]]
. . .

Значения коэффициентов a показаны в таблице 13.1.

Таблица 13.1: Table of coefficients a in equation (13.6)
a1,0

3
10

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

79
700

9
50

27
200

a2,3 a2,4 a2,5 a2,6 a2,7

411
3500

1941
7000

27
125

27
400

a3,4 a3,5 a3,6 a3,7

1606257
10780000

7227
17500

1683
4000

1917
10000

567
16000

a4,5 a4,6 a4,7

140345627
700700000

70079931
107800000

566973
700000

98739
200000

7533
50000

15309
800000

a5,6 a5,7

137678711441
490490000000

7364523
7007000

305491257
196000000

4155111
3500000

796311
1600000

2218347
20000000

168399
16000000

a6,7

25317035192599
62537475000000

8462569406199
4904900000000

32174780481
10780000000

5367503637
1960000000

407711313
280000000

181900809
400000000

1960281
25000000

938223
160000000

Теперь для синуса можно определить суперфункцию F как предел

F = lim
k→∞

arcsink(FM(z + k)) (13.7)

для некоторого фиксированного числаM термов в разложении (13.5).
ПриM>2, функция F по формуле (13.7) является асимптотическим
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Рис. 13.2: u+iv = SuSin(x+iy) по формуле (13.8)

решением передаточного уравнения (13.1), и предел в формуле (13.7)
отM уже не зависит. Однако отM зависит скорость сходимости при
имплементации представления (13.7).

Для суперфункции, удовлетворяющей ещё и дополнительному усло-
вию (13.2), требуется обеспечить определенное значение этой функ-
ции в нуле, или, что проще, в единице. Поэтому я кладу

SuSin(z) = F (z+x1) (13.8)

где x1≈1.4304553465288 есть решение уравнения

F (1+x1) = 1 (13.9)

При этом требуемое значение в нуле получается автоматически, так
как SuSin(0)=arcsin(SuSin(1))=arcsin(1)=π/2.
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График функции SuSin по формуле (13.8) показан на рисунке 13.1.
Комплексная карта этой функции покзана на рисунке 13.2. Для ве-
щественного аргумента, функция SuSin определена на положитель-
ной части вещественной оси, имеет значение π/2 и минус бесконеч-
ную производную в нуле. Затем, эта функция нудно, медленно и
монотонно убывает до нуля на плюс бесконечности. В комплексной
плоскости функция SuSin также убывает на бесконечности, но име-
ет ещё и разрез области голоморфизма вдоль отрицательной части
вещественной оси. На рисунке 13.2 этот разрез обозначен обозначен
символом cut.

Синус отличается от других передаточных функций, рассмотрен-
ных в этой Книге, тем, что эта функция в стационарной точке рас-
тет медленее своего аргумента. Соответственно, суперфунция SuSin
(рис. 13.1) не возрастает, а убывает. Через первичное представле-
ние суперсинуса, нетрудно рассчитать его свойства, и, в частности,
асимптотическое разложение в нуле. Я надеюсь, что при надобно-
сти, читатели без особых проблем могут вычислить коэффициенты
такого разложения. Такое разложение может быть получено обра-
щением разложения в точке π/2 функции AuSin, рассмотренной в
следующей секции.

2 Абельсинус AuSin y

3

2

1

00 1 π/2 2 x

Рис. 13.3: y=AuSin(x)

Обратная функция от суперсину-
са есть абельсинус, пусть она на-
зывается AuSin = SuSin−1. Гра-
фик функции показан AuSin по-
казан на рисунке 13.3. Эта секция
рассказывает, как строится такая
функция.

ФункцияG=AuSin удовлетворяет
уравнению Абеля

G(sin(x)) = G(z) + 1 (13.10)

Из свойств суперсинуса следу-
ет, что такое решение должно
иметь определенные асимптотиче-
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ские свойства, а именно,

G(z) =
2

z2
+O(ln(z)) (13.11)

Как и для других абельфункций, решение с требуемыми свойствами
можно получить, обращая асимптотическое представление для су-
перфункции. Однако это же разложение для абельфункцииG проще
получить независимо, из уравнения Абеля (13.10). Затем, добавле-
ние константы x1 дает абельфункцию

AuSin(z) = G(z) + x1 (13.12)

удовлетворяющую соотношению

AuSin(π/2) = 0 (13.13)

как это и должно быть для функции, обратной суперсинусу, по-
строенному в предыдущей секции. Остается построить разложение
функции G=F−1.

Асимптотическую аппроксимацию я ищу в виде разложения

GM(z)=
3

z2
+

5

6
ln(z)+

M∑
m=1

cmz
2m (13.14)

Подстановка g(z) = GM +O(z2M+2) в уравнение Абеля (13.10) дает
коэффициенты c. В частности,

c1 =
79

1050
(13.15)

c2 =
29

2625
(13.16)

c3 =
91543

36382500
(13.17)

c4 =
18222899

28378350000
(13.18)

Для фиксированного M , функция G вычисляется как предел

G(z)= lim
k→∞

GM(sink(z))− k (13.19)

Соответственно, AuSin=SuSin−1 выражается через эту функцию G:

AuSin(z) = G(z)−G(π/2) (13.20)
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Рис. 13.4: u+iv = AuSin(x+ iy) по формуле (13.20)

Терм G(π/2)≈2.089622719729524 в уравнении (13.20) обеспечивает
условие (13.13). Комплексная карта абельсинуса по формуле (13.20)
показана на рисунке 13.4. Эта карта симметрична верх-низ, так как
AuSin(z∗)=AuSin(z)∗. Кроме того, карта симметрична относитель-
но отражений от оси x=π/2; первое же вычисление функции sin в
формуле (13.19) обеспечивает эту симметрию. В центральная части
рисунка 13.4 предел (13.19) сходится и регулярным образом опреде-
ляет голоморфную фукцию. На перефирии появляются разрезы.
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Oбласть применимости соотношения

SuSin
(

AuSin(z)
)

= z (13.21)

ограничена. Аналогичые ограничения имеются и для других обрат-
ных функций, в частности, для синуса и арксинуса. Oбласть приме-
нимости соотношения (13.21) показана на рисунке 13.5 мелкой пря-
моугольной сеткой.

y

1

0

−1

0 1 π/2 2 3 x
http://mizugadro.mydns.jp/t/index.php/File:Ausinsusinmapt50.jpg

Рис. 13.5: u+iv=h(x+iy) по формуле (13.22); линии =(AuSin(x+iy))=0
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Технически, рис. 13.5 представляет комплексную карту функции

h(z) = SuSin
(

AuSin(z)
)

(13.22)

В левой части карты на фигуре 13.22, вблизи положительной части
вещественной оси, фукция h есть идентичная функция, h(z) = z;
линии постоянной вещественной части и линии постоянной мнимой
части - прямые. Эти линии и образуют частую сетку, которая ви-
зуально воспринимается как штриховка. Заштрихованная таким об-
разом область ограничена линиями =(AuSin(x+iy)) = 0; эти линии
заимствованы из рисунка 13.4. При численой имплементации, в за-
штрихованной области соотношение h(z) = z держится с 14ю знача-
щими цифрами; я интерпретирую это как подтверждение адекват-
ности численного представления функций SuSin и AuSin.

Читатели могут построить также карту функции согласия

A(z) = − lg

(
|h(z)− z|
|h(z)|+ |z|

)
(13.23)

Такое согласие позволяет проверить аккуратность численного пред-
ставления. Это обычно, что представление для обратной функции от
голоморфной функции имеет ограниченную область применимости.
Такое ограничение неизбежно при обращении любой сколько-нибудь
нетривиальной голоморфной функции.

Таблица 13.2:
n bn

0 0

1 2.29163807440958

2 1.96043852439688

3 1.07862851256147

4 0.59622997993395

5 0.28333997139829

6 0.14193261194548

7 0.06423734271234

8 0.03026687705508

9 0.01351721250427

Для эффективной численной имплемента-
ции абельсинуса, полезны и иные разложе-
ния. Наиболее простым из них представля-
ется разложение в ряд Тэйлора в точке π/2.
Это разложение имеет такой вид:

AuSin
(π

2
+ t
)

=
∞∑
n=1

bnt
2n (13.24)

Приближенные значения коэффициентов b

разложения (13.24) оценены с помощью кон-
турного интеграла, с использованием пер-
вичной аппроксимации через функцию G

по формулам (13.14), (13.19), (13.20). Значе-
ния этих коэффициентов показаны в табли-
це 13.2.

169



Ряд в разложении (13.24) сходится при |t|<π/2. Достаточно взять
несколько десятков термов этого разложения, и такая аппроксима-
ция сможет воспроизвести бóльшую часть рисункa 13.4. Я предла-
гаю читателям построить такую карту (или посмотреть на неё в
Приложении).

При учете вполне умеренного количества термов разложения (13.24),
численные аппроксимации абельсинуса дают точность, по крайней
мере не хуже, чем точность при использовании исходного асимпто-
тического разложения по формулам (13.14), (13.19), (13.20). Разуме-
ется, исходное разложение всё равно требуется для вычисления, ап-
проксимации коэффициентов вторичных разложений. Оптимизация
таких представлений имеет смысл для того, чтобы встраивать их в
софтвер, и по мере возможности, улучшать, как и другие “built-in”
функции, когда каждая микросекунда при вычислении дает важное
изменение наблюдаемого быстродействия. Однако даже примитив-
ные имплементации, используемые в этой Книге, позволяют стро-
ить все графики и комплексные карты в реальном времени. Я рас-
сматриваю это как указание на высокую эффективность и важность
предлагаемых здесь формул.

3 Итерации синуса

С функциями SuSin и AuSin = SuSin−1, определенными в предыды-
щих секциях, итерации синуса могут быть представлены так:

sinn(z) = SuSin
(
n+ AuSin(z)

)
(13.25)

Эта формула вполне аналогична представлениям итераций других
фоломоргных функций через их суперфункции и абельфункции.
Как обычно, номер итерации n не имеет надобности быть целым
и может быть ажно комплексным; но, в частности, может быть
и вещественным. Для нескольких вещественных значений n и для
вещественных значений аргумента, итерарации синуса по формуле
(13.25) представлены на рисунке 13.6.

Для положительных значений номера итерации n, графики y =

sinn(x) симметричны относительно оси x = π/2, как это и должно
быть из-за представления абельсинуса формулами (13.19) и (13.20).
Чем больше n, тем ближе график приближается к вещественной оси.
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Рис. 13.6: y=sinn(x) по формуле (13.25) для различных n

Для отрицательных значений n, график y = sinn(x) достигает точ-
ки ветвления при y = π/2 и не может быть продолжен, так как
соответствующие итерации принимают комплексные значения. Как
обычно, нулевая итерация соответствует тождественной функции,
sin0(x)=x, и это соотношение держится, пока 0<x<π/2.

Через итерации синуса (13.25), суперсинус можно представить так:

SuSin(z) = sinz(π/2) (13.26)

С точки зрения вычислений, такое представление имеет мало смыс-
ла, так как итерации синуса в правой части формулы (13.26) всё
равно прийдется вычислять, используя аппрoксимации суперсинуса
(и, возможно, даже абельсинуса). Однако, когда нецелые итерации
функций будут “зашиваться”, встраиваться в новые версии алгорит-
мических языков высокого уровня, в софтер, встанет вопрос об удоб-
ной мнемонике для названий соответствующих процедур, алгорит-
мов. Тогда выражение (13.26) можно использовать как подсказку
для удачного выбора обозначений. Формула указывает, что функ-
цию sin применили z раз, причем в качестве начального значения
аргумента выбрано число π/2.

Читатели приглашаются использовать итерации синуса. Я загрузил
иплементации суперсинуса и абельсинуса по урлям
http://mizugadro.mydns.jp/t/index.php/Susin.cin и
http://mizugadro.mydns.jp/t/index.php/Ausin.cin
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Рис. 13.7: Фитинг формы полоза: y=sinn(π/2)−sinn(x) для n=100

В качестве примера использования итераций синуса, на рисунке 13.7
показана параметризация формы полоза санок формулой

y = sinn(π/2)−sinn(x) (13.27)

Фото взято из Викимедии [9]. Курва сответствует перевернутой 100й
итерации синуса. Фото сдвинуто так, чтобы привести последнюю
опору санок в точку с координатами (π/2, 0), повернуто так, что-
бы в этой точке полоз шёл горизонтально, и масштабировано так,
чтобы привести передний край полоза в точку с координатой x=0.
Тогда номер итерации n=100 является единственным подгоночным
параметром такой параметризации.

По аналогии с синусом, так можно строить итерации функций sinh,
arctan, и многих других. Имеется формализм для построения супер-
функции, которая на бесконечности стремится к стационарной точке
передаточной функции. Особенно просто такой формализм интер-
претируется, когда передаточная вещественно-голоморфна, имеет
вещественную стационарную точку и является возрастающей функ-
цией хотя бы в некоторой окрестности этой стационарной точки.

На этом я пока заканчиваю анализ суперфункций, абельфункций
и итераций для вещественно-голоморфных функций, имеющих хо-
тя бы одну вещественную стационарную точку. В следующей главе
рассмотрена передаточная функция, а именно - натуральная экспо-
нента, у которой вещественных стационарных точек нет.
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Глава 14

Натуральная тетрация tet

y

4

3
e

2

1

0

−1

−1 0 1 x

y=tet(x)

y=tet(x)

y=ex

y=ex
y=10

(
tet(x)− (x+1)

)

y=10
(

tet(x)− (x+1)
)

ht
tp

:/
/m

iz
ug

ad
ro

.m
yd

ns
.j

p/
t/

in
de

x.
ph

p/
Fi

le
:T

et
Pl

ot
U.

pn
g

Рис. 14.1: y = tet(x) , y = exp(x) , и
y=10

(
tet(x)− (x+1)

)

Здесь рассмотрен случай экс-
поненциальной передаточной
функции, T =exp. Для такой
передаточной функции пере-
даточное уравнение

f(z+1) = exp(f(z)) (14.1)

Чтобы ограничить множе-
ство решений, на искомое ре-
шение f налагается условие

f(0) = 1 (14.2)

Чтобы ещё сузуть многообра-
зие решений, я требую, что-
бы решение f(z) было голо-
морфным во всей комплекс-
ной плоскости за исключени-
ем полупрямой z < 0, a так-
же ограниченным по край-
ней мере в полосе <(z) ≤
1. Тогда решение f называ-
ется тетрацией и обозначает-
ся символом tet. Для веще-
ственных значений аргумен-
та, эта функция показана на
рисунке 14.1.
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Надо отличать такую тетрацию от сходных суперфункций для экс-
поненты по другим основаниям. Поэтому предлагается также тер-
мин “натуральная тетрация”, использованный в качестве названия
этой главы.

Kоллеги спрашивают не только о том, как вычислять суперфунк-
ции для разных экзотических случаев (порою предсказывая, что
для некоторой конкретной передаточной функции, суперфункцию
построить не удастся), но и о том, как я догадался об асимптотиче-
ском поведении натуральной тетрации (а также других суперфунк-
ций). Такие вопросы задают не для того, чтобы во всех волнующих,
шокирующих подробностях проследить сложный и опасный труд по
угадыванию асимптотического поведения тетрации, а для того, что-
бы похожим образом решать и другие задачи. Поэтому я отношусь
к таким вопросам со всей серьезностью.

Чтобы ответить, эту главу пришлось превратить в некоторое по-
добие детективного романа, когда есть завязка, то есть уравнения
(14.1), (14.2), и предлагается ущучить голоморфное решение f=tet,
которое научная общественность согласилась бы счесть самой что
ни на есть настоящей и натуральной тетрацией. В этой главе я по-
казываю, что выбора у меня, по существу, не было, и что натураль-
ная тетрация получается совершенно естественным и натуральным
образом.

1 Экспонента

Прежде чем говорить о решении f уравнений (14.1), (14.2), прийдет-
ся вспомнить свойства экспоненты. Для вещественного аргумента,
график экспоненты показан на рисунке 14.1 тонкой кривой. Ком-
плексная карта передаточной функции T =exp показана на рисунке
14.2. На рисунке 14.3 повторен график экспоненты по основанию e,
чтобы сравнить его с экспонентой по основанию

√
2; одна из супер-

функций для экспоненты по основанию
√

2 уже рассмотрена в главе
9.

Я надеюсь, что меня простят за то, что я говорю, пишу и рисую
про такие элементарные функции. Книга должна выдерживать пря-
мое попадание в руки даже самого необученного академика (Пусть
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А.Каминский не обижается, так как этот оборот не я придумал, а
Братья Стругацкие [16]). Дело в том, что экспонента везде гладкая,
пока она не итерируется. Или даже пока итерируется, но целое неот-
рицательное число раз. А вот если смотреть, насколько она гладкая
по количеству итераций, то вопрос о гладкости не так прост. (Я
прошу Ю.Кузнецову не обижаться, так как поговорку “вода глад-
кая, пока об неё не ударишься” придумал тоже не я.) В старании
писать ясно и понятно, чтобы даже Акира Ширакава понял, в этой
главе я начинаю писать от экспоненты.

Для меня, экспонента выступает как суперфункция от операции
“умножение на число e”, приблизительно - на 2.71828182846:

T (z) = e z (14.3)

Повторение – не мать остроумия, но цель Книги – не рассмешить
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читателя, а научить его пользоваться суперфункциями. Приходит-
ся писать об элементарных вещах, и, в частности, об элементарных
функциях; чтобы даже Акира Ширакава не мог сказать, что форма-
лизм “слишком сложный”. Поэтому в качестве передаточного урав-
нения я повторяю формулу из школьного курса алгебры:

f(z+1) = e f(z) (14.4)

В принципе, решение f этого уравнения можно строить методом ре-
гулярной итерации, вблизи стационарной точки L=0 передаточной
функции T по формуле (14.3). Читателю рекоммендуется проделать
это в качестве упражнения. Первичное разложение (6.1) обрывается
на первом же слагаемом, давая точное решение f=exp.

Для передаточной функции z 7→ e z, запишу и уравнение Абеля:

g(e z) = 1 + g(z) (14.5)

Это уравнение рассмотрено Генриком Траппманном [75]. Вероятно,
Читатель уже догадывается, что в качестве решения Генрик полу-
чил натуральный логарифм, g = ln. Читатели приглашаются поду-
мать, какие ещё требования надо присобачить к уравнению (14.5),
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чтобы его решение g=ln стало единственным. Любители и профес-
сионалы строгой математической дедукции могут также подсмот-
реть ответ у Генрика [75]; я надеюсь, что рукописи не горят, и упо-
мянутая статья будет доступна и в будущем.

Экспоненту можно определить как специальную суперфункцию от
передаточной функции “умножение на e”, а именно, везде голоморф-
ное решение f уравнения (14.4) с периодом P =2πi, такое что

f(0) = 1 (14.6)

Mне не удалось построить иного решения уравнения (14.4), облада-
ющего такими свойствами.

График экспоненты представлен также на рисунке 14.3. (Эта же за-
висимость показана рисунке 14.1 тонкой курвой.) Полезно сравнить
его с графиком экспоненты по основанию b=

√
2, который пересе-

кает прямую y=x. Для удобства эта кривая воспроизведена на ри-
сунке 14.3. График для натуральной экспоненты y=exp(x) прямую
y = x не пересекает. У натуральной экспоненты нет вещественных
стационарных точек.

Стационарная точка L экспоненты и логарифма по основанию b=

exp(a) есть решение уравнения L = logb(L). Это решение может
быть выражена через функцию Тани, рассмотренную в главе 4:

L=Filog(a)=
Tania(ln(a)−1−πi)

−a
=

WrightOmega(ln(a)−πi)

−a
(14.7)

Второе равенство в формуле (14.7) может рассматриваться как опре-
деление функции Filog, рассмотренной также в ТОРИ,
http://mizugadro.mydns.jp/t/index.php/Filog.
Более подробно свойства функции Filog рассмотрены в главе 18.

Kак видно из уравнения (14.7), Tania является модификацией из-
вестной специальной функции WrightOmega [12, 98]. Ввиду того, что
фиксированная точка L выражается через известные специальные
функции, этот параметр известен точно1. Для основания экспонен-

1Я прошу не обижаться ту Таню, которая до сих пор считает, что даже π есть число при-
ближенное. В порядке попытки примирения, добавляю: в численных рассчетах и, в частности,
при генерации рисунков, используются приближенные значения математических констант с
аккуратностью порядка 15 значащих цифр.
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ты b=e, параметр a=1, это дает значение

L = −Tania(−1−πi)

≈ 0.3181315052047641353 + 1.3372357014306894089 i (14.8)

Приближение для L с парой значащих цифр можно извлечь также
непосредственно из рисунка (5.3), считая пальцем изолинии.

Таким образом, функция Tania используется в этой книге уже два-
жды: в главе 2, как реалистичная суперфункция для передаточной
функции Doya, описывающей увеличение интенсивности света в уси-
лителе с простой моделью накачки активной среды, и теперь, как
способ точного представления фиксированной точки экспоненты.
Это одна и та же Таня 2. Для удобства склонения имени этой функ-
ции в соответствии с обычаями Русского языка, здесь используется
также русскоязычная транслитерация Таня в том же значении, так
что Tania=Таня.

Экспонента является вещественно-голоморфной функцией, то есть
exp(z∗) = exp(z)∗; поэтому число L∗ ≈ 0.1− 1.3 i тоже является
её стационарной точкой. Можно ожидать, что при больших отри-
цательных значениях вещественной части аргумента, вещественно-
голоморфная суперэкспонента стремится к одному из значений L

или L∗. Такая догадка обсуждается в седующей секции.

2 Эвристическая тетрация

После опубликования первой статьи про построение вещественно-
голоморфной тетрации [44], многие коллеги задают мне одни и те
же вопросы:
“Как вы угадали асимптотическое поведение тетрации на ±i∞?”
“Как вы угадали начальное приближение fit3?” [76].
Чтобы не уподобляться Рипу Ван Винклю 3, вспоминая всё новые
и новые подробности истории, которая надолго вышибла меня из
Лазерной Науки, в этой секции я излагаю лишь одну из мотиваций.

2 Сергей Решетняк обнаружил и экспериментально доказал, что лучше использовать одну
Таню несколькими способами, чем несколько Тань - одним.

3 http://lib.ru/INPROZ/IRWING/ripvanvinkl.txt Вашингтон Ирвинг. Рип ван Винкль.
Перевод А.С. Бобовича. 14 Jul 2000 19:52:31 GMT
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Изначально, мне хотелось использовать какую-нибудь быстро рас-
тущую функцию для того, чтобы представлять факториал от числа
частиц в Бозе-Эйнштейновском конденсате. Такой факториал воз-
никает при попытке записать первое приближение для многочастич-
ной волновой функции.

Быстро растущая функция предложена в статье Гусманда [39], но
для асимптотического анализа она оказалась непригодной ввиду её
неголоморфности. Гусманд описал линейное линейное приближение
тетрации; это приближение дает две значащих цифры для тетра-
ции, пока вещественная часть аргумента лежит в интервале [−1, 0].
Нетрудно написать соответствующее расширение через передаточ-
ное уравнение и для остальных точек комплексной плоскости:

f(z) = uxp(z) =


ln
(
uxp(z+1)

)
at <(z) ≤ −1

z + 1 at −1 < <(z) ≤ 0

exp
(
uxp(z−1)

)
at 0 < <(z)

(14.9)

Эта функция показана на верхней картинке (a) рисунка 14.4 лини-
ями постоянной логамплитуды u и фазы v,

exp(u+iv) = f(x+iy) (14.10)

Такое представление карты отличается от того, которое обычно ис-
пользуется для визуализации комплексных функций этой Книги.
Обычно проводятся линии уровня вещественной и линии уровня
мнимой частей значений функции. Однако представление карт в том
же виде, как они были опубликованы в статье [44], я считаю важным
для ответа на вопрос, как я пришёл к эффективному представлению
голоморфной тетрации.

На рисунке 14.4, вертикальные линии разреза области аналитично-
сти делят комплексную плоскость на счетное множество почти не
перекрывающихся полос. Такое поведение породило вопрос о том,
можно ли предложить более голоморфное решение передаточного
уравнения. При беглом просмотре работы Гусманда, казалось, что
это невозможно, хотя допущение о монотонности производной от
решения, использованного для доказательства теорем в работе [39],
казалось сомнительным. В целях упростить доказательство несуще-
ствования голоморфной тетрации, я начал изучать её свойства, ожи-
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Рис. 14.4: exp(u+iv) = f(x+iy) для следующих функций: f=uxp, (a),
f=Fit3, (b), f=Fit6, (c), f=tet, (d)
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дая на некотором этапе прийти к противоречию и оформить изящ-
ное доказательство “от противного”. (Несуществование доказать не
удалось; пришлось предположить, наоборот, существование.)

Чтобы доказать несуществование функции, полезно её аппроксими-
ровать и нарисовать. Я рассмотрел несколько элементарных функ-
ций, имеющих логарифмическую особенность в точке −2 и прини-
мающих те же значения, что и тетрация, при некоторых целых зна-
чениях аргумента. Одной из таких аппроксимаций является

fit2(z)=ln(2+z)

+(1+z)
(

1 + z
2 exp

(
(z−1)s2(z)

)(
e− 2+ln 4

3

)
− ln 2

)
(14.11)

где

s2(z) = exp
(

exp(z − 2.51)
)
− 0.6 + 0.08(z+1) (14.12)

Константы в выражении (14.12) выбраны так, чтобы минимизиро-
вать невязку при подстановке f=fit2 в передаточное уравнение. Эту
аппроксимацию можно улучшить, сравнивая (14.12) с аккуратным
приближением. Однако, во время “угадывания” свойств тетрации,
аккуратная аппроксимация тетрации и даже её определение ещё не
существовали; поэтому пришлось минимизировать невязку.

После построения функции fit2, оказалось, что линейная комбина-
ция функций z 7→ fit2(z) и z 7→ ln(fit2(z+ 1)) дает ещё меньшую
невязку; так получилась аппроксимация fit3:

fit3(z)=0.6 fit2(z) + 0.4 ln
(
fit2(z + 1)

)
(14.13)

Область аппроксимации можно расширить; пусть

Fit3(z)=


ln
(
Fit3(z+1)

)
at <(z) ≤ −1

fit3(z) at −1 < <(z) ≤ 0

exp
(
Fit3(z−1)

)
at 0 < <(z)

(14.14)

Логамплитуда и фаза этой функции показаны на рисунке 14.4b.

Для сравнения, на рисунке 14.4 показаны ещё две карты c и d. Они
представляют, соответственно, асимптотическое приближение f =

Fit6, аккуратное при больших значениях мнимой части аргумента,
и тетрацию f = tet, описанную ниже, в секции 4, и являющуюся
основной целью этой главы.
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Асимптотическое приближение

Fit6(z) =

{
L+ exp(k(z+r)) , <(z) < −8

exp
(

fit6(z−1)
)
, <(z) ≥ −8

(14.15)

Для натуральной тетрации, инкремент k = L. Это может рассмат-
риваться как совпадение, которое, впрочем, каждый может прове-
рить с помощью достаточно примитивного асимптотического ана-
лиза. Значение константы r ≈ 1.075820830781− 0.9466419207254 i

является единственным подгоночным параметром такой аппрокси-
мации; это значение может рассматриваться приближенное значе-
ние точной фундаментальной математической константы 4. Функ-
ция Fit6(z) аппроксимирует тетрацию tet(z) при =(z) > 0.4; функ-
ция Fit6(z

∗)∗ аппроксимирует tet(z) при =(z) < −0.4; комбинация
этих функций показана на карте “c” рисунка 14.4. Вблизи веществен-
ной оси, то есть при |=(z)| < 0.4, такая аппроксимация ведет себя
отвратительно и эта полоса на карте оставлена белой.

В принципе, аппроксимации f=Fit3 и f=Fit6 по формулам (14.14)
(14.15) достаточны для построения карт и графиков тетрации; вме-
сте, они обеспечивают порядка трех значащих цифр во всей ком-
плексной плоскости. Однако, даже аппроксимация Fit3, см. (14.14),
позволяет догадаться, что, если голоморфное решение f передаточ-
ного уравнения существует, то оно стремится к стационарным точ-
кам L или L∗ логарифма, когда мнимая часть аргумента стремится
к плюс или минус бесконечности. Эти значения видны в левой верх-
ней и левой нижней частах карт “b”, “c” и “d” на рисунке 14.4. Зная
эти свойства и аккуратное представление тетрации, примитивные
аппроксимации этой секции можно сильно улучшить; это улучше-
ние описано во Владикавказском Математическом журнале [53].

Таким образом, эта секция поясняет, “как я догадался” о том, как
ведет себя тетрация в окрестности мнимой оси. Постулируя эти свой-
ства тетрации, можно построить эффективные и аккуратные алго-
ритмы для её вычисления. Такие постулаты перечислены в следую-
щей секции.

4 Я бы назвал её константой Кнезера. Это одна из констант, требуемых для вычисления
рассмотренных им разложений для итераций экспоненты [10]
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3 Свойства тетрации

Следуя рекоммендациям коллег, друзей и родственников, изложе-
ние в этой Книге идет от простого к сложному. Поэтому здесь пока
определяется лишь натуральная тетрация. Эта секция продолжает
пересказ статьи [44].

После того, как пара верхних карт рисунка 14.4 была построена, ос-
новные свойства этой функции стали ясны. Оставалось только по-
стулировать их, как определение натуральной тетрации, и исполь-
зовать эти свойства для её вычисления. Эти свойства перечислены
(повторены) ниже.

Решение F передаточного уравнения (14.1) с дополнительным усло-
вием F (0) = 0 называется натуральной тетрацией или, для кратко-
сти, просто тетрацией, и обозначается символом tet, если выполнены
следующие условия.

Т1. Функция F (z) вещественно-голоморфна во всей комплексной
плоскости за исключением полупрямой z ≤ −2 ; то есть F (z∗) =

F (z)∗. В точке z=−2, функция F (z) имеет логарифмическую осо-
бенность и, соответственно, точку ветвления.

Т2. Функция F (z) ограничена в полосе |<(z)| ≤ 1.

T3. Функция F (z) стремится к стационарной точке L в верхней ча-
сти комплексной плоскости: для вещественных x имеет место соот-
ношение

lim
y→+∞

f(z + iy) = L (14.16)

и для положительных значений y имеет место соотношение

lim
x→−∞

f(z + iy) = L (14.17)

T4. В полосе −1 ≤ <(z) ≤ 2 выполняется условие

arg(F (z)) < 2 (14.18)

Условия Т1-Т4 выше несколько избыточны. Можно надеяться, что
дальнейшее совершенстование аппарата суперфункций поможет ре-
шить, которые из этих свойств следует сохранить в определении тет-
рации, а какие оформить в виде теорем, следующих из укороченного
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определения и общих свойств голоморфных функций. Пока, пользу-
ясь декларацией эвристичности, все свойства Т1-Т4 постулируются
как части определения термина “натуральная тетрация”.

Из требований (14.16) и (14.17) и условия вещественности f(z∗) =

f(z)∗ следует, что

lim
y→−∞

f(z + iy) = L∗ (14.19)

и для отрицательных значений y имеет место соотношение

lim
x→−∞

f(z + iy) = L∗ (14.20)

Условия (14.17) и (14.20) используются в следующей секции для по-
строения и вычисления тетрации с помощью интеграла Коши.

4 Интеграл Коши

Для голоморфной функции F , имеет место формула Коши [86]:

F (z) =
1

2πi

∮
Ω

F (t)

t−z
dt (14.21)

где контур Ω интегрирования принадлежит односвязной области го-
ломорфизма и один раз обходит точку z против часовой стрелки.
С помощью уравнения (14.21), передаточное уравнение (14.1) мож-
но свести к интегральному уравнению для значений суперфункции
вдоль мнимой оси. Для экспоненты, такое уравнение описано в ста-
тье [44] и пересказано ниже.

Физик или математик, пользующийся формулой (14.21), имеет опре-
деленную свободу в выборе контура интегрирования. Он подобен
инженеру, проектирующему кольцевую дорогу для уединенного го-
ристого полуострова.

Добросовестный инженер постарается учесть расположение портов,
селений, заводов, ферм, с тем, чтобы одной дорогой помочь по воз-
можности большему количеству жителей добираться до тех мест,
куда они едут. Кроме того, добросовестный инженер постарается
избежать болот, крутых осыпей и узких извилистых ущелий, чтобы
сделать дорогу быстрой, дешевой и безопасной.
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Тщеславный диктатор, уже проявившися в спорте, войнах, живо-
писи, археологии и оринтологии, и решивший показать себя ещё и
в роли крутого инженера, может нарисовать на карте прямоуголь-
ник и предложить его в качестве проекта трассы. Такой “проект”
потребует много насыпей, выемок и туннелей, которые сильно про-
садят бюджет и дадут министрам дурной пример расточительства
и головотяпства.

К сожалению, в выборе контура интегрирования, предложенном в
статье [44], я выступаю скорее как тщеславный диктатор, чем как
добросовестный инженер: я выбираю контур интегрирования в виде
прямоугольника. Меня оправдывает лишь то, что на основе такого
контура получается эффективный алгоритм вычисления тетрации
(суперфункции от экспоненты); первые комплексные карты тетра-
ции были построены с таким алгоритмом.

Пусть F является вещественно-голоморфным решением передаточ-
ного уравнения F (z+1) = eF (z),
Пусть A - вещественное число, такое большое, что F (iA) ≈ L и,
значит, F (−iA)≈L∗

Пусть область голоморфизма функции F (z) включает область −1≤
<(z)≤1, и в этой области | argF (z)| < π.

Такие условия позволяют превратить контурный интеграл в реша-
емое интегральное уравнение при подходящем выборе контура Ω в
формуле Коши (14.21). Пусть контур Ω состоит из четырех сегмен-
тов:
A. вдоль линии <(t)=1 от t = 1−iA до t = 1+iA.
B. от точки t = 1+iA до точки t = −1+ iA, проходя над точкой z.
C. вдоль линии <(t) = −1 от t = −1+ iA до t = −1−iA.
D. от точки t = −1−iA до точки t = 1−iA, проходя под точкой z.

Для контура Ω, интеграл Коши может быть записан так:

F (z) =
1

2π

∫ A

−A

F (1+ip) dp

1 + ip− z
− 1

2π

∫ A

−A

F (−1+ip) dp

−1 + ip− z
(14.22)

− Fup

2πi

∫ 1−iA

−1−iA

dt

t−z
+
Fdown

2πi

∫ −1−iA

−1−iA

dt

t−z
где Fup и Fdown суть некоторые средние значения на участках B и
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D контура Ω.

С учетом передаточного уравнения 2.7, предполагая, что для требу-
емой области значений, функция T−1 голоморфна, уравнение (14.22)
может быть переписано с обычными интегралами:

F (z)=
1

2π

∫ A

−A

exp
(
F (ip)

)
dp

1 + ip− z
− 1

2π

∫ A

−A

ln
(
F (ip)

)
dp

−1 + ip− z
+K(z) (14.23)

где

K(z) = Fup ·
(

1

2
− 1

2πi
ln

1− iA+ z

1− iA− z

)
+ Fdown ·

(
1

2
− 1

2πi
ln

1− iA− z
1− iA+ z

)
(14.24)

Такая запись предполагает, что модуль фазы функции F вдоль ве-
щественной оси не превышает π, так что при интегрировании аргу-
мент логарифма не проходит через отрицательные значения.

Уравнения (14.23),(14.24) всё ещё точные. Разумеется, они становят-
ся приближенными, если мы заменим Fup→L и Fdown→L∗. Такая
замена замыкает представление дляK. Получается решабельное ин-
тегральное уравнение для аппроксимации FA(iy) распределения су-
перфункции F вдоль мнимой оси, паметризованного переменной y:

FA(iy) =
1

2π

∫ A

−A

exp
(
FA(ip)

)
dp

1 + ip− iy
− 1

2π

∫ A

−A

ln
(
FA(ip)

)
dp

−1 + ip− iy
+KA(iy)

(14.25)

где

KA(z) = L ·
(

1

2
− 1

2πi
ln

1−iA+z

1+iA−z

)
+ L∗ ·

(
1

2
− 1

2πi
ln

1−iA−z
1+iA+z

)
(14.26)

Уравнения (14.25) и (14.26), в отличие от уравнений 14.23 и (14.24),
замкнуты; они не содержат неизвестных параметров Fup и Fdown.
Это позволяет использовать (14.25) и (14.26) вычисления FA.

Представление интеграла по верхней и по нижней частям контура
в виде функции KA по формуле (14.26) не тривиально. В частно-
сти, при взглядe на выражение (14.26), возникает искушение запи-
сать каждый логарифм в виде разности двух логарифмов, чтобы
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Рис. 14.5: exp(ρ+iϕ)=KA(x+ iy) по формуле (14.26) для A=3, 5, 10

упростить выражения для аргументов логарифма. Однако, для то-
го, чтобы получить надежное представление для тетрации, этого
делать не следует, так как в представлении (14.26), разрезы области
голоморфизма направлены в стороны от мнимой оси; это позволя-
ет избежать приближения аргумента первичной аппроксимации для
тетрации к границам области голоморфизма функции K. Для того
чтобы представить эту функцию, её карта показана на рисунке 14.5.

При больших значениях A, решение FA уравнения (14.25) дает хо-
рошее приближение для суперфункции F ≈ FA;

F (z) = lim
A→∞

FA(z) (14.27)

Для того, чтобы получить тетрацию tet, надо обеспечить ещё вы-
полнение условия tet(0)=1. Для этого я кладу

tet(z) = F (x0 + z) (14.28)

где x0 есть решение уравнения F (x0)=1. Значение x0 зависит от на-
чального условия при итерационном решении уравнения 14.23; для
начального условия в виде аппроксимации (14.15), x0 оказывается
порядка одной десятой. Это значение зависит ещё от параметра A, и
поэтому не является фундаментальной математической константой.

Значение инкремента k в аппроксимации 14.15 указывает, что для
имплементации complex double, разумное значение константыA долж-
но быть порядка 20. Оказалось, при A=24 невязка чуть меньше, и
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это значение было выбрано. 5

Для численной имплементации уравнения (14.25), интегралы можно
заменить на их приближения по квадратурным формулам Гаусса-
Лежандра; тогда уравнение можно решать методом итераций, об-
новляя значения аппроксимации FA по одному. Попытка параллель-
ного присвоения новых значений всему массиву F приводит к рас-
ходящемуся алгоритму, но при подходящем выборе порядка при-
своения (например, сперва четные узлы, а потом нечетные), после
нескольких десятков итераций, процедура дает аккуратное прибли-
жение для решения.

Решение уравнения (14.25) аппроксимирует значения суперфункции
F вдоль мнимой оси. Затем, уравнение (14.23) дает аппроксимацию
функции F (z) в полосе

−1 < <(z) < 1 (14.29)

Аккуратность такой аппроксимации для краев этой полосы хуже,
чем для центральной части. Поэтому лучше использовать значения
из более узкой полосы

−1

2
≤ <(z) ≤ 1

2
(14.30)

пользуясь по мере надобности формулой

F (z) = T n
(
F (z−n)

)
(14.31)

при подходящем целом значении n, положительном или отрицатель-
ном в зависимости от знака <(z).

При увеличении параметра A в уравнении (14.22), функция F стре-
мится к решению передаточного уравнения (14.1). Tакое решение
ещё не обеспечивает условия F (0) = 1, но дает ключ к вычислению
требуемой функции через уравнение (14.28).

На рисунке 14.5, затенена полоса |x|<0.5, |y|<4.5 ; это примерно та
область, для которой значения функции KA используются для вы-
числения суперфункции F при построении последней рисунка 14.4d.

5Используя формулу Коши дла численных рассчетов в первый раз, я не догадался то такой
простой оценки и подбирал подходящее значение “методом тыка”, минимизируя невязку чис-
ленного решения при подстановке в передаточное уравнение. Я последовательно увеличивал
значение A до тех пор, пока невязка не стала порядка ошибок округления.
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Рисунок 14.5 показывает, что фаза “постоянного” слагаемого (то есть
независимого от искомой функции) в правой части уравнения (14.25)
не превышает двух и, таким образом, не превышает π. Это обосновы-
вает (верифицирует) использование логарифма в формуле (14.23).

В принципе, F (z−n) могло бы попасть на точку сингулярности или
линию разреза функции T или T−1. Это указало бы, что постро-
енная методом интеграла Коши суперфункция также сингулярна.
Такое происходит при вещественном аргументе, меньшим или рав-
ным минус двум,

В первых рассчетах, в качестве начальной пробной функции для
итерационного решения уравнения (14.25) использована аппрокси-
мация fit3; потом выяснилось, что итерации с другими пробными
функциями дают тот же результат.

С помощью алгоритма, описанного выше, в 2008 году впервые бы-
ла построена тетрация [44], то есть суперфункция для передаточ-
ной функции T = exp. При A = 24, использование квадратурной
формулы Гаусса-Лежандра с 2048ю узлами дает приближенное ре-
шение, которое, при подстановке в передаточное уравнение (2.7),
дает невязку порядка 10−14. Похоже, что использование перемен-
ных complex(double) дает порядка 14 корректных значащих цифр;
это указывает на устойчивость алгоритма и дает надежду на его
успешное применение для различных передаточных функций.

Описанный выше алгоритм использован при построении первых гра-
фиков тетрации по основанию b > exp(1/e) [87, 88]. В частности, с
помощью этого алгоритма построена нижняя карта на рисунке 14.4.

Для того, чтобы поднять статус тетрации до специальной функции,
были разработаны также численные аппроксимации, более быстрые,
чем вычисление контурного интеграла, и столь же точные (прецизи-
онные, обеспечивающие порядка 14 значащих цифр). Эти аппрокси-
мации рассмотрены в следующих секциях, ниже пересказаны неко-
торые результаты публикации 2010 года “Тетрация как специальная
функция” [52, 53].
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5 Разложение Тэйлора в нуле

Было интересно проверить заявление о том, что решение f = tet

уравнений (14.1) и (14.1), имеющее свойства Т1-Т4, существует и
единственно [44]. В соответствии с декларацией Введения, даже стро-
гое математическое доказательство не заменяет численную провер-
ку преложенного результата, так же, как численная проверка не за-
меняет строгое математическое доказательство.

Для серьезной проверки важно, чтобы алгоритм вычисления функ-
ции работал быстро. Для убыстрения предложены апроксимации
тетрации через элементарные функции [53, 52]. Одной из таких ап-
проксимаций является разложение Тэйлора в нуле, оно описано в
этой секции.

В принципе, производные тертрации могут вычисляться дифферен-
цированием представления (14.25). Однако более аккуратные значе-
ния дает использование интерала Коши с контуром в виде окружно-
сти. Для вычисления производных в нуле, радиус этой окружности
может быть больше единицы, и погрешность результата уменьшает-
ся за счет знаменателя в правой части уравнения (14.21). Так полу-
чены коэффициенты в разложении

naiv(z) =
N−1∑
n=0

cnz
n (14.32)

tet(z) = naiv(z) +O(zN) (14.33)

Приближенные значения коэффициентов c представлены в первом
столбце таблицы 5. Соответствующий степенной ряд сходится при
|z|<2, это расстояние от нуля до ближайшей особой точки, то есть
до минус двух.

Для численной имплементации) выбрано значение N = 50. Ком-
плексная карта приближения naiv по формуле (14.32) показанa на
левой фигуре рисунка 14.6 линиями постоянной вещественной части
и линиями постоянной мнимой части, u+iv = naiv(x+iv). Дополни-
тельные толстые линии указывают уровни u=<(L) и v=±=(L).

Чтобы показать невязку при подстановке аппроксимации f=naiv в
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Рис. 14.6: u+iv = naiv(x+iv) по формуле (14.32), слева; согласия
D1 = D1(x+ iy) и D2 = D2(x+ iy) по формулам (14.34) и (14.35),
центральная и правая карты.

передаточное уравнение (14.1), в центральной и правой частях ри-
сунка 14.6 показаны карты согласий

Dnaiv1(z) = − lg

(
| ln(naiv(z+1)− naiv(z)|
| ln(naiv(z+1)|+ |naiv(z)|

)
(14.34)

Dnaiv2(z) = − lg

(
| exp(naiv(z−1)− naiv(z)|
| exp(naiv(z−1)|+ |naiv(z)|

)
(14.35)

Функции согласия оценивают, сколько значащих цифр можно полу-
чить с помощью аппроксимации naiv по формуле (14.32). Проведе-
ны уровни D = 1, 2, 4, 6, 8, 10, 11, 12, 14. Символ "15"указывает об-
ласть, где согласие больше четырнадцати. Можно ожидать, что при
|z|<1 полином по формуле (14.32) дает порядка 14 значащих цифр.
Это близко к максимальной точности, достижимой с переменными
“complex double”.

Полиномиальная аппроксимация naiv по формуле (14.32) может ис-
пользоваться для аккуратного и быстрого вычисления тетрации, ко-
гда модуль аргумента меньше или порядка единицы. Для эффек-
тивной имплементации тетрации это хорошо, но не достаточно. В
следующей секции описывается способ расширить область аппрок-
симации.

6 Улучшенная аппроксимация

Область аккуратной аппроксимации тетрации вблизи нуля может
быть расширена, если принять во внимание логарифмическую осо-
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Таблица 5. Коэффициенты в разложениях (14.32), (14.36) и (14.40)

n cn sn <(tn) =(tn)

0 1.00000000000000 0.30685281944005 0.37090658903229 1.33682167078891

1 1.09176735125832 0.59176735125832 0.01830048268799 0.06961107694975

2 0.27148321290170 0.39648321290170 −0.04222107960160 0.02429633404907

3 0.21245324817626 0.17078658150959 −0.01585164381085 −0.01478953595879

4 0.06954037613999 0.08516537613999 0.00264738081895 −0.00657558130520

5 0.04429195209047 0.03804195209047 0.00182759574799 −0.00025319516391

6 0.01473674209639 0.01734090876306 0.00036562994770 0.00028246515810

7 0.00866878181723 0.00755271038865 0.00002689538943 0.00014180498091

8 0.00279647939839 0.00328476064839 −0.00003139436775 0.00003583704949

9 0.00161063129058 0.00139361740170 −0.00001376358453 −0.00000183512708

10 0.00048992723148 0.00058758348148 −0.00000180290980 −0.00000314787679

11 0.00028818107115 0.00024379186661 0.00000026398870 −0.00000092613311

12 0.00008009461254 0.00010043966462 0.00000024961828 −0.00000013664223

13 0.00005029114179 0.00004090111776 0.00000007899707 0.00000003171468

14 0.00001218379034 0.00001654344436 0.00000000637479 0.00000002270476

15 0.00000866553367 0.00000663102846 −0.00000000341142 0.00000000512289

16 0.00000168778232 0.00000264145664 −0.00000000162203 0.00000000031619

17 0.00000149325325 0.00000104446533 −0.00000000038743 −0.00000000027282

18 0.00000019876076 0.00000041068839 −0.00000000001201 −0.00000000013440

19 0.00000026086736 0.00000016048059 0.00000000002570 −0.00000000002543

20 0.00000001470995 0.00000006239367 0.00000000000935 0.00000000000045

21 0.00000004683450 0.00000002412797 0.00000000000170 0.00000000000186

22 −0.00000000154924 0.00000000928797 −0.00000000000005 0.00000000000071

23 0.00000000874151 0.00000000355850 −0.00000000000016 0.00000000000012

24 −0.00000000112579 0.00000000135774 −0.00000000000005 −0.00000000000001

25 0.00000000170796 0.00000000051587 −0.00000000000001 −0.00000000000001

бенность тетрации. То есть “выключить” сингулярность в точке −2,
раскладывая функцию tet(z)− log(z+2) вместо функции tet(z). Та-
кое разложение дает приближение

maclo(z) = ln(z+2) +
N−1∑
n=0

snz
n ; (14.36)

tet(z) = maclo(z) +O(zN) . (14.37)

Ряд в аппроксимации (14.36) сходится при |z|<3, точно воспроизво-
дя логарифмическую точку ветвления и даже кусочек разреза в на-
правлении отрицательной части вещественной оси. Приближенные
значения коэффициентов s представлены во втором столбце табли-
цы 5.

192



u
=
<

(L
)

u
=

1

v
=
=

(L
)

v
=
=(
L
∗ )

v=1

v=
−1

y

2

1

0

−1

−2

−2 −1 0 1 2 x

y

2

1

0

−1

−2

−2 −1 0 1 2 x

D3 > 14

D3<1

y

2

1

0

−1

−2

−2 −1 0 1 2 x

D4 > 14

D4<1

Рис. 14.7: u+iv=maclo(x+iy) по формуле (14.36) при N=101, слева;
согласия D3 и D4 по формулам (14.38) и (14.39), центр и справа.

В этой секции (и в численной имплементации), для аппроксимации
maclo выбрано значение N = 101; комплексная карта приближения
такого приближения по формуле (14.36) показана на левой карте ри-
сунка 14.7. Область аппроксимации тетрации функцией maclo шире,
чем в случае непосредственного разложения тетрации в нуле. На том
же рисунке 14.7 показаны также карты согласий

D3(z) = − lg


∣∣∣ ln(maclo(z+1)

)
−maclo(z)

∣∣∣∣∣∣ ln(maclo(z+1)
)∣∣∣+

∣∣∣maclo(z)
∣∣∣
 (14.38)

D4(z) = − lg


∣∣∣ exp

(
maclo(z−1)

)
−maclo(z)

∣∣∣∣∣∣ exp
(
maclo(z−1)

)∣∣∣+
∣∣∣maclo(z)

∣∣∣
 (14.39)

В центральной части комплексной плоскости, невязки при подста-
новке f→maclo в уравнениe (14.1), имеют порядок величины 10−15.
При |z|< 2, аппроксимация maclo с сотней слагаемых в сумме дает
порядка четырнадцати значащих цифр. Эта аппроксимация исполь-
зована при имплементации натуральной тетрации.

Левая карта рисунка 14.7 уже показывает, что при увеличении мни-
мой части аргумента, функция стремится к константе L: линии по-
стоянной вещественной части становятся почти параллельными ли-
ниям постоянной мнимой части. Однако, когда модуль аргумента
становится больше двух, аккуратность такого приближения быстро
ухудшается. Чтобы ещё расширить область аппроксимации тетра-
ции элементарными функциями, в следующей секции рассмотрено
разложение натуральной тетрации в точке 3i.
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Рис. 14.8: u+iv = tai(x+iy) по формуле (14.40) при N = 51 и согласие D5 по
формуле (14.41).

7 Разложение в точке 3i

Для эффективного (быстрого и точного) алгоритма вычисления тет-
рации, достаточно обеспечить хорошие аппроксимации вдоль поло-
сы единичной ширины вдоль мнимой оси. Какое бы большое число
N слагаемых в приближении maclo (14.36) мы ни брали, это при-
ближение плохо аппроксимирует тетрацию в точке 3i. Для меня это
было серьезным поводом, чтобы вычислить коэффициенты разло-
жения Тэйлора именно в этой точке. Такое разложение описано в
этой секции.

Оборванное разложение Тэйлора функции tet(z) в точке z = 3i я
назвал именем “tai” (TAylor expansion centered at the Imaginary axis):

tai(z) =
N−1∑
n=0

tn (z−3)n (14.40)

Аппроксимации коэффициентов t вычислены по формуле Коши; их
вещественные и мнимые части представлены в последних двух столб-
цах таблицы 5. Ряд сходится при |z−3i|<

√
22+32 =

√
13≈3.6 . Для

имплементации выбрано значениеN=51; при этом, когда |z−3i| < 2,
аппроксимация tai по формуле (14.40) дает порядка 14 значащих
цифр. Комплексная карта этой функции представлена в левой части
рисунка 14.8. Правая картинка этого рисунка представляет функ-
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цию согласия

D5(z) = − lg


∣∣∣ ln(tai(z+1)

)
− tai(z)

∣∣∣∣∣∣ ln(tai(z+1)
)∣∣∣+

∣∣∣tai(z)
∣∣∣
 (14.41)

Как и на рисунках 14.6 и 14.7, линии уровня для функции согла-
сия проведены с интервалом в два порядка величины; для значений
внутри внутреннего контура, наблюдается согласие с четырнадца-
тью значащими цифрами.

Приближение tai по формуле (14.40) существенно расширяет об-
ласть, в которой для натуральной тетрации имеется быстрый и ак-
куратный алгоритм. При положительных значениях =(z), тертра-
ция может быть аппроксимирована в виде

tet(z) ≈ tai(z) (14.42)

При отрицательных значениях =(z), тертрация может быть аппрок-
симирована в виде

tet(z) ≈ tai(z∗)∗ (14.43)

такое представление вполне достаточно для построения рисунка 14.4d,
то есть для вычисления с четырнадцатью знаками значений этой
функции в поле карты. (Я предполагаю, что передаточное уравне-
ние (14.1) применяется целое число раз с тем, чтобы вещественная
часть аргумента не превышала половину.) Однако такое представ-
ление не обеспечивает аккуратной аппроксимации при |=(z)| > 5.

В принципе, для быстрой и аккуратной имплементации тетрации
в комплексной плоскости, можно написать аналогичное разложение
Тэйлора в точке 5i (или даже 6i); это позволило бы ещё вдвое расши-
рить область аппроксимации, и продолжать в том же духе повдоль
мнимой оси. Однако есть более изящное представление, а именно,
асимптотическое разложение тетрации при больших значениях мни-
мой части аргумента. Это представление рассмотрено в следующей
секции.

8 Асимптотическое разложение

Аппроксимации функции tet при больших значениях мнимой части
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аргумента получается из асимптотического разложения

tetA(z) = L+
∑
n,m

Am,n exp (Lnz + αmz) (14.44)

где L≈0.31813150520476413+1.3372357014306895 i есть стационар-
ная точка логарофма, L = ln(L), a A суть постоянные коэффици-
енты. Подстановка f = tetA в передаточное уравнение (14.1) дает
цепочку уравнений для коэффициентов A. Этих уравнений недо-
статочно, чтобы оределить Am,0, так что такое решение всё ещё
имеет счетное множество подгоночных параметров для натураль-
ных значений m. Трудность нахождения этих параметров ещё в 20м
веке отмечал Хельмут Кнезер (Helmuth Kneser) [10]. Однако даже
небольшое количество слагаемых, принятых во внимание в оборван-
ном ряде (14.44), может использоваться для вычисления тетрации в
при достаточно больших значениях мнимой части аргумента.

Чтобы получить аккуратное приближение тетрации для области,
которая ещё не перекрыта предыдущими аппроксимациями, доста-
точнo учесть всего несколько слагаемых. Пусть

fima(z) =
N∑
n=0

anε
n + βε exp(2πiz) , (14.45)

где малый параметр

ε=exp(Lz+Lr) (14.46)

Подстановка f(z) = fima(z) +O(εN+1) дает коэффициенты

a0 = L ≈ 0.31813150520 + 1.33723570143 i (14.47)
a1 = 1 (14.48)

a2 =
1/2

L− 1
≈ −0.1513148971− 0.2967488367 i (14.49)

a3 =
a2 + 1/6

L2 − 1
=

2 + L

6(L−1)(L2−1)
≈−0.036976+0.098730 i (14.50)

a4 =
6 + 6L+ 5L2 + L3

24(L−1)3(L+1)(L2+L+1)
≈ 0.02581−0.01738 i (14.51)

a5 =
24+36L+46L2+40L3+24L4+9L5+L6

120(L−1)4(L+1)2(1+L+2L2+L3+L4)

≈ −0.0079444196+0.00057925018 i (14.52)
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Рис. 14.9: Верхнаяя карта: u+iv = fima(x+iy) по формуле (14.45);
нижняя карта: согласие Dfifi по формуле (14.55)

В приниципе, можно учитывать больше слагаемых, но оказывается,
уже даже N = 5 позволяет позволяет, с учетом предыдущих раз-
ложений, перекрыть аккуратными аппроксимациями всю комплекс-
ную плоскость. При этом R и β в правых частях формул (14.45) и
(14.46) остаются “подгоночными” параметрами. Их значения выби-
раются так, чтобы аппроксимировать тетрацию, вычисляемую чуть
более медленным способом через интеграл Коши:

r ≈ 1.0779614375280− 0.94654096394782 i (14.53)
β0 ≈ 0.12233176− 0.02366108 i (14.54)

Комплексная карта функции fima с такими значениями показана
на на верхней картинке рисунка 14.9; представлена верхняя полови-
на координатной плоскости. В июней части плотность линий столь
велика, что картограф всё равно не сумел бы их провести. Для наг-
ледности, на карте добавлены широкие линии уровней <(L) и =(L).

Пока нет принципиальных ограничений на аккуратность вычисле-
ния тетрации через интеграл Коши, этот алгоритм может считаться
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точным. Численные рассчеты, представленные в этой книге, прове-
дены с переменными “complex double”, и аккуратность вычисления
параметра β хуже, чем параметра R. Читатели приглашаются по-
вторить рассчеты в переменных “long complex double” и добавить к
оценкам для R и β0 ещё десяток значащих цифр. Эти параметры мо-
гут считаться фундаментальными математическими константами.

Для большей аккуратности, количество слагаемых в оборванном
разложении (14.44) может быть увеличено, но пока я не могу пред-
ложить изящного способа вычисления лидирующих коэффициен-
тов A0,m. Их приxодится оценивать из условий tet(z∗) = tet(z)∗

и tet(0) = 1; то есть использовать значения тетрации вне обла-
сти аппроксимации этой функции её асимптотическим разложением
(14.45). Это обстоятельство отмечается в работе Кнезера [10]; впро-
чем, там не оцениваются даже первые их этих лидирующих коэф-
фициентов: в прошлом веке ещё не было алгоритма аккуратного
вычисления тетрации через интеграл Коши, и у Кнезера не было
компьютера, чтобы вычислать константы Кнезера через интеграл
Коши. Возможно, в будущем будет предложен более красивый спо-
соб вычисления этих констант.

Чтобы показать невязку при подстановке f = fima в передаточное
уравнение (14.1), на рисунке построена карта функции согласия

Dfifi(z) = − lg

(
|fima(z)− exp(fima(z−1))|
|fima(z)|+ | exp(fima(z−1))|

)
(14.55)

Как и на предыдущих картах согласия, линии уровня проведены
через два порядка величины, и лишь для уровня Dfifi = 1 сделано
исключение; за этим уровнем, аппроксимация fima даже качествен-
но не воспроизводит поведение натуральной тетрации. В верхней
области, над верхней курвой, невазка мала и можно ожидать, что
аппроксимация дает по крайней мере 14 значащих цифр, что близ-
ко к максимальной аккуратности при использовании переменных
complex double.

В окрестности мнимой оси, область применимости аппроксимации
fima приближается к точке 3i. Это дает возможность сравнить ап-
проксимацию fima с аппроксимацией tai, полученной из разложения
Тэйлора в этой точке в предыдущей секции. Такое сравнение рас-
смотрено в следующей секции.
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Рис. 14.10: Карта согласия D=D6(x+iy) по формуле (14.56) и карта согласия
D=D7(x+iy) по формуле (14.57)

9 Сравнение аппроксимаций

На основе представления тетрации черех интеграл Коши, были вы-
числены коэффициенты различных разложений тертрации и её ап-
проксимации элементарными функциями. Интересно сравнить са-
мосогласованность таких аппроксимаций. В этой секции представле-
ны карты функций согласия, указывающие области, где различные
представления тетрации согласуются между собой.

В левой части рисунка 14.10 показана функция согласия между ап-
проксимацией tai по формуле (14.40) и аппроксимацией fima по фор-
муле (14.45)

D6(z) = − ln

(
|tai(z)− fima(z)|
|tai(z)|+ |fima(z)|

)
(14.56)

В правой части рисунка 14.10 показана функция согласия между
аппроксиацией tai (14.40) и аппроксимацией maclo (14.36)

D7(z) = − ln

(
|tai(z)−maclo(z)|
|tai(z)|+ |maclo(z)|

)
(14.57)

Рисунок 14.10 указывает, как выбирать аппроксимацию тетрации в
зависимости от мнимой части аргумента при умеренных значениях
|<(z)| < 1. Эту границу следует провести в области, где D > 14.
Когда |=(z)| ≤ 1.5, пусть используется аппроксимация maclo; при
1.5 < =(z) ≤ 4.5, пусть используется аппроксимация tai, a при ещё
больших значениях, пусть используется fima.
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Рис. 14.11: Согласие D=D8 по формуле (14.59), слева; аналогичное согласие
для контурного интеграла со сдвинутой на −0.5 базовой областью .

На основе рисунка 14.10, я предлагаю следующую аппроксимацию:

fse(z) =



fima(z) , 4.5 < =(z)

tai(z) , 1.5 < =(z) ≤ 4.5

maclo(z) , −1.5 ≤ =(z) ≤ 1.5

tai(z∗)∗ , −4.5 ≤ =(z) <−1.5

fima(z∗)∗ , =(z) <−4.5

(14.58)

Эту аппроксомацию интересно сравнить с прямой оценкой тетра-
ции через интеграл Коши. В левой части рисунка 14.11 показано
согласие

D8(z) = − lg

(
|fse(z)− F4(z)|
|fse(z)|+ |F4(z)|

)
(14.59)

аппроксимации fse с аппроксимацией F4 тетрации через контурный
интеграл.

Рисунок 14.11 выявляет дефекты использованных аппроксимаций.
Скачки при =(z)=1.5 и при =(z)=2.5 вызваны переходом от функ-
ции maclo к функции tai и от функции tai к функции fima в ком-
бинации FSE. Скачки при полуцелых значениях <(z) вызваны раз-
рывами функции F4, которая расширяет начальное приближение,
справедливое для |<(z)| < 1, используя |<(z)| ≤ 1/2 в качестве
базового интервала. Ошибки округления приводят нерегулярной
структуре. Внутри полоски |<(z)| < 1.5, взаимные отклонения этих
трех аппроксимаций имеют порядок величины 10−14.
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Задача была перекрыть хорошими (быстрыми и аккуратными) ап-
проксимациями хотя бы полосу <(z) ≤ 0.5; тогда значения во всей
комплексной плоскости z могут быть выражены через передаточное
уравнение (14.1) в правой части комплексной полуплоскости и через
“обращенное” уравнение

ln(tet(z)) = tet(z−1) (14.60)

Рисунок показывает, что эта цель достигнута; согласие порядка 14
десятичных цифр имеет место в гораздо более широкой области ком-
плексной плоскости. Так сделана “быстрая” аппроксимация тетра-
ции. Эта аппроксимация имеет такую же аккуратность (порядка 14
значащих цифр), как и исходное представление через интеграл Ко-
ши; но вычисляется быстрее чем интеграл Коши.

Когда я заявил, что тетрация считается столь же быстро и столь
же аккуратно, как и другие специальные функции, Генрик Трап-
пманн попросил меня сделать ещё один численный тест, а именно,
сдвинуть базовую область, в которой вычисляется интеграл Коши.
Чтобы вставить мне шпильку, коварный Генрик предложил сдви-
нуть контурный интеграл вправо, в сторону бóльших значений <(z),
подальше от логарифмической особенности тетрации в точке −2. К
тому времени, некоторые карты рисунка 14.4 уже были построены;
я знал, что такое тетрация, например, от трёх или даже от полу-
тора (см. также рисунок 14.1). Если хорошенько сдвинуть контур
вправо, то прийдется работать с разными листами логарифма. Я
посмотрел на рисунки и понял, что есть шанс сесть в лужу, как это
делали учителя в советских школах. Они путались в безграмотных
“методичках”, дети вставляли им шпильки, потом этим учителям
уже неучи в РОНО вставляли длинное перо, а директрисы метали
икру, как это показано на рисунке 14.12.

вставили
шпильку

сел в лужу

вставили
длинное
перо

мечет икру
Рис. 14.12: Советская школа
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Перспектива оказаться в роли советского учителя (рис. 14.12) мне
не улыбалась, поэтому я честно признался, что интеграл Коши - не
панацея, и сдвигать контур на несколько единиц вправо отказался.
Читатели приглашаются проделать это в качестве поучительного
упражнения и поймать момент, когда из-за разреза логарифма фор-
мула Коши для вычисления тетрации перестанет работать. Впро-
чем, я согласился сдвинуть контур интегрирования на 1/2 влево,
и pасчитать ab inicio значения tet(z) вдоль вертикальной прямой
<(z) = 1/2. Потом, естественно, с помощью передаточного уравне-
ния и интеграла Коши, вычисление распространяется на всю ком-
плексную плоскость (за исключением луча z≤−2). Относительное
отличие значений тетрации, подсчитанное с таким модифицирован-
ным алгоритмом, от рассчитанных ранее, оказалось порядка 10−14,
как я и ожидал (и в чем хотел удостовериться Генрик). Значения,
подсчитанные через такой модифицированный интеграл Коши, под-
ставлены вместо функции F4 в формулу (14.59), и полученная функ-
ция согласия представлена в правой части рисунка 14.11.

Для вычисления параметров для функций, аппроксимирующих тет-
рацию, требовались коэффициенты разложения Тэйлора. Для них
использовались контуры интегрирования с размером, бóльшим еди-
ницы, то есть более широким, чем область первичной аппроксима-
ции через интеграл Коши; для вычисления вне области первичной
аппроксимации использовано передаточное уравнение. Это обеспе-
чивает определенную стабильность численной процедуры; погреш-
ность приближения оказалась не больше (и, вероятно, даже мень-
ше), чем погрешность исходного приближения. Для рассчетов со
сдвинутым контуром (см. правую карту на рисунке 14.11), согласие
получилось не хуже, а, пожалуй, даже лучше, чем для исходного
представления с симметричным расположением контура интегриро-
вания. Это можно объяснить тем, что на карте тетрации (см. рису-
нок 14.13), вдоль прямой x = −0.5 функция изменяется меньше и
медленнее, чем вдоль прямой x=0.

Скепсис по поводу выбора контура интегрирования и аналогии с
ленивым инженером подтвердились. Изначальный контур интегри-
рования не оптимален; даже прямоугольный контур можно выбрать
лучше (сдвинув его на 0.5 влево). Однако я всё ещё считаю, что про-
стота этого контура оправдывает такой выбор.
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После многочисленных тестов описанных выше быстрых аппрокси-
маций тетрации, была загружена имплементация fsexp.cin следую-
щего алгоритма:

FSE(z) =



FIMA(z) , 4.5 < =(z)

TAI(z) , 1.5 < =(z) ≤ 4.5

MACLO(z) , −1.5 ≤ =(z) ≤ 1.5

TAI(z∗)∗ , −4.5 ≤ =(z) < −1.5

FIMA(z∗)∗ , =(z) < −4.5

(14.61)

где

FIMA =

{
fima(z) , =(z) > 4+0.2379<(z)

exp(FIMA(z−1)), =(z) ≤ 4+0.2379<(z)
(14.62)

TAI =


tai(z) , |<(z)| ≤ 0.5

log(TAI(z+1)) , <(z) < −0.5

exp(TAI(z−1)) , <(z) > 0.5

(14.63)

MACLO =


tai(z) , |<(z)| ≤ 0.5

log(MACLO(z+1)) , <(z) < −0.5

exp(MACLO(z−1)), <(z) > 0.5

(14.64)

Эта аппрокцимация дает порадка 14ти верных десятичных знаков
тетрации tet и согласуется с более ранними результатами [44]. По-
хоже, что эта аппроксимация быстрее и точнее всех аппрокцимаций
голоморфной тетрации, публиковавшихся до 2010 года.

Большое число слагаемых сохранено в аппроксимациях (14.40) и
(14.36) для того, чтобы обеспечить их хорошее перекрытие на ри-
сунках 14.10 и 14.11. При коммерческой имплементации таких алго-
ритмов, количество слагаемых в аппроксимациях рядов может быть
уменьшено без потери точности. В частности, это относится к вы-
числению тетрации на вещественной оси; достаточно обеспечить хо-
рошую аппроксимацию функции tet(z) для |z| ≤ 1/2, что составля-
ет всего четвертушку от радиуса круга, в котором аппроксимация
тетрации функцией maclo дает 14 знаков.

Аппроксимации, описанные выше, позволяют быстро строить кар-
ты тетрации с высоким разрешением. Одна из таких карт показана
на рисунке 14.13. Аккуратность в 14 значащих цифр допускает глу-
бокие зумины такой карты, и, в частности, квази-хаотичного пове-
дения тетрации в окрестности положительной части вещественной
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оси, где тетрация растет очень быстро (и, следовательно, её мнимая
часть при отходе от вещественной оси изменяется тоже очень быст-
ро). Читатели приглашаются скачать алгоритм вычисления тетра-
ции fsexp.cin, графопостроитель conto.cin (с сайта ТОРИ или из
Ситизендиума) и построить такие карты по собственному вкусу и
усмотрению. Такая карта тетрации предложена для обложки этой
Книги.

Обратная функция к тетрации является называется атктетрацией.
Это абельфункция экспоненты. То есть абельэкспонента. Она рас-
смотрена в следующей главе.
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Рис. 14.13: u+iv=tet(x+iy)
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Глава 15

Арктетрация
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Рис. 15.1: u+iv = ate(x+iy)

Обратная функция к натуральной тетрации, обозначается здесь сим-
волом ate, так что ate = tet−1. Комплексная карта арктетрации по-
казана на рисунке 15.1.

Арктетрация удовлетворяет уравнению Абеля

ate
(

exp(z)
)

= ate(z) + 1 (15.1)

и дополнительному условию

ate(1) = 0 (15.2)

Свойства этой функции и алгоритм для её аккуратного вычисления
рассмотрены в этой главе.
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1 Вычисление арктетрации

Aрктетрацию можно вычислять, как обратную функцию тетрации,
используя метод Ньютона. Как представление тетрации через инте-
грал Коши, так и её аппроксимации через элементарные функции
позволяют выразить tet′. Поэтому ate(z) можно аппроксимировать
как предел последовательности gn с рекуррентным соотношением

gn+1 = gn +
tet(gn)− z

tet′(gn)
(15.3)

Значительное количество итераций может быть медленным. Кроме
того, всё равно встает вопрос о выборе такого начального условия
g0, при котором линии разреза ровно идут на −∞, параллельно ве-
щественной оси, а не дрыгаются как попало. Такое дрыгание очень
даже бывает при использовании метода Ньютона с бестолковым вы-
бором начального элемента последовательности (15.3).

Имеет смысл рассмотреть асимптотические свойства решения урав-
нения Абеля. Такие свойства можно вывести из асимптотических
свойств тетрации. Этот процесс можно механизировать с помощью
функции InverseSeries софтвера “Mathematica” или её аналогов. Кро-
ме того, асимптотические разложения можно увидеть непосредствен-
но из уравнения Абеля, и сразу потребовать, например, чтобы эта
функция имела точки ветвления L и L∗, которые являются по совме-
стительству также и стационарными точками логарифма. Арктет-
рацию достаточно аппроксимировать, например, в области, обозна-
ченной в виде затененного серпа на рисунке 15.1. Представление для
других значений аргумента может быть получено последовательным
применением уравнения Абеля (15.1); при этом арктетрация неко-
торого аргумента выражается через арктетрацию от аргумента из
затененной области.

Методом пристального всматривания можно понять, что решение
уравнения Абеля (15.1) должно быть сингулярно в стационарных
точах логарифма, L и L∗. Зная экспоненциальный доминирующий
терм асимптотического разложения тетрации, можно догадаться,
что доминирующим термом разложения арктетрации должен быть
логарифм. Поэтому естественно строить первое приближение для
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абельэкспоненты g, аппроксимируя функцию

h(z) = ate(z)− ln(z−L)

L
− ln(z−L∗)

L∗
(15.4)

Функцию h можно разложить в ряд Тэйлора в точке единица. Такое
разложение ведет к аппроксимации

fsl(z) =
ln(z−L)

L
+

ln(z−L∗)
L∗

+
N−1∑
n=0

un (z−1)n (15.5)

ate(z) = fsl(z) +O(z−1)N (15.6)

Первые тридцать коэффициентов u этого разложения представлены
в таблице 15.1.

Таблица 15.1: Коэффициенты un в разложении (15.5)

n un n un n un

0 1.41922521550451 10 0.00000003111805 20 0.00000000002293

1 −0.02606629029752 11 0.00000002940887 21 −0.00000000002462

2 0.00173304781808 12 −0.00000001896929 22 0.00000000000666

3 −0.00001952130725 13 0.00000000351784 23 0.00000000000322

4 −0.00006307006450 14 0.00000000204270 24 −0.00000000000354

5 0.00002567895998 15 −0.00000000171995 25 0.00000000000096

6 −0.00000559010027 16 0.00000000039882 26 0.00000000000051

7 −0.00000007279712 17 0.00000000019328 27 −0.00000000000055

8 0.00000065148872 18 −0.00000000019113 28 0.00000000000014

9 −0.00000027698138 19 0.00000000004947 29 0.00000000000009

Комплексная карта аппроксимации fsl по формуле (15.5) при N=70

показана в левой части рисунка 15.2 в тех же обозначениях, что и
на рисунке. Центральная часть карты на рисунка 15.2 выглядит как
фрагмент карты рисунка 15.1.

Oбласть применимости аппроксимации 15.5 ограничена. Чтобы по-
казать эту область, в центральной и правой части рисунка 15.2 по-
казаны карты функций согласия

DA(z) = − lg

(
|fsl(exp(z))−1− fsl(z)|
|fsl(exp(z))−1|+ |fsl(z)|

)
(15.7)

DB(z) = − lg

(
|fsl(ln(z))+1− fsl(z)|
|fsl(ln(z))+1|+ |fsl(z)|

)
(15.8)
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Рис. 15.2: u+iv = slo(x+iy) по формуле (15.5) при N = 70, слева, и
согласия DA =DA(x+iy), DB =DB(x+iy), по формулам (15.7), (15.8)

Внутри внутренних контуров, согласие больше четырнадцати. Эти
области отмечены символом 15. Рисунок 15.2 указывает, что при
|z− 1| < 1.4, аппроксимация fsl(z) по формуле (15.5) обеспечива-
ет порядка 14 значащих цифр. Аккуратность такого приближения
несколько хуже в окрестности точек L и L∗, то есть вблизи сингуляр-
ностей, где малое изменение аргумента влечет большое изменение
значения, возвращаемого функцией.

На основе приближения fsl, изготовлена численная имплементация
функции ate; уравнение Абеля использовано, чтобы привести аргу-
мент функции в область, заштрихованную на рисунках 15.1 и 15.2.
Для численной имплеметации FSL, в сумме в формуле (15.5) ис-
пользовано N=128 слагаемых. Получаемая при этом аккуратность
приближается к максимально возможной для арифметики complex
double. В качестве теста такой имплементации, на рисунке 15.3 пред-
ставлены результаты численной проверки соотношений

ate(tet(z)) = z (15.9)

tet(ate(z)) = z (15.10)

для “complex double” имплементаций tet≈FSE и ate≈FSL. Показа-
ны карты функций согласия

Dat(z) = − ln

(
|FSL(FSE(z))− z|
|FSL(FSE(z))|+ |z|

)
(15.11)

Dta(z) = − ln

(
|FSE(FSL(z))− z|
|FSE(FSL(z))|+ |z|

)
(15.12)

Как и для многих других обратных функций, область применимо-
сти соотношения (15.9) ограничена; ширина полосы, где это соотно-
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Рис. 15.3:D=Dat(x+iy), слева, и D=Dta(x+iy), справа, по формулам
(15.11) и (15.12)

шение имеет место, определяется асимптотической периодичностью
тетрации в верхней и в нижней частях комплексной плоскости. При
этом, вблизи вещественой оси полоса применимости расширяется и
имеет “клюв”, который, формально, уходит на плюс бесконечность.
Обратное соотношение, то есть (15.10), наоборот, имеет место почти
во всей комплексной плоскости.

Численная проверка подтверждает самосогласованность имплемен-
таций тетрации и арктетрации. Для переменных Complex double,
при таких имплементациях получается порядка 14 значащих цифр.

2 О названиях

Имплементации тетрации и арктетрации загружены в ТОРИ,
http://mizugadro.mydns.jp/t/index.php/Fsexp.cin и
http://mizugadro.mydns.jp/t/index.php/Fslog.cin
Названия этих имплементаций обсуждаются в этой секции.

Имена функций FSEXP и FSLOG исторические. Ещё несколько лет
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назад некоторые авторы (и, к сожалению, даже я) называли тетра-
цию термином “superexponential”, хотя тетрация является лишь спе-
циальным случаем суперэкспоненты, со специфическим асимптоти-
ческим поведением на ±i∞, и дополнительными условиями. Генрик
Траппманн даже хотел к названию функции добавить мое имя; он
до последнего момента [63] ждал, что “моя тетрация” [44] окажет-
ся не единственной, не настоящей, и тогда имя “tet” можно будет
использовать для “настоящей” натуральной тетрации.

После нудной дедукции [63], Генрика удалось убедить, что “моя тет-
рация” есть самая настоящая и самая натуральная 1. Другие (менее
натуральные) суперэкспоненты по натуральному основанию можно
по мере надобности получать преобразованием (2.12).

Для того, чтобы использовать это имя функции, tet, и для других
значений основания b, в последующих главах основание указывается
в виде правого нижнего индекса; тетрация по основанию b то есть
суперфункция от expb = {z 7→bz}, экспоненты по основанию b, будет
записываться в виде tetb, по аналогии с expb и logb.

Имплементация тетрации tet называется FSEXP, аббревиатура от
“Fast Super EXPonential”, а имплементация арктетрации ate называ-

1Слово “натуральный” здесь играет как минимум двумя из своих возможных значений,
указывая одновременно на подлинность этой функции и на то, что она по основанию e≈2.71 .
Надеюсь, что термин “натуральная тетрация” не вызовет путаницы, какую вызвали во время
СССР “натуральные расписки”. Такие расписки организаторы финансовой пирамиды выда-
вали вкладчикам. Следователи, прокуроры, судьи и народные заседатели думали, что это
юридический термин, использовали его, но не хотели демонстрировать своё невежество и
никого не спрашивали о значении этого термина. Потом адвокат всё-таки спросила потерпев-
шего, что он имеет в виду, употребляя этот термин. После серии вопросов удалось выяснить,
что так в криминальной среде называется нотариально заверенный документ, удостоверяю-
щий, что деньги за автомобиль, который жулики обещали потерпевшим, уже получены. Дело
чуть не лопнуло из-за того, что первый эшелон вкладчиков пирамиды составили работники
прокуратуры, а второй - работники милиции, и участники первых слоев пирамиды обещанные
им машины получили, и не хотели с ними расставаться, а захлебываться пирамида начала
только после того, как тысячи “натуральных расписок” были проданы безграмотным шах-
терам. Организаторы не признавали себя виновными и настаивали на том, что если бы им
позволили и дальше торговать “натуральными расписками” на заводах, распространяя их
среди рабочих (а потом - в колхозах, продавая “натуральные расписки” крестьянам), то шах-
теры тоже получили бы обещанные автомобили. Впрочем, к чести советских судей, в конце
концов махинация с “натуральными расписками” была квалифицирована как натуральное
жульничество, мошенничество, и организаторам пришлось “натурально” садиться в тюрьму
или откупаться, уж как у кого получилось. Это вот такое длинное получилось объяснение
термина “натуральный”.
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ется FSLOG, что есть аббревиатура от “Fast Super Logarithm”. Эти
имена неудачные, хотя и уже исторические. Сейчас имена FSEXP
и FSLOG уже встроены во многие программы, в том числе и на
нескольких “виках”. Я опасаюсь создать путаницу и пока не берусь
их переименовывать. Потому как лучше одна плохая система обо-
значений, чем две “хороших”.

Следует отметить, что имя FSLOG (Fast Super Logarithm) ещё бо-
лее идиотское, чем FSEXP, так как оно создает впечатление, что
это суперфункция от логарифма, что далеко не так. Суперфунк-
цией от логарифма является z 7→ tet(−z), a вовсе не “суперлога-
рифм". Впрочем, я надеюсь, что можно сделать ещё более быстрые
имплементации этих функций, и назвать эти имплементации теми
же именами, что и сами функции, то есть tet и ate.

Я далек от евгенических идей рафинировать как человеческую по-
роду, так и систему обозначений, и поэтому до сих пор пользуюсь
рутинами, обозначенными идентификаторами FSEXP и FSLOG. Это
позволяет, например, ставить вопрос о том, насколько приближен-
ное значение, выдаваемое рутиной, отличается от точного. Когда
функции tet и ate будут встроены в алгоритмические языки, то бу-
дет легко обозначать разницу между значениями функций, оценен-
ных с помощью имплементаций tet и FSEXP; то же относится и к
имепементациям арктетрации, FSLOG и ate.

Разобравшись с терминологией, можно использовать построенные
выше инструменты, “туллы” (tools) для того, чтобы итерировать на-
туральную экспоненту. Этому посвящена следующая секция.

3 Итерации Экспоненты

Тетрация и арктетрация, как суперфункция от экспоненты и её абель-
функция, позволяют определить нецелые итерации экспоненты

expn(z) = tet(n+ ate(z)) (15.13)

Число n итераций не имеет надобности быть целым (хотя по прихоти
Читателя может оказаться и целым).

Для вещественных значений аргумента, итерации по формуле (15.13)
показаны на рисунке 15.4, y = expn(x). Случаи целых значений n
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Рис. 15.4: y=expn(x) по формуле (15.13) для различных n

(кроме n = 0) выделены толстыми линиями. Эти линии соответ-
ствуют y = exp(exp(exp(x))), y = exp(exp(x)), y = exp(x), y = ln(x),
y=ln(ln(x)), y=ln(ln(ln(x))).

Карты различных итераций экспоненты показаны на рисунке 15.5.
Дюжина изображений представляет

u+iv = expn(x+iv) (15.14)

линиями u= const и линиями v= const в плоскости x, y для различ-
ных значений номера итерации n; это значение напечатано крупным
фонтом в левом верхнем углу каждой карты. Карты симметричны
верх-низ (при отражении от вещественной оси, лишь мнимая часть
значения функции меняет знак), поэтому представлены лишь вер-
ние половинки карт, выше вещественной оси.
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Рис. 15.5: u+iv = expn(x+iy) по формуле (15.14) для различных n
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В верхней части рисунка 15.5, карты соответствуют n=1 и n=−1;
это карты экспоненты и логарифма. Карта экспоненты - это про-
сто кусок карты рисунка 14.2. Экспонента голоморфна во всей ком-
плексной плоскости. Однако логарифм имеет в нуле особую точку и
разрез. Этот разрез на рисунке 15.5 обозначен символом cut.

Остальные строчки рисунка 15.5 показывают нецелые итерации. Эти
итерации имеют дополнительны разрезы вдоль линий y = ±=(L).
Здесь L ≈ 0.31813150520476413+1.3372357014306895 i есть стацио-
нарная точка логарифма, решение уравнения L = ln(L).

Толстые линии на рисунке 15.5 соответствуют целым значениям u

или v. Тонкие линии проведены с интервалом 0.2; кроме того, добав-
лены тонкие линии u=<(L) и v=±=(L). Эти линии пересекаются
в точке, соответствующей значению L.

Рисунок 15.5 показывает плавный (голоморфный) переход от экспо-
ненты (левая верхняя карта) к логарифму (правая верхняя карта).
По мере того, как номер итерации n постепенно уменьшается от еди-
ницы до нуля, сетка, образвованная линиями u= const и линиями
v = const поворачивается вокруг стационарной точки L, и стано-
вится однородной прямоугольной штриховкой при n= 0. При этом
значении, разрезы вдоль линий ±=(L) исчезают, но они появляются
вновь при дальнейшем уменьшении n, как только n становится мень-
ше нуля. Кроме того, ещё одна точка ветвления приходит с минус
бесконечности и перемещается вдоль вещественной оси, приходя в
ноль, когда n принимает значение минус единица. При таком целом
значении комплексные точки ветвления L и L∗ исчезают.

Карты для нецелых итераций, подобные показанным на рисунке
15.5, можно строить и для других голоморфных функций, доста-
точно декларировать нужную функцию “передаточной функцией”
и сделать для неё суперфункцию и абельфункцию.

В частности, можно строить карты и нецелых итераций функций,
рассмотренных в этой Книге. Читатели приглашаются скачать им-
плементации соответствующих суперфункций и абельфункций. Для
построения комплексных карт можно использовать графопострои-
тель conto.cin, доступный на многих виках.
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4 Уроки натуральной тетрации

На основе представления тетрации через интеграл Коши, как ре-
шения интегрального уравнения (14.22), можно выразить также и
производные этой функции; дифференцирование подинтегральных
выражений в правой части (14.22) не вызывает затруднений. Имен-
но так вычислены производные тетрации для чисто вещественных и
чисто мнимых значений аргумента в таблицах 1 и 2 работы [44]. Од-
нако, для численного поиска возможных внутренних противоречий
упомянутой конжекции о существованиии и единственности, было
желательно изготовить ещё более аккуратные и эффективные пред-
ставления для функции и её производных, которые бы позволяли
вычислять тетрацию столь же быстро, как в современных алгорит-
мических языках вычисляются специальные функции. Фактически,
цель была придать тетрации статус специальной функции. Дета-
ли такого представления описаны во Владикавказском Математи-
ческом Журнале [52]. После российского вторжения в Украину в
2014 году, российские научные журналы, и, в частности, Владикав-
казский журнал, навряд ли кто станет читать. Поэтому в этой Книге
собраны основные формулы, использованные для такого представ-
ления, и графики для этих представлений. С такими представления-
ми, суперфункциями и, в частности, тетрацией, можно пользоваться
и не читая оригинальные статьи.

Комплексная карта тетрации tet представлена на рисунке 14.13, а её
поведение вдоль вещественной оси показано на рисунке 14.1. Свой-
ства (14.16)-(14.20) были сперва наблюдены у различных аппрокси-
маций тетрации с помощью элементарных функций, а потом посту-
лированы. При аппроксимации, воспроизводилось поведение тетра-
ции вблизи целых значениях аргумента, то есть

tet(−2 + ε) = log(ε) + const +O(ε) (15.15)

tet(−1) = 0 (15.16)

tet(0) = 1 (15.17)

tet(1) = e (15.18)

tet(2) = e2 (15.19)

Минимизировалась невязка при подстановке фитирующей функции
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в передаточное уравнение (14.1) для комплексных значений аргу-
мента. Когда алгоритм вычисления натуральной тетрации через ин-
теграл Коши уже известен [44], и предложены эффективные аппрок-
симации через элементарные функции [52], примитивная аппрокси-
мация fit2 по формуле (14.11) может вызвать улыбку, но такое эври-
стическое фитирование отвечает на вопрос, который мне задавали
коллеги: “How did you guess? ”. (Как ты догадался?).

После того, как свойства, похожие на (14.16)-(14.20), были обнару-
жены у нескольких различных фитирующих функций, эти свойства
были были сформулированы как определение тетрации, то есть по-
просту постулированы. Целью таких постулатов было доказатель-
ство несуществования тетрации. Такое доказательство было бы ин-
тересто найти, так как доказательство, предложенное Хошмандом
(M.Hooshmand)[39], опирается на сомнительное допущение (посту-
лат) о монотонности производной от тетрации.

Я искал внутренние противоречия допущения, что голоморфная тет-
рация, обладающая перечисленными выше свойствами, существует.
При этом многие свойства натуральной тетрации были выявлены, и
был изготовлен алгоритм, позволяющий быстро вычислять её с 14
значащими цифрами [52]; но несуществование доказать не удалось.
Провалились также попытки построить иную функцию, удовлетво-
ряющую определению выше. Тогда существование и единственность
такой функции пришлось оформить как конжекцию [44].

Имеются определенные успехи в доказательстве единственности со-
ответствующей функции Абеля [63], но простое и четкое доказатель-
ство существования и единственности тетрации ещё предстоит выра-
ботать. Здесь такое доказательство не представлено. В соответствии
с целью, сформулированной во Введении, здесь свойства тетрации
скорее объясняются, чем доказываются.

Тетрация и арктетрация расширяют арсенал функций, доступных
для научных исследований. В частности, нецелые итерации могут
могут расти быстрее любого полинома, но медленнее любой экс-
поненты. Такое свойство может быть полезно при автоматическом
фитировании, когда заранее не известно, похожа ли аппроксими-
руемая функция на экспоненту или логарифм; представление дает

216



непрерывное многообразие промежуточных функций, включая слу-
чай тождественной функции (ни одной итерации экспоненты). Это
же относится и к итерациям многих других специальных функций.

5 Ещё апология

В любой деятельности, время от времени человеку требуется под-
тверждение, верификация того, что то, что он делает - важно и нуж-
но. Чтение и написание Книги не являются исключениями. (Иначе
получается “И запоминайте заранее то, что вы поймете потом” 2).
Такая промежуточная верификация, апология представлена в этой
секции. Фактически это заключение по главе o натуральной тетра-
ции.

Следуя Аксимам ТОРИ, я ставлю преимущественно практические
задачи. С точки зрения практики, важно не само доказательство, а
уверенность в том (надежда на то), что заявленные свойства, допу-
щения, аксиомы не приведут к противоречиям, и предлагаемые по-
строения не вывалятся из категории “Наука” по первой же Аксиме
ТОРИ, получив пустое множество в качестве области применения.
Попытки опровергнуть конжекции, сформулированные в этой главе,
могут рассматриваться как сильное указание, что в течение длитель-
ного времени (ну, скажем, большого по сравнению с длительностью
человеческой жизни) такие конжекции не будут опровергнуты.

В качестве оправдания укажу, что даже уважаемые школьные учи-
теля математики постулируют аксиомы Эвклида, вместо того, что-
бы вывести, доказать их на основе свойств координатной плоскости.
(И иногда при этом садятся в лужу, как это показано на рисунке
14.12.) Таким образом, Читатели, любящие доказательства, могут
начать с вывода аксиом Эвклида. Это нетрудно сделать, хотя спер-
ва прийдется аккуратно определить функции sin и cos, координат-
ную плоскость, теорему Пифагора, а из неё - всё остальное, включая
теоремы о параллельных прямых, о “равенстве” треугольников и всё
такое прочее.

Обычно, для научного исследования, какие-то постулаты всё-таки

2http://geo.web.ru/bards/Kim/part59.htm Пеппи Длинный Чулок. Песня Томми и Анники.
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принимать приходится, хотя чистые математики могут счесть их
недостаточно обоснованными, см. рисунок 15.6. Чтобы помочь опро-
вергать мои результаты, я загружаю генераторы рисунков Книги в
категории
http://mizugadro.mydns.jp/t/index.php/Category:BookPlot
http://mizugadro.mydns.jp/t/index.php/Category:BookMap

Увидев, как естественно и натурально получается натуральная тет-
рация, я построил похожие карты и для других оснований b, в част-
ности, для b = 10, b = 2 и b = 1.5, но ничего особенно нового, чего
трудно было бы предположить, поиграв с натуральной тетрацией, не
обнаружил. Однако Генрик Траппманн попросил меня уменьшить
основание b ещё чуток, до b =

√
2, и спросил, могу ли я вычис-

лять таким же интегралом Коши, тетрацию по основанию b=
√

2.
Я подумал и сказал, что таким же методом не могу. Генрик стал
смеяться, но я заявил, что если он так любит корень из двух, то я
сделаю тетрацию и по основанию b=

√
2 тоже. И сделал [50]. Основа

использованного для этого формализма, то есть регулярная итера-
ция, описана в главе 8. Применение этого формализма именно для
тетрации по основанию

√
2 описано в следующей главе.

Рис. 15.6: Два математика едут на конференцию по суперфункциям и
обсуждают чёрную овцу, которую они увидели из окна поезда: Ваше
допущение, уважаемый коллега, представляется мне не только не
очевидным, но и совершенно не обоснованным. Всё, что мы можем
заключить из этого наблюдения - что в этой стране существует
по крайней мере одна овца или по крайней мере один барашек, и
что по крайней мере правая сторона этого существа - черная.
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Глава 16

Тетрация по основанию b=
√
2

2

1

−1

−2

−3

−2 −1 1 2 3 x

y=tet√2(x)

y=−
x

Рис. 16.1: y = tet√2(x)

В главе 13 определена и вычислена натуральная тетрация. То есть
тетрация по пснованию b=e ≈ 2.71 . Для того, чтобы говорить о тет-
рации по иным основаниям, определение тетрации надо обобщить.
Такое обобщение предлагается в этой главе. Следуя принципу “от
простого - к сложному”, здесь используется специфическое значение
основания b=

√
2. Для этого значения, график тетрации показан на

рисунке 16.1. Именно для этого значения основания, график тетра-
ции выглядит красиво и симметрично. Ниже я показываю, что это
впечатление обманчиво и эта симметрия лишь приближенная.
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1 Определение

Tетрацией по вещественному основанию b> 1 называется функция
f=tetb, обладающая следующими свойствами:

f(z+1) = bf(z) (16.1)

по крайней мере для значений <(z) > −2; функция f ограничена по
крайней мере в полосе |=(z)| ≤ 1; кроме того, подразумевается, ве-
щественная голоморфность такой тетрации и специфическое (общее
для всех оснований b) значение в нуле:

f(z∗) = f(z)∗ (16.2)

f(0) = 1 (16.3)

Уравнение (16.1) имеет форму передаточного уравнения. При этом
T =expb выступает в роли передаточной функции. Читатели пригла-
шаются проследить, что натуральная тетрация tet = tete, рассмот-
ренная в главe 14, под такое определение тоже попадает. В других
главах рассмотрена тетрация по другим разным основаниям. Но в
этой главе в качестве примера рассмотрен случай b =

√
2. Экспо-

нента именно по этому основанию показана на рисунках 9.1 и 9.2.
Именно для этого основания в главе 9 построена растущая супер-
экспонента SuExp√2,u, её график показан на рисунке 9.1.

Теперь для этого же основания b =
√

2 строится другая суперэкс-
понента, тетрация. График тетрации на рисунке 16.1 существенно
отличается от графика растущей суперэкспоненты F = SuExp√2,3,
показанного на рисунке 9.4.

2 Пусть b=
√
2

В качестве примера вычисления тетрации tetb для 1<b<exp(1/e), в
этой главе рассмотрен случай b=

√
2. График такой функции пока-

зан на рисунке 16.1. Описанное ниже построение аналогично постро-
ению растущей суперэкспоненты по такому же основанию, представ-
ленному в главе 9. Многие формулы и рисунки этой секции взяты
из публикации [50].
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Стационарные точки экспоненты по основанию b=
√

2 рассмотрены
в Главе 9, см. рис. 9.1. В той главе суперэкспонента F5 = SuExp√2,5

построена на стационарной точке L=4. Вдоль вещественной оси, та-
кая суперэкспонента монотонно и неограниченно растет от четырех
до бесконечности. Для той суперэкспоненты, уравнение F5(z)=1 не
имеет вещественных решений, и она не является тетрацией. Для то-
го, чтобы построить тетрацию по такому основанию, следует исполь-
зовать стационарную точку L=2. Соответствующая суперфункция
Φ раскладывается так:

f(z) = 2 + ε+
M−1∑
m=2

vmε
m (16.4)

Φ(z) = f(z) +O(εn) (16.5)

где

ε = exp(kz) (16.6)

а инкремент k и коэффициенты v являются константами. Подста-
новка асимптотического разложения F = Φ в передаточное уравне-
ние

F (z+1) = exp
(

ln
(√

2
)
F (z)

)
(16.7)

дает соотношение для инкремента k

k = ln(ln(2)) ≈ −0.3665129205816643 (16.8)

и цепочку уравнений для коэффициентов v; в частности,

v2 = ln(2)/4
ln(2)−1 ≈ −0.56472283831773236365

v3 = ln(2)2(2+ln(2))/24
(ln(2)−1)(ln(2)2−1) ≈ 0.33817758685118329988

(16.9)

Значения коэффициентов v предлагаются в таблице 16.1.

При фиксированном числеM термов в правой части уравнения 16.4,
функция f может рассматриваться как аппроксимация суперфунк-
ции экспоненты со специфической асимптотикой, а именно, которая,
возрастая, стремится к стационарной точке 2. Такая суперфункция
может быть определена как предел

F (z) = lim
n→∞

T−n(f(z+n)) = lim
n→∞

log nb (f(z+n)) (16.10)
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Ввиду того, что f является асимптотическим решением предаточ-
ного уравнения (16.7) и его “эквивалента”

F (z) = logb(F (z+1)) (16.11)

функция F по формуле (16.10) не зависит от числа M слагаемых в
правой части уравнения (16.4). Но при большихM , предел в правой
части уравнения (16.10) сходится быстрее.

Для того, чтобы выполнить условие (16.3), тетрацию по основанию
b=
√

2, то есть f=tet√2 можно определить так:

tet√2(z) = F (x1+z) (16.12)

где x1 ≈ 1.25155147882219 есть решение уравнения F (x1) = 1. Чи-
татели приглашаются проверить, что такая тетрация удовлетворяет
требованиям, сформулированным в начале главы. Для веществен-
ных значений аргумента, график этой тетрации показан на рисунке
16.1. Комплексная карта тетрации по основанию b=

√
2 представле-

на на рисунке 16.2.

Тетрация, построенная по формуле обладает следующими свойства-
ми. Функция периодична, её период P чисто мнимый,

P = P (tet√2) = − 2πi

ln2(2)
= − 2πi

ln(ln(2))
≈ 17.14314817935485 i (16.13)

Напоминаю, что дважды логарифм ln2(2) = ln(ln(2)), но никак не
ln(2)2, в соответствии с декларированными обозначениями 1.

Как и было заявлено, тетрация tet√2(z) голоморфна в полосе |<(z)|≤
1. Область голоморфизма даже существенно шире этой полосы. Тет-
рация голоморфна во всей комплексной плоскости за исключением
счетного множества точек ветвления и соответствующих разрезов

{z ∈ C : <(z) ≤ 2, =(z)=n=(P ) , n ∈ N} (16.14)

1Как уже отмечалось, операции взятия логарифма и “верхний индекс 2” не коммутируют,
примерно так же, как не коммутируют координата и импульс в Квантовой Механике или как
оператор “царская” не коммутирует с глаголом “to vodka”. Если Читатель хоть раз употреблял
водку царскую и выжил, то, вероятно, этот читатель сумел отличить её от “царской водки”,
и, таким образом, имеет некоторое представление о некоммутирующих операторах.

222



Таблица 16.1: Коэффициенты v и V в разложениях (16.4), (16.18)

n vn Vn

1 1.0000000000000000 1.0000000000000000
2 −0.5647228383177324 0.5647228383177324
3 0.3381775868511833 0.2996461813840881
4 −0.2103313021386278 0.1559323904892543
5 0.1344548790521098 0.0803518797481544
6 −0.0877843886012191 0.0411584960662439
7 0.0582880930830947 0.0209985209544120
8 −0.0392407117837278 0.0106825803202636
9 0.0267232860342981 0.0054228810223159
10 −0.0183765205976376 0.0027482526618683
11 0.0127420898467766 0.0013909151872678
12 −0.0088986329515697 0.0007031815862125
13 0.0062531995639749 0.0003551700677648
14 −0.0044181328624397 0.0001792537427482
15 0.0031365295362696 0.0000904088765718
16 −0.0022361213774487 0.0000455725430285
17 0.0016001999145218 0.0000229602263218
18 −0.0011489818761273 0.0000115627707503
19 0.0008274921384317 0.0000058201696570
20 −0.0005975832172069 0.0000029289688393

Вне этих разрезов, тетрация стремится к стационарным точкам ло-
гарифма, к двум или к четырем, при увеличении или при уменьше-
нии вещественной части аргумента. Для вещественных y,

lim
x→+∞

tet√2(x+iy) = 2 (16.15)

и для y 6= =(T )n, n ∈ N,

lim
x→−∞

tet√2(x+iy) = 4 (16.16)

Для вещественных значений аргумента, tettet√2(x) определена при
x>−2. В точке −2, функция имеет логарифмическую особенность,
как и тетрации по другим основаниям. При бóльших значениях ар-
гумента, функция растет от минус бесконечности, проходит, как и
тетрации по другим основаниям, через точки (−1, 0) и (0, 1), и даль-
ше растет, приближась к своему предельному значению 2 на +∞.

Есть несколько причин, по которым основание b=
√

2 особенно ин-
тересно. Именно при таком основании обе стационарные точки лога-
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рифма выражаются целыми числами. Кроме того, именно при таком
основании, график функции на рисунке 16.1 кажется симметричным
относительно отражения x↔ −y. Чтобы подчеркнуть такую иллю-
зию, на рисунке 16.1 проведена дополнительная прямая y=−x. Эта
иллюзия будет более подробно обсуждаться ниже, так как для её
анализа нужна обратная функция, то есть арктетрация. Комплекс-
ная карта арктетрации по основанию b =

√
2 показана на рисунке

16.3. Её построение описано в следующей секции.

3 Арктетрация по основнанию b=
√
2

Для обратной функции от тетрации, используется название арктет-
рация, по аналогии с арксинусом, арккосинусом и аркбесселем; ми-
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нус первая итерация тетрации обозначается символом ate; основа-
ние, как и у тетрации или логарифма, указывается в виде нижнего
индекса, то есть ateb = tet−1

b . Арктетрация является абельфункци-
ей экспоненты и удовлетворяет уравнению Абеля; для b =

√
2, это

уравнение можно записать так:

G
((√

2
)z)

= G(z) + 1 (16.17)

Одним из решений этого уравнения является арктетрация, G =

ate√2. Чтобы сократить запись основания, в некоторых формулах
этой главы, вместо

√
2, я пишу b, имея в виду, что b=

√
2. Комплекс-

ная карта арктетрации показана на рисунке 16.3. В этой секции я
рассказываю, как вычисляется эта функция.

Как и другие абельфункции и суперфункции, арктетратию по осно-
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ванию
√

2 можно вычислять через её асимптотическое разложение,
используя, по мере надобности, уравнение Абеля, чтобы привести
аргумент в область, где асимпототическое разложение обеспечива-
ет хорошую аппроксимацию. Как и для других абельфункций, для
построения асимптотического разложения арктетрации ate√2 есть
два пути. Во-первых, можно обратить асимптотическое разложение
тетрации. Во-вторых, можно “методом пристального всматривания’
угадать общий вид разложения соответствующей абелэкспоненты и
сделать из неё арктетрацию, добавляя к значению абелэкспоненты
соответствующую константу, чтобы обеспечить выполнение условия
ate√2(1)=0.

Каждым из способов, отмеченных выше, можно прийти к асимпто-
тическому разложению решения G уравнения Абеля. Пусть

g(z) =
1

k
log

(
M∑
n=1

Vn · (z−2)n

)
. (16.18)

где V суть постоянные коэффициенты. Константа k = ln2(2) та же
самая, что и в разложении (16.4)-(16.6), см. уравнение (16.8). Тогда
решение G уравнения Абеля можно представить асимптотически в
виде

G(z) = g(z) +O(z−2)M+1 (16.19)

Подстановка такого представления в уравнение Абеля дает цепочку
уравнений для коэффициентов V ; в частности,

V1 = 1 (16.20)

V2 = −v2 = 1
4

ln(2)
1−ln(2) ≈ 0.56472283831773236365 (16.21)

V3 = ln(2)2

24
1+2 ln(2)

(1−ln(2))2(1+ln(2)) ≈ 0.29964618138408807683 (16.22)

Приближенные значения коэффициентов V представлены во втором
(правом) столбце таблицы 16.1

С помощью асимптотического разложения (16.18), решение G урав-
нения Абеля можно выразить как предел

G(z) = lim
n→∞

g
(

exp n√
2
(z)
)
− n (16.23)

Здесь, под знаком предела, функция T =exp√2 итерируется n раз.
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Рис. 16.4: Девочка
под мухой

Я надеюсь, выражение “под знаком предела”, как и
выражение “под знаком интеграла” или более свой-
ственное русскому языку выражение “под мухой”
будет понято не буквально (см. рисунок 16.4), а в
соответствии со здравым смыслом. Если послед-
ние два выражения можно заменить синонимами
“интегранд” и, соответственно, “в состоянии алко-
гольного опьянения”, то для того, что пишут после
знака lim, нет устойчивого обозначения. 2 Поэтому
мне приходится писать “под знаком предела”, в на-
дежде, что читатель разберется, где право, где низ
и где предел.

Для того, чтобы сделать арктетрацию, ate√2, следует учесть не толь-
ко асимптотические свойства тетрации по такому основанию, но и её
значение в единице. Попросту, к значению функции надо добавить
соответствующую константу, то есть

ate√2(z) = G(z)−G(1) ≈ G(z)−1.25155147882219 (16.24)

с тем, чтобы выполнялось условие ate√2(1) = 0. В работе [50], такая
арктетрация обозначена символом F2,1

−1; константа 2 в индексе ука-
зывает на стационарную точку передаточной функции, в которой
строится регулярная итерация, а константа 1 указывает на значе-
ние суперфункии в нуле. Как обычно, верхний индекс −1 указывает
минус первую итерацию функции, то есть обратную функцию.

На комплексной карте арктетрации на рисунке 16.3 видна её пери-
одичность. Эта перопдочность с;едует из выражения такой арктет-
рации через предел (16.23). Период P определяется периодом экс-
поненты по основанию

√
2, то есть

P =P (ate√2)=
4πi

ln(2)
≈ 18.129440567308775239 i (16.25)

2Я бы предложил термин “лимитант” или даже “лимитчик”, но пока такие термины труд-
но назвать устоявшимися. К тому же, в странах с рабовладельческим строем и паспортной
системой прописок (и приписок), термин “лимитчик” может иметь иной смысл и обозначать
подданного, которому в обмен на специальные услуги, милостью начальства разрешили осу-
ществить его (или её) конституционное право выбора места проживания.
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На рисунке 16.3, изолинии воспроизводятся при трансляциях вдоль
оси ординат на =(P ). Кроме того, ввиду вещественного голоморфиз-
ма арктетрации, карта симметрична по отношению к отражениям
относительно оси абсцисс. Таким образом, кроме оси абсцисс, име-
ется счетное множество горизонтальных линий уровня, где мнимая
часть арктетрации равна нулю; две такие линии y = ±=(P )/2 ≈
±9.068 умещаются на карте, показанной на рисунке. Сингулярно-
сти (точки ветвления) и соответствующие разрезы арктетрации по
основанию

√
2 тоже воспроизводятся при таких трансляциях.

Область значений z, в которoй выполнено тождество

tet√2(ate√2(z)) = z (16.26)

показана на рисунке 16.5. Рисунок представляет собой комплексную
карту фуниции в левой части уравнения (16.26), и, в области при-
менимости этого уравнения, уровни постоянной вещественной части
функции и уровни постоянной мнимой её части параллельны коор-
динатным осям. Однако, в силу периодичности функции ate√2, соот-
ношение (16.26) не может выполняться для всей комплексной плос-
кости. Это общее правило: если голоморфная функция принимает
какое - либо значение хотя бы в паре различных значений аргумен-
та, то обратная функция не может угадать, которое из возможных
значений возвращать, и область “обратности” этой функции ограни-
чена. Для того, чтобы лучше указать границы области применимо-
сти соотношения (16.26), на той же карте рисунка 16.5 проведены
ещё линии уровня

=
(

expn√
2
(x+iy)

)
= ±|P |

2
= ± 2 π

ln(2)
(16.27)

для целых n от нуля до четырех включительно.Такие линии огра-
ничивают границы области применимости соотношения (16.26).

Свойства арктетрации по основанию
√

2 позволяет анализировать
иллюзию симметрии графика на рисунке 16.1, график y = tet√2(x)

выглядит симметричным по отношению к отражению относительно
прямой y =−x. Такая приближенная симметрия означает, что для
x > −2, имеет место соотношение

tet√2(x) ≈ −ate√2(−x) (16.28)
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Точное равенство в этом соотношении не имеет места (кроме несколь-
ких специальных точек), так как период функции в левой части
формулы (16.13) P ≈ 17.143 i, а период функции в правой части
формулы (16.25) P ≈18.129 i, то есть почти на i длиннее. Две голо-
морфные функции с несовместимой периодичностью не могут точно
совпадать на отрезке конечной длины.

В 2009-2010 годax, приближенная симметрия графика на рисунке
16.1 вызвала дискуссию. Чтобы убедить упертых оппонентов, нам
с Генриком пришлось представить иные доказательства того, что
симметрия (16.28) лишь приближенная. 3 Я не повторяю здесь длин-

3 Для тех, кто про мнимую единицу и свойства голоморфных функций знает лишь пона-
слышке (если вообще), Генрик и я придумали каждый по одному независимому доказатель-
ству, эти доказательства вообще не используют формализм теории функций комплексного
переменного. Оба доказательства представлены в работе [50].
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Рис. 16.6: Приближенный характер “симметрии” (16.28) рисунка 16.1:
y=devi(x) по формуле (16.29)

ный и тернистый исторический путь к формализму суперфункций,
но приведу график, на котором показано отклонение

devi(x) = tet√2(x) + ate√2(−x) (16.29)

характеризующее приближенность соотношения (16.28). График y =

devi(x) показан на рисунке 16.6. Отклонение оказалась порядка 10−3,
то есть “симметрия” (16.28) держится всего лишь с тремя значащими
цифрами. При сильном зумине отклонение tet√2(x) от −ate√2(−x)

можно было бы увидеть даже на рисунке 16.1. Для сравнения, на
рисунке 16.6 сплошной кривой показана также зависимость

y = tet√2(−ate√2(x)) + x (16.30)

При точной симметрии, эта кривая тоже легла бы на ось абсцисс.

Схожесть функций y=tet√2(x) и y=−ate√2(−x) для вещественных
x может показаться, случайной, хотя для этого есть серьезные пред-
посылки. Все тетрации по основанию b>1 имеют логарифмическую
особенность точке −2, их графики имеет вертикальную асимптоту
x = −2. Кроме того, графики для всех тетраций проходят череез
точки (−1, 0) и (0,−1). Кроме того, при b < exp(1/e), эти графи-
ки имеют горизонтальную асимптоту, соответствующую экспонен-
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циальному стремлению тетрации к наименьшей из вещественных
стационарных точек экспоненты. То, что эта асимптота оказалась
на уровне y = 2, есть следствие выбора основания b =

√
2, исполь-

зованного в статье [50] и в этой Книге для иллюстрации свойств
тетрации при 1<b<exp(1/e).

Читателям в качестве упражнения предлагается построить ещё хотя
бы одну голоморфную функцию, график которой проходил бы че-
рез точки (−1, 0) и (−0, 1), и экспоненциально приближался к вер-
тикальной асимптототе x = −2 и горизонтальной асимптоте y = 2.
И посмотреть, насколько график такой функции похож на график
тетрации по основанию b=

√
2. Такие упражнения чрезвычайно по-

лезны при анализе результатов наблюдений или численных экспери-
ментов. Во многих случаях, удачный выбор голоморфной функции
с требуемыми (наблюденными в экспериментах) свойствами суще-
ственно уменьшает количество параметров в модели и, соответствен-
но улучшает её предсказательную способность.

В этой секции описано построение арктетрации. По крайней мере в
окрестности полупрямой z < 2 имеет место соотношение (16.26), и
в этой области тетрация и арктетрация могут использоваться для
нецелого итерирования экспоненты. Это итерирование рассмотрено
в следующей секции.

4 Снова итерирую экспоненту по основанию
√
2

Итерации экспоненты по основанию
√

2 рассматривались в главе 9
для больших значений вещественной части аргумента. Здесь ите-
рации этой экспоненты рассмотрены для малых и отрицательных
значений аргумента. Я покажу, что такие итерации похожи, но не
эквивалентны.

“Регулярная итерация” функции регулярна в окрестности стацио-
нарной точки, на которой она строится. Но эта итерация обычно не
регулярна в других стационарных точках этой функции.

Итерации экспоненты по основанию
√

2 можно строить на основе
неограниченно растущей суперфункции F =SuExp√2,4 по формулам
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Рис. 16.7: y=exp n√
2,u

(x) для различных n

(9.11),(9.12),(9.13). Такие итерации показаны на рисунке 9.8.

Однако итерации экспоненты по такому основанию можно строить
также на основе тетарции, описанной в этой главе,

exp n√
2,d

(z) = tet√2

(
n+ ate√2(z)

)
(16.31)

где символы “,d” в индексе указывают, что для построения суперэкс-
поненты (тетрации) использована меньшая из вещественных стаци-
онарных точек экспоненты. Такие итерации экспоненты представле-
ны на рисунке 16.7.

На рисунке 16.7 показаны итерации exp n√
2,d

по формуле (16.31) как
функции вещественного аргумента для различных значений номе-
ра итерации n. Эти графики аналогичны графикам рисунка 9.8, где
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показаны итерации, построенные на стационарной точке 4. По край-
ней мере толстые кривые, соответствующие целым значениям n, на
этих картинках одни и те же (и они действительно строятся по тем
же формулам).

Графики на рисунках 16.7 и 9.8 похожи, и даже для нецелых итера-
ций, линии, построенные на стационарной точке 4, кажутся продол-
жениями линий для итераций, построенных на стационарной точке
2, то есть на основе тетрации и арктетрации по основанию

√
2. В

области 2 < x < 4, где оба представления имеют смысл, кривые
для обоих таких представлений кажутся совпадающими. Я строил
эти кривые на одном и том же графике, и зуммировал как только
мог, но мне не удалось увидеть отличие. Такое совпадение казалось
странными, контр-интуитивным и интересным. Две различные го-
ломорфные функции не могут тождественно совпадать на отрезке
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Рис. 16.9: Сравнение половинных итераций экспоненты по основнанию
√

2, по-
строенных на стационарной точке 2 (пунктир) и на стационарной точке 4 (со-
лидная курва). В интервале от двух до четырех показана разница между этими
двумя функциями по формуле (16.32), умноженная на фактор 1024.

конечной длинны. Если они совпали на отрезке, то они должны сов-
падать и во всей связной области голоморфизма.

В качестве примера я рассмотрел половинную итерацию. Для верх-
ней стационарной точки, карта половинной итерации экспоненты по
основанию

√
2 показана на рисунке 9.9. Для нижней стационарной

точки, такая карта показана на рисунке 16.8. Эти карты далеко не
тождественны. В частности, лишь вторая из этих функций перио-
дична (с периодом 4πi/ ln(2)≈ 18.12944 i). При этом, в окрестности
отрезка (2,4) на вещественной оси, эти карты похожи. Настолько
же похожи графики этих половинных итераций для вещественного
аргумента; эти графики сравниваются на рисунке 16.9.

Я был в недоумении по поводу одинакового поведения половинных
итераций вдоль отрезка (2, 4) и различного поведения этих функ-
ций в комплексной плоскости. Я склонялся к мысли о том, что я
допустил ошибку, поскольку я верю в результаты ТФКП (Теория
Функций Комплексного Переменного), а ещё больше - в аксиомы
арифметики, на которых строится матан и, в частности, ТФКП.
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Мне было трудно себе представить, что я нащупал след некого ги-
потетического Числа Мизугадро 4, для которого проявляется внут-
ренняя противоречивость аксиом арифметики. В качестве рабочей
гипотезы я предположил, что точности рассчетов с переменными
complex double недостаточно, чтобы увидеть различие между функ-
циями exp

1/2√
2,d

по формуле (16.31) и exp
1/2√
2,u

по формуле (9.23). Я
начал считать итерации с сотней значащих цифр, точные форму-
лы такое позволяют. Отличие оказалось в 25м знаке. Это отличие
можно выразить функцией

D(x) = exp
1/2√
2,u

(x)− exp
1/2√
2,d

(x) (16.32)

Это отличие показано в нижней части рисунка 16.9. Чтобы график
функцииD не сливался с осью абсцисс, значения этой функции при-
шлось масштабировать на 24 порядка величины.

Для значений |z|< 2, функцию D(z) можно аппроксимировать се-
мипараметрическим фитом

D̃(z)=2.48·10−25(z−2)(4−z)
(

1 + 0.120(z−3) + 0.006(z−3)2
)
×

sin
(
.747−.068(z−3)+0.007(z−3)2+p4 ln(4−z)+p2 ln(z−2)

)
(16.33)

где p4 = 2π/ln(2 ln(2))≈19.23614904204285

и p2 =−2π/ ln2(2) ≈ 17.14314817935485

соответствуют периодам суперфункций от exp√2, построенныем на
стационарных точках 4 и 2, см. формулы (9.7), (9.8) и (16.13). Такой
фит неплох: по крайней мере, на рисунке 16.9, даже при зумине на 24
порядка величины. кривые для D и D̃ почти сливаются. Вероятно,
фит 16.33 можно ещё улучшить; читателям предлагается сделать
это в качестве самостоятельного упражнения.

После построения графиков на рисунке (16.9), я осознал, что это
первый случай в моей практике, когда точности “double” оказалось
недостаточно для того, чтобы нарисовать красивые (“camera-ready”)
рисунки для научной статьи. Случай поучительный: никакая точ-
ность численных расчетов не может считаться основанием для ма-
тематических конжекций; уповать приходится на доказательства,
здравый смысл и, конечно, аксиомы ТОРИ.

4http://samlib.ru/k/kuznecow_d_j/mizugadro.shtml Число Мизугадро
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В защиту графических процедур, использующих переменные “double”
и “complex double” (работающих с точностью порядка 15и значащих
цифр), упомяну софтвер “Maple-10”. Среди графических опций это-
го софта, мне не удалось найти графики с точностью лучше, чем
“float”, то есть примерно с семью десятичными значащими цифра-
ми. Использование этого софтвера для серьезного асимптотическо-
го анализа и численной проверки получающихся разложений может
приводить к конфузиям. Примеры того, какая ерунда при этом мо-
жет получаться вместо графиков даже сравнительно простых функ-
ций, предложены в поэме “Maple and tea” 5. К сожалению, мне пока
не удалось перевести эту поэму на русский язык. Если Россия не пре-
кратит свое существование в течение ближайших лет (многие авто-
ры, уже который год, предсказывают распад РФ “в следующем году”
с завидным постоянством), а Мапле не исправится в последующих
версиях, перевод этой поэмы на русский язык может представлять
интерес и составить предмет для будущего исследования.

Итерация функции, регулярная в какой-либо её стационарной точке,
может быть сингулярной в другой стационарной точке. При этом,
для вещественных значений аргумента, такие различные итерации
могут быть весьма похожи. На начало 21 века, даже самые пре-
цизионные измерения не дают точности в 24 значащих цифры. В
этом смысле, для многих физических приложений суперфункций и
нецелых итераций, может быть не очень существенным, на какой из
стационарных точек построена итерация. Разумеется, в каждом слу-
чая практического использования нецелых итераций голоморфной
функции желательно проверить, что используется именно та ите-
рация, которая соответствует физически-осмысленному решению,
или что разница между итерациями, построенными на разных ста-
ционарных точках, не превышает погрешности измерений. (Тогда
можно ожидать, что паромы не будут тонуть, наскочив на рифы,
реакторы не будут взрываться, а премьер-министрам не прийдется
публично каяться и уходить в отставку перед лицом толпы разгне-
ванных сограждан.)

5http://en.wikisource.org/wiki/Maple_and_Tea,
http://samlib.ru/k/kuznecow_d_j/maple.shtml Maple and tea
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Рис. 16.10: Четыре суперэкспоненты по основнанию
√

2

Таким образом, для каждой передаточной функции, может суще-
ствовать несколько осмысленных суперфункций. Выбор наиболее
подходящей из них должен осуществляться на основе дополнитель-
ных соображений, специфичных для каждого приложения. Для слу-
чая экспоненциальной передаточой функции exp√2, четыре наиболее
физичных суперфункции представлены на рисунке 16.10 и рассмот-
рены в следующей секции.

5 Четыре суперэкспоненты по основанию
√
2

На основе предыдущего рассмотрения, можно выделить четыре ве-
щественно-голоморфные суперфункции от функции exp√2. Эти су-
перфункции показаны на рисунке 16.10 и обсуждаются ниже.

Функция F2,1 =tet√2 есть тетрация по основанию
√

2, та же, что и на
рисунке 16.1. Её свойства рассмотрены в этой главе в предыдущих
параграфах. Это суперфункция экспоненты по основанию

√
2, по-

строенная на стационарной точке 2. В нуле эта функция принимает
значение единица.
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Функция F4,5 = SuExp√2,5 относится к формуле (9.13), с помощью
этой функции и соответствующей абельэкспоненты F4,5 =AuExp√2,5

строятся итерации экспоненты по основанию
√

2, неограниченно рас-
тущие вдоль вещественной оси. Стационарная точка 4 использована
в качестве асимптотического значения на минус бесконечности. С
помощью трансляции вдоль вещественной оси, обеспечено условие
F4,5(0) = 5.

Функция F2,3 есть тетрация со сдвинутым аргументом,

F2,3(z) = tet√2(z+z2,3) (16.34)

z2,3 = ate√2(3+io) ≈ −3.3834692659172254 + 8.5715740896774228 i

Функция F2,3 есть растущая суперэкспоненте со сдвинутым аргу-
ментом,

F4,3(z) = SuExp√2,5(z+z4,3) (16.35)

z4,3 = AuExp√2,5(3+io) ≈ 3.015784890490347+9.618074521021425 i

Вдоль вещественной оси, функции F2,3 F4,3 убывают от четырех на
минус бесконечности до двух на плюс бесконечности. На рисунке
16.10, график функции F2,3, сливается с графиком функции F4,3.
Отклонение не только меньше толщины линий, но и существенно
меньше размеров молекул и атомов, из которых сделана эта Книга
(или экран монитора, если вы читаете эту Книгу на компьютере).
Чтобы все-таки показать отклонение

d42(z) = F4,3(z)− F2,3(z) (16.36)

на рисунке 16.10 тонкой кривой построен график y = 1024d42(x) ;
значения функции пришлось масштабировать на 24 порядка вели-
чины. Такая схожесть имеется только в окрестности вещественной
оси. Эти функции имеют различные периоды, одна из них имеет
сингулярности, и поэтому они при всём желании не могут совпа-
дать тождественно даже для вещественных значений аргумента.

Сходство функций F4,3 и F2,3 обуславливает сходство итераций экс-
поненты по основанию

√
2, показанных на рисунках 9.8, 9.9, 16.7 и
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16.8 ; половинные итерации сравниваются также на рисунке 16.9.
Можно ожидать, что в течение 21 века, точность измерений фи-
зических величин возрастет до 24 и более значащих цифр. Тогда
разница между суперфункциями (или соответствующими нецелы-
ми итерациями) наблюдаемых передаточных функций будет иметь
прямое применение в измерительной технике. Пока, то есть в нача-
ле 21 века, можно ожидать, что для некоторых (или даже многих)
измеренных передаточных функций с парой вещественных стацио-
нарных точек, любую из этих точек можно использовать для постро-
ения физически-осмысленных итераций, и погрешность измерений
не позволит увидеть, что лишь одна из таких итераций является
“настоящей”.

6 Комплексные итерации

Когда черновик этой Книги был написан (и одобрен Редактором),
я обнаружил, что в Книге нет ни одной карты комплексной итер-
ции. Я восполняю такой пробел в этой секции. Здесь я рассказываю
про iтые итерации. Поскольку буква i набрана прямым шрифтом,
Читатель может догадаться, что имеется в ввиду не переменная, а
известная константа, корень из минус единицы.

На рисунках 16.11 и 16.12 представлены карты функций

exp i√
2,d

(z) = tet√2

(
i + ate√2(z)

)
(16.37)

и

exp i√
2,u

(z) = SuExp√2,5

(
i + AuExp√2,5(z)

)
(16.38)

Функция exp i√
2,d

по формуле (16.37) построена из тетрации и арк-
тетрации рассмотренных в этой главе. Функция exp i√

2,u
по формуле

(16.38) построена из растущей суперэкспоненты и соответствующей
абельэкспоненты по такому же основанию, эти функции рассмот-
рены в главе 9. Эти пары функций близки в окрестности отрезка
(2, 4), но сильно отличаются вдали от этого отрезка. Как и следова-
ло ожидать, iтые итерации, показанные на рисунках 16.11 и 16.12,
тоже схожи в окрестности указанного отрезка, и тоже сильно отли-
чаются вдали от начала координат.
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Как и в случае вещественных итераций, каждая из предложенных
комплексных итераций может быть вполне аргументированно ква-
лифицирована как “настоящая”. Выбор наиболее настоящей из них
аналогичен случаю сказки Джорджа Орвелла (George Orwell) “Скот-
ский Хутор” (Animal’s farm 6); герои сказки декларируют, что “все
животные равны”, но скоро обнаруживают, что некоторые из них
равнее других. (All animals are equal, but some of them are more
equal than others). С итерациями имеет место похожий случай. Когда
дополнительный критерий для суперфункции, абельфункции или
нецелой итерации исходной передаточной функции предложен, и
он позволяет выбрать “правильную” формулу, то можно деклари-

6http://msxnet.org/orwell/print/animal_farm.pdf George Orwell. Animal Farm. 1945
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ровать, что одна из итераций (16.37), (16.38) “более настоящая”, чем
другая.

Выбор “самой что ни на есть настоящей” итерации какой-либо пе-
редаточной функции должен производиться на основе физической
интерпретации таких формул, то есть исходя из возможных при-
ложений. В главе 9 рассмотрена неограниченно растущая (при ве-
щественных значениях аргумента) суперэкспонента, а не тетрация.
Такой выбор объясняется тем, что такая суперэкспонента дает ите-
рации, более похожие на итерации других функций, представленных
в начале книги. А вовсе не тем, что я считаю функцию SuExp√2,5

сколько-нибудь более “настоящей” суперэкспонентой, чем тетрацию
tet√2, рассмотренную в этой главе.
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Пока мне трудно придумать физическую интерпретацию невеще-
ственных итераций голоморфных функций. Но, как упомянутый в
главе 12 Портной (который шьет портки с произвольным количе-
ством штанин), я считаю нужным включить в Книгу хотя бы один
пример комплексной итерации. То есть хотя бы одно численное под-
тверждение моему заявлению, что в формулах номер итерации не
имеет надобности быть вещественным.

Вещественность номера итерации (а иногда даже и целость этого но-
мера) может быть важна для приложений формулы в физических
или иных исследованиях. С другой стороны, желательно, чтобы ма-
тематический аппарат охватывал область значений несколько шире,
чем та, для которых сегодня есть очевидное применение. Как только
кому-либо потребуется комплексные, или, в частном случае, чисто
мнимые итерации - в этой Книге для таких итераций уже есть фор-
мализм.

7 Воспроизводимость

Читатели приглашаются повторить рассчеты, представленные в этой
главе. Это можно сделать и для других передаточных функций; на-
пример, для экспоненты по основанию b от единицы до exp(1/e).
Предлагается найти, построить, идентифицировать такую переда-
точную функцию функцию, для которой регулярные итерации, по-
строенные на различных стационарных точках, существенно отли-
чались бы.

В качестве примера могу посоветовать поэкспериментировать с по-
линомиальной передаточной функцией. Я примерно представляю
себе, что должно получиться в ответе. Если при этом вдруг воз-
никнут какие-либо сложности, то я готов прийти на помощь.

Построение и исследование тетрации, представленные в этой главе,
естественным образом обобщаются для других значений основания
b натуральной тетрации, по крайней мере для 1<b<exp(1/e). Такое
обобщение рассмотрено в следующей главе.
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Глава 17

Тетрация по основанию b>1

В предыдущих главах рассмотрены различные методы построения
суперфункций от передаточных функций, когда эти функции име-
ют вещественные или комплексные стационарные точки. В частно-
сти, рассмотрены примеры экспоненциальной передаточной функ-
ции для оснований b=

√
2≈ 1.44, b= exp(1/e)≈ 1.46 и b= e≈ 2.71 .

Читатели приглашаются использовать предложенные здесь методы
и для других функций, и, в частности, для экспоненты по различ-
ным основаниям. Лучше начинать со случаев, когда основание ве-
щественно, положительно и превышает единицу. При этом экспо-
нента является возрастающей функцией вдоль всей вещественной
оси, и интерпретация суперэкспоненты и абельэкспоненты особенно
наглядна.

1 Аппроксимация тетрации вблизи нуля

В случае основания 1< b≤ exp(1/e), тетрация может вычисляться
с помощью разложения вблизи стационарной точки. Для основания
b>1/ exp(1/e), может использоваться представление тетрации через
интеграл Коши. Таким образом, весь интервал b > 1 оказывается
перекрыт эффективными алгоритмами вычисления tetb.

Для веществннных значений аргумента, график y = tetb(x) пред-
ставлен на рисунке 17.1 как функция x при различных веществен-
ных значениях параметра b>1. Аналогичные графики для арктет-
рации показаны на рисунке 17.2.

Рисунок 17.1 для тетрации и рисунок 17.2 для арктетрации генери-
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Рис. 17.1: y = tetb(x) для различных значений b

руются с помощью аппроксимаций. Для значений b<3, используется
аппроксимация fit1, оределенная выражениями

d=ln(b)

q=
√
d

c0 =−1.0018 + 0.1512848482(1.+33.0471529885q−3.51771875598d)q
1+3.2255053261256337q +

ln(2)− 1
2

d

c1 =1.1− 2.608785958462561(1− 0.6663562294911147q)q − ln(2)− 5
8

d

c2 =−0.96 + 3.0912038297987596 (1+0.60213980487853d)q
1+4.24046755648d +

ln(2)−2
3

d

c3 =1.2−10.44604984418533 (1+0.213756892843q+0.369327525447d)q
1+4.9571563666q+7.702332166d − ln(2)−131

192

d

244

http://mizugadro.mydns.jp/t/index.php/File:Tetreal10bx10d.png
http://en.citizendium.org/wiki/File:Tetreal10bx10d.png


y

10

8

6

4

2

0
0 2 e 4 6 8 10 x

b
→

1
b
=

1.
2

b
=

1.
4

b
=
√

2
b
=

ex
p
(1
/e

)

b=1.5

b=1.6

b=1.7

b=1.8

b=1.9

b=2
b=e

b=10

b→∞

http://mizugadro.mydns.jp/t/index.php/File:Ater01.png

Рис. 17.2: y=ateb(x) для различных значений b

fit1b(z)=(1+c0z+c1z
2+c2z

3+c3z
4)(z+1)

+ ln(z+2)− ln(2)

d
(1+z) (17.1)

Чтобы получить аппрохсимацию (17.1), выражение

tetb(z)− ln(z+2) + ln(2)/ ln(b)

1+z
(17.2)

разложено в ряд Тэйлора по степеням z при различных значени-
ях a = ln(b). Коэффициенты этого разложения аппроксимирова-
ны как функции параметра a. Затем тетрация выражена через это
разложение. Разложение оборвано, учтено всего несколько термов.
Однако, для |z| ≤ 1/2, это приближение дает несколько значащих
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цифр для значения tetb(z) Такое представление использовано для
|<(z)| ≤ 1/2; для иных значений z, используется представление че-
рез передаточное уравнение

tetb(z) = btetb(z−1) (17.3)

или

tetb(z) = logb
(
tetb(z+1)

)
(17.4)

в зависимости от знака <(z). Так можно вычислять тетрацию с
несколькими знаками для умеренных значений |=(z)| и |=(b)|. У
меня пока нет столь же простой аппроксимации для больших значе-
ний |=(b)|, хотя представление через интеграл Коши легко обобща-
ется на случай комплексных значений основания b. В частности, та-
кая аппроксимация годится для вещественных значений основания
b<5, давая порядка четырех значащих цифр. Это вполне достаточ-
но для того, чтобы дефекты аппроксимации не были видны даже
при сильном зумине рисунка 17.1. Однако для b = 10 аппроксима-
ция несколько хуже, и для этого значения использовано первичное
представление тетрации через интеграл Коши.

Из рисунка 17.1 можно проследить поведение тетрации веществен-
ного аргумента при различных значениях основания b>1.

В интервале значений −2 ≤ x ≤ −1, тетрация y = tetb(x) имеет
отрицательные значения и растет с увеличением b.

В интервале значений −1≤ x≤ 0, тетрация y= tetb(x) имеет поло-
жительные значения и убывает с увеличением b.

При x > 0, тетрация y = tetb(x) имеет положительные значения и
растет с увеличением b.

В предельном случае b→1, график тетрации y=tetb(x) приближа-
ется к асимптотам x=−1 и y=1.

В предельном случае b→∞, график тетрации y = tetb(x) прибли-
жается к асимптотам x=−2 и x= 0, а также к отрезку −2<x< 0

на оси абсцисс.

При всех b> 1, тетрация tetb(x) является монотонно возрастающей
функцией, и график y= tetb(x) проходит через точки (−1, 0), (0, 1)

и (1, b).
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Когда b=exp(1/e), асимптотой становится линия y=Filog(1/e)=e.
Эта линия отмечена на графике в дополнение к ректангулярной сет-
ке, соответствующей целочисленным значениям абсциссы или орди-
наты.

При 1<b≤ exp(1/e), с ростом x график y=tetb(x) приближается к
горизонтальной асимптоте y = Filog

(
ln(b)

)
.

Функция Filog и её имплементация представлены в ТОРИ,
http://mizugadro.mydns.jp/t/index.php/Filog
Некоторые свойства этой функции обсуждаются в следующей главе.

В принципе, аналогичным образом можно строить аппроксимацию
для арктетрации (абельэкспоненты) ateb. Не стремясь объять необъ-
ятное, для построения графика арктетрации вещественного аргу-
мента, я отразил от прямой y=x графики рисунка 17.1. Так постро-
ен рисунок 17.2.

При x>−2, имеет место соотношение

ateb

(
tetb(x)

)
= x (17.5)

Кроме того, для b> exp(1/e) и по крайней мере для вещественных
x имеет место соотношение

tetb

(
ateb(x)

)
= x (17.6)

Это же соотношение имеет место и при 1 < b ≤ exp(1/e) , x <

Filog
(

ln(b)
)
.

В широкой области значений b и , итерации экспоненты expb(z) = bz

могут быть представлены через тетрацию и арктетрацию

exp n
b (z) = tetb

(
n+ ateb(z)

)
(17.7)

Как обычно, в таком представлении число n итерций не имеет необ-
ходимости быть целым; достаточно, чтобы аргумент z попадал в
область голоморфизма функции ateb. Тогда, при b > exp(1/e), зна-
чение n+ateb(z) попадет в область голоморфизма тетрации tetb.

2 Различныe основания экспоненты и итерации

В этой секции сравниваются итерации экспоненты. Эти итерации
рассмотерны в предыдыщих секциях; здесь предлагается обзор пред-
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ставленных ранее результатов.

Итерации экспоненты по основаниям b = e, b = exp(1/e) и b =
√

2

представлены на рисунке 17.3 как функции вещественного аргу-
мента для различного номера n итерации. Курвы проведены для
n= −2,−1,−0.9,−0.5,−0.1, 0, 0.1, 0.5, 0.9, 1, 2.

На верхней картинке рисунка 17.3 представлен случай b=e; то есть
показаны итерации обычной, натуральной экспоненты. Соответству-
ющие итерации вычисляются через натуральную тетрацию tet и на-
туральную арктетацию ate:

y = expn(x) = tet
(
n+ ate(x)

)
(17.8)

Схожие графики можно построить и для иных значений основания
b > exp(1/e). Для такого основания, итерации, даже не целые, яв-
ляются вещественно-голоморфными функциями по крайней мере в
некоторой окрестности вещественной оси. Одна и та же голоморф-
ная функция может использоваться как для положительных, так и
для отрицательных значений аргумента. Стационарные точки нату-
ральной экспоненты лежат достаточно далеко от вещественной оси,
и, в некоторой окрестности вещественной оси, итерации экспоненты
являются столь же гладкими, как и сама экспонента.

По мере уменьшения основания b, ширина полосы голоморфизма
вдоль вещественной оси уменьшается, и при b = exp(1/e) кривые
для различных итераций сжимаются в пучок курв, проходящих че-
рез стационарную точку e. Этот случай представлен на центральной
картинке рисунка 17.3. При этом нецелые итерации для значений
аргумента, больших e, уже не являются голоморфными продолже-
ниями итераций, построенных для значений, бóльших e. Чтобы под-
черкнуть это обстоятельство, кривые, для итераций, построенных
через тетрацию и арктетрацию, показаны пунктиром. В левой ча-
сти графика пунктиром показаны кривые

y = exp n
b,1(x) = tetb

(
n+ ateb(x)

)
(17.9)

а сплошные кривые соответствуют формуле

y = exp n
b,3(x) = SuExpb,3

(
n+ AuExpb,3(x)

)
(17.10)
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Тетрация tetb по основанию b = η = exp(1/e) определена форму-
лой (11.24), а арктетрация по этому основанию определена форму-
лой (11.28). Соответственно, растущая абельэкспонента определяет-
ся формулой (11.29) при AuExpb,3 =G3. Растущая суперэкспонента
определена формулой (11.29) при AuExpb,3 =G3.

При значенях основания 1< b< exp(1/e), экспонента имеет две ве-
щественные стационарные точки (см. фигуры 9.1, 11.1). Каждая из
этих стационарных точек может использоваться для построения ре-
гулярной итерации. Однако нецелая итерация, построенная на одной
из этих регулярных точек, не регулярна в другой стационарной точ-
ке. Здесь в качестве примера выбрано значение b =

√
2. Итерации

показаны в нижней картинке рисунка 17.3. Пунктиром проведены
линии

y = exp n
b,d(x) = tetb

(
n+ ateb(x)

)
(17.11)

а сплошные кривые соответствуют формуле

y = exp n
b,u(x) = SuExpb,5

(
n+ AuExpb,5(x)

)
(17.12)

Для нецелых значений номера n итерации, стационарная точка 2
или 4 ограничивает область голоморфизма каждой из итерации. На
отрезке от 2 до 4, каждая из итераций голоморфна, и различие меж-
ду итерациами мало, порядка 10−24, см.рис. 16.9. Ввиду такой мало-
сти, пунктирные кривые на нижней картинке рисунка 17.3 кажутся
совпадающими с соответствующими сплошными линиями.

Аналогичная иллюзия имеет место для центральной картинки ри-
сунка 17.3; пунктирные кривые кажутся продолжениями сплошных.
Таким образом, пример экспоненты указывает, что для построе-
ния суперфункций и нецелых итераций следует выбрать, указать
асимптотическое поведение искомой функции в комплексной плос-
кости; иначе могут существовать различные решения, и каждое из
них можно аргументированно обосновывать как “настоящую” су-
перфункцию и, соответственно, “настоящую” нецелую итерацию. По
этой причине, важно, чтобы изначально все суперфункции, абель-
функции и нецелые итерации строились для комплексных значений
аргумента.

250



y

3

2

1

0

−1

−2

−3

−4−4 −3 −2 −1 0 1 2 3 x

v
=

1

v=
0.8

v=0.6

v=0.4

v=0.2

v=0
v=−0.2
v=−0.4

v
=
−

1

u
=

1
u
=

1.
4

u
=

1.
6

u=
1.

8
u=

2
−3 −2 −1 0 1 2 3 x

v
=

1
v

=
0.

8
v

=
0.

6
v=

0.
4

v=0.2

v=0

v=−0.2

v
=
−

1
u

=
1

u=
1.

4

u=
1.6

u=1.8

u=2

−3 −2 −1 0 1 2 3 x

v
=

1
v

=
0.

8
v

=
0.

6
v

=
0.

4

v=
0.

2

v=0

v
=
−

0.2

v=−
1

u
=

1
u=

1.
4

u=1.6

u=1.8

u=2

http://mizugadro.mydns.jp/t/index.php/File:E1efig09abc1a150.png

Рис. 17.4: u+iv=tetb(x+iy) for b=1.5, b=exp(1/e) and b=
√

2

Алгоритмы вычисления функций использованных в этой Книге, за-
программированы на C++ как complex double: их можно исполь-
зовать как для комплексных значений аргумента, так и для веще-
ственных. Если для каких-либо приложений требуются лишь веще-
ственные значения аргумента, то переделать комплексное представ-
ление в вещественное легче, чем обобщать вещественное на случай
комплексного аргумента.

3 Зависимость тетрации от основaния

Графики тетрации вещественного аргумента, показанные на рисун-
ке (17.1), позволяют предположить, что зависимость тетрации от
основания (при постоянном аргументе) непрерывна (а может быть,
даже и голоморфна) как функция основания. Можно ожидать, что
такая непрерывность имеет место не только для вещественных зна-
чений аргумента. Чтобы показать это, на рисунке 17.4 показаны
карты тетрации tetb для близких значений основания, а именно,
для b = 1.5 слева, для b = exp(1/e) ≈ 1.44 в середке, и для для
b=
√

2≈1.41 справа.

Все три карты, показанные на рисунке 17.4, похожи, хотя совершен-
но разные алгоритмы использованы для вычисления тетрации при
указанных значениях основания b. В принципе, тетрацию по основа-
нию b=exp(1/e) для умеренных значений мнимой части аргумента
можно были бы вычислять через тетрацию при чуть бóльших или
при чуть мéньших значениях b как предел при b → exp(1/e), ис-

251

http://mizugadro.mydns.jp/t/index.php/File:E1efig09abc1a150.png


пользуя соответствующие представления.

Читатели приглашаются рассчитать тетрацию при значениях осно-
вания b≈ exp(1/e) и оценить, сколько корректных значащих цифр
для тетрации tetb можно получить таким способом, при условии, что
используется арифметика с конечной точностью, например, complex
double. Заодно, читатели могут проверить, что малость невязки при
подстановке приближения тетрации в передаточное уравнение обес-
печивает близость к более аккуратному представлению через разло-
жение (11.16).

Рис. 17.5:
Неразрывность

При b→exp(1/e), эффективность алгоритмов для вы-
числения тетрации (как через интеграл Коши, так и
через регулярную итерацию) уменьшается. Поэтому
Генрик Траппманн считал, что тетрация, рассмотрен-
ная как функция основания b, в точке b=η=exp(1/e)

не является непрерывной, подобно тому, как это изоб-
ражено на рисунке 17.5. Генrик хотел асимптотиче-
ское разложение именно для основания η = exp(1/e)
1.. Пришлось строить разложение (11.16) для b=η. Я
надеюсь, Читатель уже понимает как можно угады-
вать разложения для экзотических итераций, и смо-
жет написать аналогичное разложение суперфункций
и для других передаточных функций, как только Чи-
тателю потребуется итерировать такие передаточные
функции нецелое количество раз.

Таким образом, я надеюсь, что у коллег не возникнет сложностей
сосчитать не только iтую, но и iтую итерацию его или её передаточ-
ной функции. 2 Даже если в стационарной точке производная этой
передаточной функции равна единице. Благодаря суперфункциям,
такое вычисление становится вполне возможным и естественным.

1 Это было уже после того, как статья про четыре вещественно-голоморфные суперэкс-
поненты по основанию

√
2 была направлена в Mathematics of computation [50]; как видно,

аппетит приходит во время еды.
2Здесь i есть переменная, которая может принимать всякие (и, в частности, вещественные)

значения. При этом i =
√
−1 есть константа, которая никаких иных значений принимать не

может.
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Глава 18

Kомплексноe основаниe

В этой главе рассмотрена тетрация по комплексному основанию. То
есть для передаточной функции T (z) = bz, где основание b является
комплексным числом. В этой Книге основанием называется то, что
возводится в степень аргумента при вычислении экспоненциальной
передаточной функции.

В принципе, суперфункцию от экспоненты можно строить с помо-
щью регулярной итерации, примерно так же, как в Главе 16 строится
тетрация по основанию

√
2. При этом встает вопрос о том, около ко-

торой из стационарных точек итерации экспоненты должны быть
регулярными. Кроме того, для некоторых значений основания, ве-
щественная часть инкремента k равна нулю; тогда решение трудно
строить по его асимптотике.

Ниже, я использую метод интеграла Коши. Этот метод может при-
меняться и для невещественных значений основания. Разумеется,
для построения суперфункции F , следует указать, к которым из
стационарных точек экспоненты по данному оснoванию должна эта
функция стремиться при стремлении аргумента к i∞ и при стрем-
лении аргумента к −i∞. Из соображений простоты приходится по-
требовать, чтобы функция стремилась к стационарной точке экспо-
ненты и, желательно, логарифма.

Для построения тетрации по комплексному основанию, следует вы-
разить стационарные точки логарифма как функции этого основа-
ния. А ещё лучше - чтобы не возиться с множеством разрезов - как
функции логарифма этого основания. Этому посвящена следующая
секция.
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Рис. 18.1: u+iv=filog(x+iy) , решение L=filog(B) уравнения (18.1)

1 Стационарные точки логарифма

Пусть L = filog(B) будет решением уравнения

ln(L) = BL (18.1)

Комплексная карта функции filog показана на рисунке 18.1. Зумин
этой карты показан на рисунке 18.2. Пусть

B = ln(b) (18.2)

тогда filog(B) выражает стационарную точку L1 логарифма по осно-
ванию b; другая стационарная точка L2 определяется комплексным
сопряжением:

L1 = fllog(B) (18.3)
L2 = filog(B∗)∗ (18.4)
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Функцию Filog можно выразить через функцию Tania

Filog(z) =
Tania

(
ln(z)− 1− πi

)
−z

(18.5)

Для построения тетрации по комплексному основанию, здесь указа-
на именно Таня, по формуле (5.3), а не похожая на неё WrightOmega.
Читатели приглашаются попробовать воспроизвести рисунки 18.1 и
18.2, используя ВрайтОмегу вместо Тани, и посмотреть, что полу-
чится вместо красивой карты.

Функция Filog определяет стационарные точки логарифма по задан-
ному основанию b:

L1 = fllog
(

ln(b)
)

(18.6)
L2 = filog

(
ln(b∗)

)∗ (18.7)

На±i∞, тетрация должна стремиться к этим стационарным точкам.
Tребования (допущения) об асимптотическом поведении тетрации
позволяют использовать интеграл Коши для её вычисления. В сле-
дующей секции предлжен пример использования функции filog для
детерминации асимптотического поведения тетрации по комплекс-
ному основанию.

2 Tetration to the Sheldon base

В этой секции рассмотрена тетрация по основанию Шелдона,

b = 1.52598338517 + 0.0178411853321i (18.8)

Это название образовано от имени Шелдон Левенштейн (Sheldon
Levenstein); в 2012 году Шелдон ожидал, что при вычислении тет-
рации по такому основанию возникнут сложности. Верятно, он имел
в виду, что для одной из стационарных точек экспоненты по тако-
му основанию, регулярная итерация затруднительна, так как веще-
ственная часть соответствующего инкремента k близка к нулю. Это
был единственный запрос от коллег на вычисление тетрации по спе-
цифическому комплексному основанию и заявка Шелдона удовле-
творена. Комплексная карта такой тетрации показана на рисунке
18.3.
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Рис. 18.3: u+iv=tetb(x+iy) для b≈1.52598+0.01784 i, см. (18.8)

Милиционеры
описывают
имущество

Рис. 18.4: Опись

Ниже, я, следуя трацициям Советской Шко-
лы (рисунок 18.4), описываю тетрацию по осно-
ванию Шелдона. Комплексная карта тетрации
по такому основанию представлена на рисунке
18.3; сейчас я расскажу, как она вычисляется.

В этой секции предполагается, что основание
b определено формулой (18.8). Стационарные
точки логарифма по основанию b, то есть ре-
шения L уравнения lnb(L)=L, выражаются через функцию filog:

L1 = filog(B) ≈ 2.0565398441043761+1.1445267140098765 i (18.9)

L2 =filog(B∗)∗≈ 2.2284359658711805−1.3507994961102865 i(18.10)

B = ln(b) ≈ 0.4227073870410604 + 0.0116910660021443i (18.11)

Решение F с асимптотиками

F (z) = L1+exp(k1z+φ1) +O(exp(2k1z)) при =(z)→∞ (18.12)

F (z) = L2+exp(k2z+φ2) +O(exp(2k2z)) при =(z)→−∞ (18.13)

строится так же, как и для тетрации по вещественному основанию,
бóльшему основания Генрика η=exp(1/e). Подстановкa асимптоти-
ческих решений в передаточное уравнение определяет инкременты

k1 = ln(L1b) ≈−0.0047589243931785+0.5354935770338939 i (18.14)

k2 = ln(L2b) ≈ 0.0970758595007548−0.517289596155984 i (18.15)
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Соответственно, решение имет квазипериод

P1 =
2π

k1
≈ −0.1042667514229599 i+11.7325200133916496 (18.16)

в верхней части комплексной плоскости и квазипериод

P2 =
2π

k2
≈ −2.2018723603861230 i+11.7331504449085493 (18.17)

в нижней части комплексной плоскости.

Сформулированных выше свойств достаточно для того, чтобы через
интеграл Коши выразить решение F (z) передаточного уравнения

F (z+1) = exp
(
B F (z)

)
(18.18)

вдоль полосы |<(z)|< 1. Такое построение аналогично построению
тетрации по основанию e, описанному в главе 14, поэтому я не повто-
ряю описание контура интегрирования и детали итерационной про-
цедуры, дающей аппроксимацию решения. Как и для вещественного
основания, тетрация выражается через решение F :

tetb(z) = F (z1 + z) (18.19)

где z1 есть решение уравнения F (z1) = 1. Используя передаточное
уравнение (18.18), решение можно распространить по крайней мере
на правую часть комплексной плоскости. Что касается левой ча-
сти, то во Втором квадранте координатной плоскости (то есть при
x<0, y>0) возникнут разрезы, неизбежные при использовании ло-
гарифмической функции. K сожалению, такие разрезы не умести-
лись в области карты, показанной на рисунке 18.3, хоть я и делаю
этот рисунок во всю ширину страницы. То, что такие разрезы (и
точки ветвления) имеются, Читатель может видеть из асимптотики
(18.12), поскольку для основания Шелдона мнимая часть периода
P1 отрицательна.

Каждый раз, когда тетрация принимает значение ноль, на единичку
слева имеется точка ветвления и соответствующий разрез области
голоморфизма. Такие разрезы типичном и для других тетраций, да-
же по вещественному основанию, когда применяется формула

F (z) = logb
m(F (z+m)) (18.20)
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для такого целого m, что значение z+m попадает в полосу |<(z)| ≤
1/2, где формула Коши дает аккуратную первичную аппроксима-
цию. В этом смысле тетрация по основанию Шелдона аналогична
тетрации по вещественному основанию.

3 Область тронной ракушки

При умеренных значениях арумента z, тетрация tetb(z) выглядит
гладкой функцией основания b. При больших значениях <(z), в
зависимости от основания, тетрация либо имеет сложное, квази-
хаотическое поведение, либо стремится к одной из своих стационар-
ных точек. На сайте Эретранде, область стремления к стационарно-
му значению названа Shell-Thron region 1. К сожалению, я не смог
извлечь оттуда результатов, которые я бы счел подходящими для
этой Книги. Можно образовать “кальку”, переведя английское на-
звание как “Область Тронной Ракушки”. Пока трудно судить о том,
насколько такое название удобно.

В принципе, при итерировании экспоненты, можно говорить о ше-
стимерном пространстве. Координатами такого пространства явля-
ются вещественная и мнимая части основания b, вещественная и
мнимая части аргумента и вещественная и мнимая части номера
итерации. В шестимерном пространстве могут быть спрятаны нетри-
виальные эффекты, заслуживающие исследования. Я надеюсь, что
их рассмотрение не вызовет сложностей, и поэтому такие эффек-
ты не рассмотрены в этой книге. Я стараюсь работать над такими
проблемами, которые считаются неразрешимыми [14].

Я представил один-единственный пример вычисления тетрации по
комплексному основанию. Предложенные в этой Книге инструмен-
ты позволяют вычислять тетрацию по такому основанию, по какому
потребуется. И не только тетрацию. В следующей главе рассмотрен
случай, когда тетрация выступает в роли передаточной функции, и
вычисляется её суперфункция.

1 Shell-Thron region:
http://math.eretrandre.org/hyperops_wiki/index.php?title=Shell-Thron_region.
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Глава 19

Аскерманны

Old story, century 20:
—Abgam, did you hear, one of us sank “Titanic”.
— Wou! Who did that?
— One says, some Aisbegg!
Old story, century 21:
— Abgam, do you know, one of us asks hoggible questions!
— Who is that man?
— One says, some Askeg-man!

Перевод с Английского:
Старая история, 20й век:
— Абгам, слыхал, наши “Титаник” потопили!
— Да ну! А кто?
— Я точно не знаю, но говогят, какой-то Айсбегг!
Старая история, 21й век:
— Абгам, ты слыхал, один из наших задает ужжасные вопгосы..
— Да ну! А кто?
— Говогят, какой-то Аскегманн!

Я надеюсь, что предложенный выше эпиграф не послужит причи-
ной обвинения меня в антисемитизме. Среди моих соавторов есть и
весьма германские арийцы, и столь же семитские евреи. Я вижу осо-
бенности каждой из указанных наций; я ценю как еврейскую “мен-
тальность” (достаточно выраженную в так называемых “еврейских
анекдотах”), так и арийскую педантичность (столь же выраженную
в историях и шутках про “немцев”). Для эффективного научного
исследования требуется и то, и другое. Примерно так, для забрасы-
вания баскетбольного мяча в сетку, особенно эффективны качества
высоченного бразильца, а для рекордов по спелеологии более важ-
ны качества тщедушного вьетнамца или африканского пигмея. На-
учные исследования отличаются тем, что трудно предсказать, что
потребуется: мяч в сетку или пролезть в узкую щель. Одинаково
глупо как настаивать на том, что нации “равны” (и запрещать об-
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суждать очевидное различие), так и заявлять, что кто-то из них,
вообще, “лучше” (и на этом основании требовать для кого-то из них
каких-либо специальных прав и привилегий). Я считаю, что такое
лирическое отступление помогает понять ментальность и идеологию
аскерманнов, о которых идет речь в этой главе.

Для вещественного параметра b > 1, называемого базой, тетрацией
называется решение f=tetb уравнений

f(z+1) = bf(z) , f(0) = 1 (19.1)

голоморфное по крайней мере в области

z ∈ C : <(z) > −2 (19.2)

и ограниченное в области

z ∈ C : |<(z)| ≤ 1 (19.3)

Уравнение (19.1) является частным случаем цепочки Аскерманна

A1(z) = b+ z , z ∈ C (19.4)

An(1) = b , n ∈ N, n≥1 (19.5)

An(z+1) = An−1

(
An(z)

)
, n ∈ N, n > 1 (19.6)

Функции A здесь называются аскерманами (с маленькой буквы),
чтобы не путать их с великим и могучим математиком Вильгельмом
Аскерманном (Wilhelm Ackermann) [7]. Именно об аскерманнах идет
речь в этой главе.

Первые три аскерманна являются элементатными функциями. Ин-
терес представляет построение высших аскерманнов. Такое постро-
ение помогает, в частности, проверить, отточить общие методы по-
строения суперфункций.

Для основания b=2, Графики первых четырех аскерманнов показа-
ны на рисунке 19.1 жирными кривыми: сплошной, сплошной, точко-
вой и пунктиром. Тонкие кривые относятся несколько иной системе
обозначений, рассмотренной в следующей секции.
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Рис. 19.1: Сравнение обозначений для двоичных аскерманнов
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1 Двоичные аскерманны

Ранее, аскерманны рассматривались преимущественно по основа-
нию b=2. Чтобы не путать их с аскерманнами по другим основани-
ям, аскерманны по основанию 2 я называю бинарными, или класси-
ческими, или каноническими. Я не знаю, какой из этих терминов (и
из этих ли) окажется более удобным.

Для бинарных аскерманнов используются специальные обозначе-
ния. Номер аскерманна записывается в виде дополнительного, пер-
вого аргумента, а значение основания b не указывается вовсе. В
некотором смысле это оправдано: какой смысл указывать основа-
ние, если оно всегда константа, равная двум? Связь классических
(и пока общепринятых) обозначений для b = 2 с аскерманнами по
формулам (19.4) (19.5) (19.6) можно выразить простой формулой

A(m, z) = A2,m(z + 3)− 3 (19.7)

В частности,

A2,1(x) = 2 + x = A(1, x+3)− 3 = A(1, x) (19.8)

A2,2(x) = 2 x = A(2, x+3)− 3 (19.9)

A2,3(x) = exp2(x)= A(3, x+3)− 3 = 2x (19.10)

A2,4(x) = tet2(x) = A(3, x+3)− 3 (19.11)

Чтобы показать связь между А с индексом и одним аргументом
и A без индекса, но с двумя аргументами, на рисунке 19.1 такие
аскерманны построены как функции вещественного аргумента.

y=A2,m(x) для m = 1, 2, 3, 4 показаны толстыми линиями (сплош-
ной, сплошной точковой, и пунктиром );

y=A(m,x) для m = 1, 2, 3, 4 показаны тонкими линиями (сплош-
ной, сплошной, точковой, и пунктиром ).

Ввиду соотношения (19.7), толстые линии образуются из тонких сме-
щением, трансляцией на 3 единицы вдоль оси x и настолько же по
оси y. Лишь прямая для первого аскерманна при такой транляции
переходит сама в себя.
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Специально для бинарных аскерманнов, системa уравнений (19.4),
(19.5), (19.6) может быть слегка расширена, чтобы включать “нуле-
вой” аскерманн. Уравнения для A могут быть записаны так:

A(0, z) = z + 1 (19.12)

A(m+1, 0) = A(m, 1) (19.13)

A(m+1, z) = A
(
m,A(m+1, z)

)
(19.14)

Смещение и аргумента функции, и значения этой функции по фор-
муле (19.7) соответствует преобразованию сопряжения. Поэтому пе-
редаточное уравнение (19.14) для бинарного аскерманна в “класси-
ческих” обозначениях имеет такой же вид, как и передаточное урав-
нение (19.6).

Одним из применений аскерманнов является обозначение больших
чисел (для вещественного аргумента). За счет смещения аргумен-
та, канонические бинарные аскерманны могут создавать видимость
несколько более быстрого роста, чем аскерманны по формулам (19.4),
(19.5), (19.6). Однако, для приложений, такое “ускорение” навряд
ли существенно; и обозначения в формулах (19.4), (19.5),(19.6) мне
представляются более удобными, чем канонические. Потому как в
обозначениях (19.4), (19.5),(19.6) третий аскерманн оказывается про-
сто экспонентой, четвертый - просто тетрацией, и так далее. Кроме
того, если рассматривать свойства голоморфизма и итерации по по-
следнему аргументу, а остальные аргументы (основание b и номер
аскерманна m) считать параметрами, то удобно записывать эти па-
раметры в виде индекса. Я надеюсь, что у Читателя не возникнет
проблем с использованием соотношения (19.7) для перехода из одной
системы обозначений в другую.

2 Названия

B 20 веке, функции Аскерманна обычно рассматривались для осно-
вания b = 2 и только для целых значений z. Пока не видно прин-
ципиальных ограничений, которые препятствовали бы вычислению
такой функции для комлексных значений b и z; разумеется, подходя-
щие требования на область голоморфизма должны быть сформули-
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рованы. Есть надежда, что для всех аскерманов можно потребовать
голоморфизма по крайней мере в некоторой окрестности веществен-
ной оси. Решение передаточного уравнения не единственно, поэтому
следует либо указывать способ построения каждого аскерманна, ли-
бо изобретать требования на поведение аскерманнов в комплексной
плоскости.

Несколько первых аскерманнов имеют специальные названия:
Ab,1 = z 7→ b+z, добавление константы b,
Ab,2 = z 7→ bz, умножение на константу b,
Ab,3 = expb = z 7→ pow(b, z) = z 7→ bz, экспонента по основанию b,
Ab,4 = tetb = z 7→ tetb(z), тетрация по основанию b,
Ab,5 = penb = z 7→ penb(z), пентация по основанию b.
Следующиe функции могут обозначаться символами hexb, hepb, octb,..
и называться, соответственно, терминaми “гексация” (hexation), “геп-
тация” (heptation), “октация” (octation) и т.д. Такие обозначения по-
лучаются при транслитерации латинских числительных и сокраще-
нии имен функций до трех букв. 1

Изначально, формализм суперфункций разрабатывался для тетра-
ции, то есть суперфункции от экспоненты. Однако этот формализм
может применяться и для других передаточных функций, и, в част-
ности, для различных аскерманнов. Как пример, в следующей сек-
ции рассмотрена пентация.

3 Пентация

Если Математику дать чайник, газовую плиту, спички и кран с во-
дой, и попросить вскипятить чай, то он нальет в чайник воду, за-
жжет газ и поставит чайник на огонь. Но если после этого Матема-
тика ещё раз попросят вскипятить чай, когда вода уже в чайнике,

1Суперфункции расширяют возможности посылать на три буквы. В принципе, для гекса-
ции можно было бы использовать латинское слово sextus (“sixth”, шесть) и oбразовать термин
“сексация”, обозначая соответствующую функцию sexb. Однако, судя по тому, какие сайты
предлагают базы данных при поиске с ключевым словом sexb, человеческая цивилизация
ещё не вполне созрела для сексации, и для суперфункции от пентации, то есть для шестого
аскерманна, лучше использовать термин “гексация”.
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а газ горит, то Математик выльет воду, погасит газ и произнесёт
заклинание: “Задача сведена к предыдущей” .
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Рис. 19.2: y=tetb(x), фрагмент рисунка 17.1;
добавлены прямая y=x и график y=tetτ (x)

Я надеюсь, что методами,
описанными в выше, Чита-
тель уже и сам может вы-
числять суперфункции и,
в частности, тех аскерман-
нов, какие ему понадобят-
ся. Однако я больше фи-
зик, чем математик. Поэто-
му, вместо того, чтобы про-
изнести заклинание “зада-
ча сведена к предыдущей”,
я предлагаю пример вычис-
ления ещё одного аскерман-
на, натуральной пентации,
то есть pen = pene = Ae,5.

Ключевой вопрос при построении суперфункции - о стационарных
точках передаточной функции. Для пентации передаточной функ-
цией является тетрация tet, рассмотренная в главе 14. Bеществе-
ные стационарные точки тетрации показаны на рисунке 19.2. Это
модификация рисунка 17.1: некоторые кривые убраны; добавлена
кривая для тетрации по основанию b = τ ≈ 1.63532, где τ есть та-
кое основание, что кривая y= tetτ(x) касается прямой y=x. Точка
касания имеет координаты (Lτ,1, Lτ,1), при этом Lτ,1 ≈ 3.087. Для
этого значения на рисунке 19.2 проведены дополнительные линии
координатной сетки.

При значениях основания b > τ , тетрация tetb имеет только одну
вещественную стационарную точку, и это, в частности, случай на-
туральной тетрации tet = tete. Для натуральной тетрации, эта ста-
ционарная точка Le,0≈−1.85035452902718, и для этого значения на
рисунке 19.2 тоже проведены дополнительные координатные линии.
Именно эта стационарная точка тетрации выбрана для построения
натуральной пентации pen, то есть пятого аскерманна по основанию
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e=exp(1)≈2.71 .

Натуральной пентацией, или пятым аскерманом по основанию e, я
называю суперфункцию от тетрации, построенную регулярной ите-
рацией на стационарной точке Le,0, и приближающуюся к этой ста-
ционарной точке на минус бесконечности.

Для передаточной функции tet, уравнение для суперфункции F за-
писывается так:

F (z+1) = tet
(
F (z)

)
(19.15)

Я строю растущее вдоль вещественной оси решение F этого уравне-
ния методом регулярной итерации на стационарной точке тетрации
L = Le,5,0 ≈ −1.85035452902718; чтобы упростить выборочное чте-
ние лишь некоторых глав этой книги, я привожу ниже ключевые
формулы этого построения.

Для некоторого натурального числа M , я ищу асимптотическое ре-
шение F уравнения (19.15):

F (z) = f(z) +O(εM) (19.16)

где

f(z) = Le,4,0 +
M−1∑
m=1

anε
n (19.17)

ε = exp(kz) (19.18)

Здесь положительная константа k имеет смысл инкремента роста су-
перфункции при больших отрицательных значениях аргумента, а a
суть вещественные коэффициенты. Для простоты, удобно положить
a1 = 1. Подстановка представления (19.16), (19.17) в передаточное
уравнение (19.15) и асимптотический анализ с малым параметром ε

дают оценки инкремента k≈ 1.86573322821 и первых коэффициен-
тов: a2≈−0.6263241, a3≈0.4827 . При M = 4, эти значения для су-
пертетрации определяют первичную аппроксимацию f по формуле
(19.17). Такая аппроксимация хороша при больших отрицательных
значениях вещественной части аргумента супертетрации. Затем, для
целых n, я определяю

Fn(z) = tetn(f(z − n)) (19.19)
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аппроксимации по формуле (19.24)

В соответствии с общим
методом регулярной итера-
ции, точное представление
супертетрации F получает-
ся как предел

F (z) = lim
n→∞

Fn(z) (19.20)

Ввиду того, что f есть
асимптотическое решение,
этот предел не зависит от
выбранного номера M ; ра-
зумеется, при больших зна-
чениях M , предел сходится
быстрее, чем для малых.

Чтобы для пятого аскер-
манна получить требуемое
значение e в единице, я
определяю этого аскерман-
на как функцю F со сме-
щенным аргументом,

pen(z) = F (x1+z) (19.21)

где x1 есть решение уравнения F (x1) = 1. Такое построение я при-
нимаю за определение пентации. Для вещественных значений аргу-
мента, график пентации показан на рисунке 19.3 толстой линией.

Для построения чистовых рисунков, достаточно взять M=4, и для
аппроксимации предела в формуле (19.19) выбрать значение n= 7.
Условие tet(0)=1 эквивалентно уравнению F (x1)=1 и дает оценку
x1≈2.24817451898 ; теперь алгоритм вычисления пентации готов к
употреблению. Для более эффективной имплементации можно под-
считать ещё с десяток коэффициентов a и добавить в алгоритм ав-
томатическую оценку количества итераций в формуле (19.19), необ-
ходимого для быстрой оценки предела с высокой аккуратностью.

На рисунке 19.3, дополнительная горизонтальная линия указывает
предельное значение L=Le,4,0, эта линия позаимствована с рисунка
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19.2. Она указывает предельное значение пентации на минус беско-
нечности, это горизонтальная асимптота графика пентации. Кроме
того, на рисунке более тонкой кривой показана экспоненциальная
асимптотика пентации,

y = Le,4,0 + exp(k(x+x1)) (19.22)

Эта асимптотика соответствует значению M = 2 в первичной ап-
проксимации пентации по формуле (19.17).

Пентация может быть аппроксимирована линейной функцией,

pen(x) ≈ 1 + x (19.23)

При−2.1<x<0.1, аппроксимация (19.23) дает около двух значащих
цифр. Погрешность аппроксимации (19.23) может быть выражена
функцией

δ(x) = pen(x)− (1+x) (19.24)

Тонкая кривая на рисунке 19.3 показывает эту погрешноcть. Чтобы
она была видна, её пришлось умножить на 10; иначе она сливалась
с осью абсцисс. Таким образом, построена кривая y = 10 δ(x). Ин-
тересно, что линейная фукция в правой части (19.23) аппроксими-
рует также и предыдущего аскерманна, то есть тетрацию, график
которой показан на рисунке 14.1. Для тетрации функция в правой
части формулы (19.23) тоже дает около двух значащих цифр, но об-
ласть применимости линейной аппроксимации пентации шире, чем
область применимости этой аппроксимации для тетрации.

Для комплексных значений аргумента, комплексная карта пентации
по формуле (19.21) показана на рисунке 19.4. Пентация голоморфна
в левой части карты. Когда вещественная часть аргумента стремит-
ся к минус бесконечности, пентация экспоненциально стремится к
предельному значению L = Le,4,0 ≈ −1.850354529, указанному на
рисунке 19.2. Чтобы показать это более наглядно, на рисунке 19.4
толстой светлой полосой показан дополнительный уровень u=Le,4,0.
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Рис. 19.4: u+iv = pen(x+iy) по формуле (19.21)

Пентация периодична, её период P определяется инкрементом k, то
есть, в конечном счете, производной тетрации в стационарной точке
Le,4,0. Этот период чисто мнимый,

P =
2π i

k
≈ 3.36767615657879 i (19.25)

На комплексной карте пентации, при трансляциях на целое число
периодов, линии постоянной вещественной части функции и линии
постоянной мнимой её части воспроизводятся. Воспроизводятся так-
же и разрезы области голоморфизма.

Вдоль вещественной оси, пентация быстро растет (гораздо ещё по
сравнению с тетрацией). Как и для других быстро растущих функ-
ций, карта пентации в окрестности положительной части веществн-
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ной оси имеет сложную структуру; пентация изменяется с охрени-
тельными производными. Посторитель карт conto.cin не смог про-
вести линии так часто, и эта область осталась пустой. Чтобы хоть
как-то показать её структуру, на рисунке 19.5 показан зумин кар-
ты с рисунка 19.3. Рост аскерманнов, начиная даже с тетрации (а
пентация и подавно) существенно опережает возможности зуммиро-
вания.

Mетоды построения суперфункций могут использоваться для по-
строения более высоких аскерманнов. В частности, как только рост
тетрации окажется недостаточно быстрым для каких-либо прило-
жений, можно построить голоморфную пентацию. На минус беско-
нечности пентация стремиться к стационарной точке L = Le,4,0 ≈
−1.850354529 такой, что L = tet(L). Более подробно стационарные
точки пентации обсуждаются в следующей секции.

4 Стационарные точки пентации

Чтобы сделать следующего, шестого аскерманна (гексацию), следу-
ет построить аркпентацию ape=pen−1. Mожно обратить асимптоти-
ческое разложение для пентации либо получить такое же разложе-
ние асимптотическим анализом соответствующего уравнения Абеля.

Для того, чтобы показать, что суперфункции пентации могут стро-
иться обычным способом, по аналогии с тетрацией, на рисунке 19.5
указаны две стационарные точки пентации, они обозначены симво-
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лом L и снабжены дополнительными координатными линиями. Их
приближенные значения можно найти, считая пальцем координат-
ные линии и линии уровня. Эту значения суть

L = Le,5,0 ≈ −2.260 + 1.384 i (19.26)

L = Le,5,1 ≈ 1.057 + 1.546 i (19.27)

Ещё имеются значения вблизи вещественной оси; в частности,

L = Le,5,2 ≈ 3.43 + 0.07 i (19.28)

L = Le,5,3 ≈ 4.39 + 0.11 i (19.29)

но они не поместились на странице. Пентация вещественно голо-
морфна, поэтому значения L∗ также являются стационарными точ-
ками. Читатели приглашаются числено решить уравнение

pen(L) = L (19.30)

и уточнить значения Le,5,0 и Le,5,1. Если тетрация и арктетрация
сделаны с 14ю значащими цифрами, то можно надеяться получить
хотя бы 12 значащих цифр для пентации, аркпентации и их стаци-
онарных точек.

Я ожидаю, что для пентации можно построить суперфункцию, гек-
сацию hex, как вещественно-голоморфное решение F уравнения

F (z+1) = pen
(
F (z)

)
(19.31)

с дополнительными условиями

F (0) = 1 (19.32)

F (i∞) = Le,5,0 (19.33)

F (−i∞) = L ∗
e,5,0 (19.34)

Читатели приглашаются построить такую гексацию и, в частности,
нарисовать для неё графики и комплексную карту. Стационарная
точка гексации определяет асимптотическое поведение следующего,
седьмого аскерманна; он может называться гептацией, и так далее.
При этом предыдущий аскерманн используется как передаточная
функция, и новый аскерманн получается как соответствующая су-
перфункция.
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5 Сравнение натуральных aскерманнов

В этой секции сравниваются свойства первых пяти функций Ас-
керманна для натурального основания, b= e, и для вещественного
аргумента. Графики этих функций показаны на рисунке 19.6.

y

5

4

3
e

2

1

0

−1

−2 −1 0 1 2 x

y
=

p
en

(x
)

y
=

te
t(
x

)
y

=
ex

p
(x

)
y

=
ex

y=
e+
x

y=exp(x)

y=pen(x)

y
=

te
t(
x
)

y
=

ex

y=Le,4,0

http://mizugadro.mydns.jp/t/index.php/File:Ackerplot400.jpg

Рис. 19.6: y=Ae,n(x) for n=1, 2, 3, 4, 5
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Для случая натурального основания. b=e, я не указываю основание
в индексе, то есть
Ae,1(z) = e+z, добавление константы e,
Ae,2(z) = ez, умножение на константу e,
Ae,3(z) = exp(z) = ez, натуральная экспонента,
Ae,4(z) = tet(z), тетрация по основанию e,
Ae,5(z) = pen(z), пентация по основанию e.
Именно эти обозначения без индекса использованы для маркировки
кривых y=Ae,n(x) на рисунке 19.6.

Поведение тетрации и пентации на отрезке от −1 до 1 сходно. Од-
нако, даже на этом отрезке, расстояние между кривыми достигает
ширины линий и заметно на рисунке 19.6.

Возможно, для каких-либо приложений понадобится тетрация по
комплексному основанию или даже более высокие аскерманны по
комплексному основанию. Такие аскерманны могут вычисляться ме-
тодами, представленными в этой Книге, и их вычисление не требу-
ет каких-либо специфических еврейских трюков, ни специфической
германской педантичности. Я надеюсь, что Исследователь любой
национальности сможет вычислить этих аскерманнов, и, в частно-
сти, тетрацию, и пентацию, как только они потребуются в каких-
либо изысканиях или приложениях, или даже из спортивно-научного
интереса, и с такой аккуратностью, которая ему потребуется.

6 Синдром последнего коэффициента

Я спрашиваю себя: “почему бы не сделать гексацию так же, как
уже сделана тетрация и пентация?”. Для того, чтобы объяснить
это, мне прийдется копипастнуть ещё одно лирическое отступление.

Допустим, исследователь придумал совершенно новую и безумно
красивую функцию. Он строит график, ну, скажем, от −4 до 4. Не
все пышные округлости функции умещаются на графике, и иссле-
дователь строит её же от −10 до 10. Но последняя осцилляция не
видна, и он расширяет область значений до интервала [−11, 11]. И
так далее. Наконец, когда график расширился настолько, что цен-
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тральную часть уже видно только в лупу, исследователь начинает
вычислять, ну, скажем, её разложение в ряд Тэйлора. Он считает
первые 5 коэффициентов и вклеивает их в свою фундаментальную
статью. Он смотрит на них, и ему кажется, что следующий коэффи-
циент мог бы помочь пониманию. Он считает шестой коэффициент
и расширяет таблицу. Но ему тут же кажется, что еще один (только
один!) коэффициент сильно улучшит статью...

- Стоп, - оборвет меня Читатель, - Что за чушь? Он что, больной?..

Да, дорогой Читатель, да; именно так. Эта болезнь называется Син-
дром Последнего Коэффициента. Примерно так же в повести о Хад-
же Насреддине ростовщик Джафар каждый раз мечтает наполнить
золотом еще один (только один!) горшок 2. Примерно так же маньяк-
убийца, получив высшую власть, каждый раз думает, что теперь
достаточно “убрать” (так на чекистском жаргоне называется поли-
тическое убийство) пару кляузников (всего двух!), и стране настанет
полный порядок. Или как алкоголик каждый раз хочет только одну
(единственную!) рюмку водки.

Все упомянутые лица больны синдромом последнего коэффициента.
Я тоже страдаю от этого недуга. В порядке лечения, я не включаю
сюда гексацию, то есть шестого аскерманна, ни даже аркпентацию,
которая нужна для построения шестого аскерманна методом Коши
- тем же методом, которым строится натуральная (и не только) тет-
рация.

Сколько бы аскерманнов я не загрузил, всегда будет такой, для ко-
торого в Книге ещё нет ни одного рисунка. Есть и иная мотивация к
тому, чтобы в какой-то момент остановиться с этой Книгой - чтобы

2 http://coollib.net/b/43714/read Леонид Соловьев. Возмутитель спокойствия. (По-
весть о Хадже Насреддине) ..во дворе собрались многочисленные родственники Джафара.
Многие из них были должны ему и надеялись, что сегодня на радостях он простит долги.
Напрасно они надеялись: ростовщик слышал через закрытую дверь голоса своих должников
и злобно усмехался в душе. «Я скажу им сегодня, что прощаю долги, – думал он, – но рас-
писок я им не верну, расписки останутся у меня. И они, успокоившись, начнут беспечную
жизнь, а я ничего не скажу, я буду молчать, но втайне все время подсчитывать. И когда на
каждую таньга долга нарастет еще десять таньга и сумма долга превысит стоимость домов,
садов и виноградников, принадлежащих ныне моим должникам, я позову судью, откажусь
от своего обещания, предъявлю расписки, продам все их имущество, оставлю их нищими и
наполню золотом еще один горшок!»
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все-таки закончить Книгу в этом веке. Эта мотивация показана на
рисунке 19.7.

На этом я заканчиваю рассмотрение регулярных и не очень итра-
ций, а также прочих интегралов Коши. Надеюсь, что читатель уже
понял, чем Фудоки отличаются от Нибелунгов, и может самостоя-
тельно построить всех аскерманнов, которые ему понадобятся.

Теперь гораздо важнее рассмотреть хотя бы один случай, когда ме-
тоды, описанные выше, не работают. Такое очень даже может при-
ключиться, если у трансцендентной передаточной функции вообще
нет стационарных точек. Пример такой функции рассмотрен в сле-
дующей главе.

Рис. 19.7: Девушка с веслом [15]: Никакой гребли, пока не допишешь
свою Книгу!
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Глава 20

Без стационарных точек

В этой главе рассмотрен пример передаточной функции без стацио-
нарных точек. Для такой функции трудно применить метод регуляр-
ной итерации или метод Коши, использованные в предыдущих гла-
вах. Однако, тем не менее, даже для такой передаточной функции
можно построить суперфункцию, абельфункцию и, соответственно,
нецелые итетации. Ниже пересказывается содержание статьи [77].

1 Функция Трапманна
y

4
1+e

3
e

2

1

0

−1

−2

−2 −1 0 1 x

y=exp(x)

y=tra(x)

Рис. 20.1: y=tra(x) и y=exp(x)

В этой Книге, функцией Траппманна
называется элементарная функция

tra(z) = exp(z) + z (20.1)

Эта функция показана на рисунке 20.1
в сравнении с экспонентой.

Функция tra должна была стать ловуш-
кой (“trap”), чтобы поймать меня на за-
явлении о том, что я могу построить су-
перфункцию (а также абельфункцию и
соответствующие итерации) для какой
ни попади передаточной функции.

Впрочем, английское слово “trap” можно интерпретировать также
как трап, то есть путь к дальнейшим успехам в решениях пере-
даточных уравнений и итерированиях всяческих функций. Таким
образом, функция tra, хоть и является элементарой, чрезвычайно
важна я заслуживает специального имени.
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Рис. 20.2: u+iv = tra(x+iy) по формуле (20.1)

Комплексная карта функции tra по формуле (20.1) показанa на ри-
сунке 20.2. В правой части рисунка, карта похожа на карту экспо-
ненты, так как на фоне экспоненциального роста линейная добавка
в формуле (20.1) смотрится бледно. В левой части рисунка карта
похожа на карту тождественной функции; линии постоянной веще-
ственной части и линии постоянной мнимой части образуют ровную
сетку прямых, параллельных координатным осям.

Аналогичным свойством (почти тождественность) обладает обрат-
ная функция, то есть ArcTra = tra−1; по крайней мере, в некоторой
окрестности отрицательной части вещественной оси. Карта функ-
ции ArcTra показана на рисунке 20.3. В следующей секции а расска-
зываю, как вычисляется функция ArcTra.
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Рис. 20.3: u+iv=ArcTra(x+iy)

2 ArcTra, обратная функция от траппманна

Чтобы итерировать функцию Траппманна tra, я имею в виду неце-
лые итерации, следует сперва научиться вычислять её целые ите-
рации. Для целых положительных значений номера итерации, во-
просов с итерацией не возникает; просто применяем функцию tra
столько раз, сколько нужно. Для вычисления целых отрицатель-
ных итераций, требуется алгоритм для обратной функции; примерно
так же, как для вычисления нецелых итераций экспоненты требу-
ется не только сама экспонента, но и её обратная функция, то есть
логарифм. Пусть эта обратная функция от траппманна называется
ArcTra, так что

tra
(

ArcTra(z)
)

= z (20.2)
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в некоторой широкой области значений z, включающей, по крайней
мере, всю вещественную ось. Комплексная карта функции ArcTra
показана на рисунке 20.3.

Рис. 20.4: Линейная оптика и
нелинейная оптика

В этой секции я рассказываю, как
строится функция ArcTra. А в этом
параграфе объясню, почему я такое
описание вклеиваю в Книгу. Ещё в
прошлом веке мне приходилось объ-
яснять студентам, интересовавшимся
нелинейной оптикой (которая тогда
была в моде), что за каждым так
называемым “нелинейным” эффектом
имеется довольно много вполне ли-
нейной науки. До того, как имеется
понимание линейных оптических эф-
фектов, говорить о нелинейной оп-
тике бессмысленно, за исключением,
разве, случая, показанного на рисунке 20.4. Аналогично, до того,
как читатель свободно вычисляет целые отрицательные итерации
передаточной функции, бессмысленно говорить о её нецелых итера-
циях.

Во время СССР, в России была некоторая наука, и известными за-
ведениями советской школы были Физфак и Физтех. Для того, что-
бы объяснить разницу между этими заведениями, предлагали такой
пример: Выпускник Физтеха, хотя и может чего-то рассчитать, со-
вершенно не понимает смысла полученной формулы и поэтому не
может ей пользоваться. Выпускник физфака, наоборот, всё понима-
ет, хотя сам подсчитать ничего не может. Это я к тому, что Читатели,
которых интересуют картинки суперфункции, но не интересует, как
они получились, могут пропустить эту секцию. Тогда про этих чи-
тателей, как про выпускников Физфака, можно будет сказать, что
они всё понимают.

Как уже отмечено выше, функция tra является элементарной, и не
составляет труда сосчитать её производную:

tra(z) = z + exp(z) , tra′(z) = 1 + exp(z) (20.3)
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Для построения функции ArcTra требуется решение f уравнения

tra(f)=z (20.4)

Последовательность fn аппроксимаций решения f можно строить
методом Ньютона,

fn+1 = fn +
z − tra(fn)

tra′(fn)
(20.5)

при подходящем начальном значении f0. Я считаю, что начальное
значение подходит, если в пределе

f = lim
n→∞

fn (20.6)

решение f оказывается на том листе многолистной функции, кото-
рый мне нравится. Как уже отмечено, мне нравится, когда линии
разреза идут от точек ветвления прямо в направлении минус беско-
нечности, параллельно вещественной оси. Именно так идут разрезы
на рисунке 20.3. Мелкая сетка, образованная изолиниями в полосе
вдоль отрицательной части вещественной оси, то есть оси x на ри-
сунке 20.3, достаточно четко указывает положение разрезов, так что
я не стал отмечать их дополнительным пунктиром.

Для построения начального приближения, я использую различные
разложения функции ArcTra, в зависимости от значения аргумента
z в формуле (20.4). Сейчас я их перечислю.

Проще всего арктраппманн раскладывается вблизи отрицательной
части вещественной оси. Такое разложение дает на первичную ап-
проксимацию

ArcTra(z) ≈ app4(z) = z − ez + e2z − 1

2
e3z (20.7)

Читателям предлагается построить карту функции согласия

A4(z) = − lg

(
|tra(app4(z))− z|
|tra(app4(z))|+ |z|

)
(20.8)

Логарифмический рост функции ArcTra при больших значениях ве-
щественной части аргумента можно ухватить асимптотическим раз-
ложением, Такое разложение даёт аппроксимацию

ArcTra(z) ≈ app3(z) = ln(z)

(
1 +

1

z

M∑
m=0

Pm(ln(z))

zm

)
(20.9)
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где Pm есть полином степени m, В частности,

P0(L) = −1 (20.10)
P1(L) = 1− L/2 (20.11)
P2(L) = −1 + 3L/2− L2/3 (20.12)
P3(L) = 1− 3L+ 11L2/6− L3/4 (20.13)
P4(L) = −1 + 5L− 35L2/6 + 25L3/12− L4/5 (20.14)

Разложение Тэйлора в единице для арктраппманна дает приближе-
ние

ArcTra(z) ≈ app1(z) =
M∑
n=1

cn(z − 1)n (20.15)

Несколько десятков коэффициентов этого разложения легко полу-
чить, обращая ряд разложения функции tra в нуле; это дает асимп-
тотическое разложение арктраппманна в таком виде:

ArcTra(1+z)= z
2−

z2

16 + z3

192 + z4

3072 −
13z5

61440 + 47z6

1474560 + 73z7

41287680 −
2447z8

1321205760+..

При M=21, для |z|<1, такая аппроксимация дает по крайней мере
12 значащих цифр.

Разложение арктраппманна в точке −1− iπ можно записать так:

ArcTra(z) ≈ app2(z) =
M∑
m=1

c ∗m (z+1+iπ)m/2

= −iπ + i
√

2
√
z+iπ+1 +

1

3
(z+iπ+1)

− i(z+iπ+1)3/2

9
√

2
− 2

135
(z+iπ+1)2 + .. (20.16)

В более компактном (и более удобном для численной имплемента-
ции) виде, это разложение записывается так:

ArcTra
(
− 1−iπ+2t2

)
= −iπ + 2it+

2t2

3
− 2it3

9
− 8t4

135

+
it5

135
− 32t6

8505
+

139it7

42525
+ .. (20.17)

и, соответственно, “сопряженное” разложение имеет вид

ArcTra
(
− 1 + iπ + 2t2

)
= iπ − 2it+

2t2

3
+

2it3

9
− 8t4

135

− it5

135
− 32t6

8505
− 139it7

42525
+ .. (20.18)
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где t имеет смысл алгебраической функции от аргумента арктрап-
манна,

t =

√
z + 1− iπ

2
(20.19)

Разрез корневой функции в формуле (20.19) автоматически опре-
деляет линии разреза функции ArcTra, которые видны на рисунке
20.3. Я предлагаю Читателю в качестве упражнения построить кар-
ты функций согласия

Am(z) = − lg

(
|tra(appm(z))− z|
|tra(appm(z))|+ |z|

)
(20.20)

в комплексной плоскости, z = x+iy для m = 1, 2, 3, 4, то есть для
четырех первичных аппроксимаций, предлагаемых в этой секции.

Когда аппроксимации, описанные выше, запрограммированы и на-
званы именами arctra1, arctra2, arctra3, arctra4, численная импле-
ментация функции ArcTra, имеющая разрезы, как это показано на
рисунке 20.3 осуществлена с помощью алгоритма, копипастнутого
ниже:

z_type arctran(z_type z) { DB x=Re(z), y=Im(z);
if( x>2.) return arctra3(z);
DB Y=fabs(y);
if(Y<M_PI){ if(x<-1.5) return arctra4(z);

if(Y<2.) return arctra1(z); }
if( Y>5. || x<-4. ) return arctra3(z);
if( y>0. ) return arctra2(z);
return conj( arctra2(conj(z)) );
}

Кроме быстрого и аккуратного представления через разаложения,
представленные выше, арктраппманн можно выразить через функ-
цию Таня, определенную в главе 5:

ArcTra(z) = z − Tania(z−1) (20.21)

Таким образом, в этой Книге, мы имеем Таню уже трижды, при-
чем тремя разными способами: сперва в простой модели лазерного
усилителя, затем, как представление функции Filog, и теперь, как
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способ имплементации арктраппманна. Я надеюсь, что при написа-
нии этой книги, ни одна Таня не пострадала. Представление через
функцию Таня может использоваться для сравнения, проверки раз-
личных представлений.

По крайней мере в некоторой окрестности вещественной оси, арк-
траппманн можно представить также через специальные функции
LambertW и WrightOmega, см. (5.2). Однако для численных прове-
рок вблизи предела точности вычислений, первичные представле-
ния, описанные в этой секции, дают более аккуратные результаты.
Читателям предлагается сравнить различные представления арк-
траппманна и оценить их аккуратность.

Кроме передаточной функции T = tra и обратной функции T−1 =

ArcTra, описанной в этой секции, для нецелых итераций функции
Траппманна требуются её суперфункция, которую я назову SuTra, и
абельфункция, которую я назову AuTra = SuTra−1. Функция SuTra
строится в следующей секции.

3 Супертраппманн
y

1+e

5

4

3

2

1

0

−1

−4 −3−e
−2 −1 0 1 2 x

y
=

S
u
T

ra
(x

)

y=−ln(−x)

http://mizugadro.mydns.jp/t/index.php/File:SuTraPlo3T.jpg

Рис. 20.5: y=SuTra(x) и y=− ln(−x)

Как указано выше, функция
Траппманна не имеет стаци-
онарных точек. В отсутствие
стационарных точек, нельзя
применять “как есть” метото-
ды построения суперфункций,
рассмотренные в предыдущих
главах. В связи с этим, Генрик
Траппманн ожидал, что для
передаточной функции (20.1)
будет трудно построить су-
перфункцию. Вопреки ожида-
ниям, для суперфункции от
Функции Траппманна (20.1)
существует простое представление (и даже не одно). Для такой су-
перфункции здесь использовано имя SuTra, и она показана на ри-
сунке 20.5. Ниже я рассказываю, как строится эта функция.
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Сперва я расскажу про хинт (hint, или, более по-русски, финт), с
помощью которого можно угадать поведение суперфункции F . Для
функции Траппманна, передаточное уравнение можно записать так:

F (z+1) = tra(F (z)) = F (z) + exp(F (z)) (20.22)

Или даже так:

F (z+1)− F (z) = exp(F (z)) (20.23)

В левой части уравнения (20.23) имеется что-то, напоминающее про-
изводную функции F . Уравнение

dF

dz
≈ 1

exp(−F )
(20.24)

дает ∫
exp(−F )dF ≈

∫
dz (20.25)

exp(−F ) ≈ −z (20.26)

Таким образом, разложение функции F может начинаться с лога-
рифмического терма. Подстановка такого эвристического решения
в передаточное уравнение (20.22) дает невязку, и эта невязка ука-
зывает следующий терм разложения. Угадав таким образов форму
асимптотики, я ищу асимптотическое представление для решения F
в таком виде:

F (z) = FM(z) +O

(
ln(−z)

z

)M+1

(20.27)

где M есть натуральное число, а

FM(z) = − ln(−z) +
M∑
m=1

Pm

(
ln(−z)

)
z−m (20.28)

где

Pm(z) =
m∑
n=1

am,nz
n (20.29)

Подставляя представление (20.22) в передаточное уравнение (20.22)
и собирая слагаемые с одинаковыми степенями z и ln(−z), я по-
лучаю цепочку уравнений для коэффициентов a. Первые из этих
коэффициентов показаны в таблице 20.1.
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Таблица 20.1: Коэффициенты a в разложении (20.27),(20.28)

0 −1
2

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

1
6

−1
4

1
8

a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

7
48

− 7
24

3
16

− 1
24

a3,4 a3,5 a3,6 a3,7 a3,8

647
4320

−35
96

5
16

−11
96

1
64

a4,5 a4,6 a4,7 a4,8

1427
8640

−4163
8640

25
48

−17
64

25
384

− 1
160

a5,6 a5,7 a5,8

1380863
7257600

−1883
2880

5963
6912

− 653
1152

305
1536

− 137
3840

1
384

a6,7 a6,8

3278773
14515200

−2171723
2419200

97603
69120

−3961
3456

537
1024

− 263
1920

49
2560

− 1
896

a7,8

251790467
914457600

−35981749
29030400

1049251
460800

−920881
414720

69953
55296

−13381
30720

4123
46080

− 363
35840

1
2048

На Математике, коэффициенты a можно находить с помощью такой
программы:

T[z_] = z + Exp[z];
Clear [n, m, M];
P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]; P[m, L];
F[z_]=-Log[-z]+a[1,1] Log[-z]/z+Sum[P[m,Log[-z]]/z^m,{m,2,M}]
M = 12;
F1x = F[-1/x + 1];
Ftx = T[F[-1/x]];
s[1] = Series[F1x - Ftx, {x, 0, 2}];
t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]
A[1, 1] = ReplaceAll[a[1, 1], t[1]];
su[1] = t[1]

m = 2; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];
t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];
u[m] = Collect[t[m], L];
v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];
w[m] = Table[a[m, n], {n, 0, m}];
ad[m] = Extract[Solve[v[m], w[m]], 1];
su[m + 1] = Join[su[m], ad[m]];
ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

m = 3; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];
t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];
u[m] = Collect[t[m], L];
v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];
w[m] = Table[a[m, n], {n, 0, m}];
ad[m] = Extract[Solve[v[m], w[m]], 1];
su[m + 1] = Join[su[m], ad[m]];
ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

и так далее для m=4, m=5, etc.
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Выражение (20.28) определяет асимптотику суперфункции для пе-
редаточной функциии (20.1). Точное решение F передаточного урав-
нения (20.22) записывается так:

F (z) = lim
k→∞

trak
(
FM(z−k)

)
(20.30)

Чтобы получить суперфункцию SuTra, которая удовлетворяет ещё
дополнительному условию

SuTra(0) = 0 (20.31)

я определяю

SuTra(z) = F (z + x0) (20.32)

где x0≈−1.1259817765745026 есть вещественное решение уравнения

F (x0) = 0 (20.33)

Рисунок 20.5 показывает y = SuTra(x) как функцию x. Для сравне-
ния, тонкой курвой показан также лидирующий терм асимптотики
функции SuTra при больших отрицательных значениях аргумента,
то есть y = − ln(−x). В левой части рисунка функция приближается
к её асимптотике.

Комплексная карта функции SuTra показана на рисунке 20.6. Вдали
от начала координат и вдали от положительной части вещественной
оси, SuTra похожа на функцию z → − ln(−z), как это предлагается
её асимптотическим представлением. При этом линии постоянной
вещественной части SuTra похожи на окружности, а линии посто-
янной мнимой части похожи на прямые линии. Сходства нет вблизи
нуля (где логарифм имеет особенность), и вблизи положительной
части вещественной оси. Этого можно было ожидать: по построе-
нию, функция SuTra голоморфна и не имеет особых точек, то есть
это целая функция. Целая функция не может хорошо аппроксими-
ровать сингулярную функцию вблизи её сингулярностей и разрезов.

В правой части рисунка 20.6, в окрестности положительной части ве-
щественной оси, функция SuTra остается голоморфной, но она очень
быстро растет (быстрее любой экспоненты), и даже самый хороший
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Рис. 20.6: u+iv = SuTra(x+iy) по формуле (20.32)

графопостроитель не может провести соответствующие линии уров-
ня. (И даже если бы он смог такое сделать, получающийся файл
не поместился бы ни в один компьютер.) Поэтому эта часть рисун-
ка осталась пустой, эта пустота выгладит как ручка, на которой
держится голоморфная иммитация сингулярности в нуле, и, в неко-
тором, смысле, вся ТФКП. Потому как если кто построит целую
голоморфную функцию с логарифмической асимптотикой, но без
такой “ручки”, то вся ТФКП (с аксиомами Арифметики вместе) по-
сыпется. Такая “ручка” неизбежна при аппроксимации сингулярной
функции целой функцией.

Чтобы показать, как логарифмическая функция z → − ln(−z) ап-
проксимируется целой функцией, на рисунке 20.7 изображены карты
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Рис. 20.7: Карты функций (20.34) и (20.35), наложенные на карту функции
(20.36)

целых функций

f2(z) = SuTra(2z) + ln(2) (20.34)

f4(z) = SuTra(4z) + ln(4) (20.35)

Для сравнения, эти карты наложены на карту функции

f∞(z) = − ln(−z) (20.36)

На правой картинке рисунка (20.7), уровни двух функций настолько
близки, что трудно сразу понять, к какой из функций относится
каждый уровень. Последовательность целых функций

Φn(z) = −
(

SuTra(−nz) + ln(n)
)

(20.37)

при больших значениях n асимптотически аппроксимирует ln(z) при
любых значениях z, за исключением нуля и отрицательной части ве-
щественной оси. 1 Насколько мне известно, выражение (20.37) имеет
самую широкую область аппроксимации логарифма целой функци-
ей среди всех, предложенных по крайней мере до публикации [77].

1В окрестности положительной части вещественной оси, при конечном n, функция Φn

сильно дергается; по сравнению с ней, даже выживший из ума диктатор, оказывающий всем
соседям “братскую помощь”, выглядит образцом постоянства и здравомыслия.

289



4 Связь с другими функциями

Функция AuTra может быть выражена через функцию AuZex, рас-
смотренную в главе 12

AuTra(z) = exp(AuZex) (20.38)

Аналогично, функция SuTra может быть выражена через функцию
SuZex

SuTra(z) = SuZex(ln(z)) (20.39)

Ввиду того, что логарифм - довольно медленная функция, числен-
ныe имплементации через представления (20.38) и (20.39) несколько
менее эффективны для итерации функции Траппманна, чем алго-
ритмы, представленные в этой главе. Кроме того, первичная аппрок-
симация арктраппманна легче позволяет увидеть, что эта функция
целая, то есть не имеет особых точек. Попросту говоря, голоморфна
везде, куда ни попади.

Рассказывают, что один Портной сошёл с ума. А случилось это так:
одноногий приятель Портного попросил его сшить портки с одной
штаниной. Приятель хорошо заплатил за эти портки, но ему потре-
бовались еще портки с тремя штанинами для его собаки, которая,
как и он, была калекой. А потом Знакомый приятеля попросил та-
кие же портки для своей собаки, которая была вполне нормальной
(разве что мерзла зимой) и штанин потребовалось четыре. Потом
Портной стал шить портки с шестью штанинами, на тот случай,
если кто выведет новую породу собаки с 6ю лапами, а заодно -
сюртуки для птиц с двумя головами, показанными на рисунке 10.1.
(Ожидалось, что они станут популярны в России после Чернобыль-
ской катастрофы; это обстоятельство учтено на гербе РФ.) Наконец,
Портной сшил портки с произвольным количеством штанин. И если
завтра Землю посетит инопланетянин, у которого n конечностей, то
у Портного для этого инопланетянина уже есть готовые портки.

Я рассказал историю про Портного для того, чтобы лучше объяс-
нить Читателю, что такое математика и чем занимаются математи-
ки. Я сейчас не могу себе представить ситуацию, в которой кому-
либо потребуется аппроксимировать элементарную функцию ln це-
лыми функциями. Но если кому-то вдруг такое потребуется, то у
меня такая аппроксимация уже есть, это функция Φn по формуле
(20.37).
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5 SuTra, имплементация супертраппманна

В заголовке секции, фамилия “Траппманн” написана с маленькой
буквы, чтобы показать, что речь идет не о самом Генрике Трап-
пманне, а о суперфункции для функции tra, которую я назвал его
фамилией. В этой секции рассмотрена численная имплементация
супертраппманна

Ключевые вопросы для любой аппроксимации - в какой области эта
аппроксимация работает, сколько значащих цифр она дает и сколько
операций требуется выполнить, чтобы с этой аппроксимацией полу-
чить требуемую величину. Если область применимости охватывает
все мыслимые приложения, погрешность приближается к имманент-
ной погрешности округления чисел при их представлении в компью-
тере, а все комплексные карты для этой функции строятся в реаль-
ном времени, то я условно называю решение точным. При этом под-
разумевается, что когда получаемой точности не хватит, с помощью
точного решения алгоритм можно уточнить, чтобы получить ещё бо-
лее точный алгоритм, который даст точно такую точность, которая
требуется. Такой фразой я хочу хотя бы приблизительно показать
многообразие значений, которые может иметь термин “точный”.

Если для функции есть определение, известны её свойства, и уже
есть эффективный алгоритм для её вычисления, эта функция долж-
на рассматриваться как специальная. Если решение какой-либо за-
дачи просто и явно выражено через такую функцию, то это решение
должно квалифицироваться как “точное”.

Ниже я рассматриваю область значений z, при которых FM(z+x0) по
формуле (20.28) является хорошим приближением для выражения
SuTra(z). Из практических соображений (чтобы получить complex
double численную имплементацию), оказалось удобным взять 12 сла-
гаемых в разложении, то есть M = 12. Для дюжины терминов, ис-
следовалась функция согласия

A(z) = − lg

(
|FM(z+x0)− SuTra(z)|
|FM(z+x0)|+ |SuTra(z)|

)
(20.40)

Уровни этой функции показаны на рисунке 20.8.
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Рис. 20.8: Карта функции согласия A = A(x+iy) по формуле (20.40)

Для точности complex double, то есть с пятнадцатью значащими
цифрами, значения вне контура, показанного толстой курвой, могут
быть использованы (и используются в алгоритме) “как есть”. Для
иных значений требуется формула

SuTra(z) = trak(SuTra(z−k)) (20.41)

с таким целым значением k, чтобы самый внутренний аргумент ока-
зался вне толстого контура на рисунке 20.8. Этот “толстый контур”
не является частью карты, он образован отрезком прямой вдоль
x=−11, окружностью с центром в точке (5, 0) и полупрямой вдоль
линии y = 6. Вне этого контура, погрешность вычисления супер-
траппманна определяется не несовершенством аппроксимирующей
функции, а ошибками округления при использовании переменных
complex double.

При построении остальных рисунков этой главы, при каждом вычис-
лении функции SuTra, функцию tra приходится оценивать порядка
десятка раз. Таким образом, представление функции SuTra всего
лишь на порядок величины более медленно, чем вычисление таких
общепризнанных специальных функций как exp, erfc или BesselJ.
Это одна из причин, по которым я квалифицирую функцию SuTra
как специальную.
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6 AuTra, абельфункция траппманна
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Рис. 20.9: y= AuTra(x) по формуле (20.48) и
две асимптотики от (20.45)

В этой секции строится об-
ратная функция к функ-
ции tra; для неё предлагает-
ся имя AuTra. График этой
функции показан на рисун-
ке 20.9. Для сравнения, тон-
кими линиями показаны две
оборванные серии асимпто-
тического разложения этой
функции при больших от-
рицательных значениях ар-
гумента. Комплексная кар-
та функции AuTra показана
на рисунке 20.11. Её вычис-
ление описано ниже.

Для передаточной функции Траппманна, абельфункция G удовле-
творяет уравнению Абеля

G(tra(z)) = G(z) + 1 (20.42)

Асимптотическое поведение решения можно угадать, переписав это
уравнение в таком виде:

G(z + ez)−G(z) = 1 (20.43)

Выражение в левой части похоже на производную,

G′(z)ez +G′′(z)e2z/2 + .. ≈ 1 (20.44)

Из такой аналогии можно угадать асимптотическое разложение функ-
ции G:

G(z) ≈ z

2
− e−z − ez

6
+

e2z

16
− 19e3z

540
+

e4z

48
− 41e5z

4200
+O(e6z) (20.45)

Коэффициенты разложения (20.45) получены с помощью Матема-
тики, использована вот такая программа:
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g0[z_] = z/2 - Exp[-z] + Sum[c[n] Exp[n z], {n, 1, 20}]
n = 1; s[n] = Series[g0[Log[t]] + 1 - g0[tra[Log[t]]], {t,0,n+1}]
u[n] = Extract[Solve[Coefficient[s[n], t^(n+1)] == 0, c[n]], 1]
g[n, z_] = ReplaceAll[g0[z], t[n]]
For[n = 1, n < 20, n++;

s[n] = Series[ g[n-1,Log[t]]+1-g[n-1,tra[Log[t]]],{t,0,n+1}];
u[n] = Extract[Solve[Coefficient[s[n], t^(n+1)] == 0, c[n]],1];
g[n,z_] = ReplaceAll[g[n-1, z], u[n]]; ]

g[n, z]
Table[Coefficient[g[n, z], Exp[n z]], {n, 1, 20}]
N[Table[Coefficient[g[n, z], Exp[n z]], {n, 1, 20}], 18]

Те же коэффициенты могут быть получены и обращением асимпто-
тического разложения функции SuTra. Отмечу, что и асимптотика
функции AuTra, и код для её вычисления проще, чем асимптотика
(20.28) и аналогичный код для функции SuTra по формуле (20.32).

Для некоторого натурального числа M , я определяю функцию GM

как оборванную сумму для разложения (20.45); пусть

GM(z) =
z

2
− e−z +

M∑
m=1

cmemz (20.46)

В этой секции, я определяю функцию G как предел

G(z) = lim
n→∞

(GM(ArcTran(z)) + n) (20.47)

Функцию AuTra можно выразить через G по формуле

AuTra(z) = G(z)−G(0) ≈ G(z) + 1.1259817765745026 (20.48)

Константу G(0) можно интерпретировать как коэффициент −c0, то
есть c0 =−G(0).

Для численной имплементации, следует выбрать подходящее число
M в формуле (20.46), а также номер n для аппроксимации предела
в формуле (20.46). Я выбрал M=9; тогда первичное приближение

SuTra(x+ iy) ≈ g9(x+ iy) (20.49)

можно использовать в области

|y|<3 and |y|/3+x<3.5 (20.50)

Эта область на рисунке 20.10 затенена. На том же рисунке показана
карта согласия

A(z)=− lg

(
|SuTra(gM(z))−z|
|SuTra(gM(z))|+|z|

)
(20.51)
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Рис. 20.10: A = A(x+iy) по формуле (20.51)

Рисунок (20.10) можно рассматривать также как численное подтвер-
ждение соотношения

SuTra(AuTra(z)) = z (20.52)

В затененной области, для численной имплементации, соотношение
(20.52) держится по крайней мере с 15 знаками. Собственно, так
и должно быть, пока AuTra есть абельфункция, соответствующая
суперфункции SuTra от передаточной функции tra.

Область, где используется первичное приближение, можно расши-
рить, приближая её на рисунке 20.10 к уровню A= 15 и оптимизи-
руя алгоритм. Я оставляю это Читателю в качестве упражнения и
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надеюсь, что Читатель не забудет протестировать улучшенный ал-
горитм.

Первичное приближение (20.49) используется “как есть” лишь для
значений x+iy удовлетворяющих соотношению (20.50) (затененная
область на рисунке (20.10)). Если аргумент z = x+iy оказывается
вне этой области, то функция ArcTra = Tra−1 применяется к аргу-
менту n раз, столько раз, сколько нужно, чтобы результат попадал
в затененную область. Затем используется формула

AuTra(z) ≈ g9(ArcTran(z)) + n (20.53)

Форму “затененной” области можно оптимизировать, но тогда алго-
ритм станет чуть сложнее. Такая оптимизация может иметь смысл
непосредственно перед тем, как встраивать в имплементацию функ-
ции AuTra в какой-либо софтвер.

Разрезы области голоморфизма функции ArcTra определяют и раз-
резы функции AuTra. Эти разрезы видны на рисунках 20.3 и 20.11.
При больших значениях |z|, функция AuTra(z) медленно растет, за
исключением полу-полосы <(z) < 0, |=(z)| < π. В этой полуполо-
се, при больших отрицательных значениях <(z), функция AuTra(z)

убывает экспоненциально. В частности, это относится к поведению
функции при вещественных значениях аргумента. Такое поведение
согласуется со свойствами функции SuTra, график которой показан
на рисунке 20.5.

В этой секции, в порядке численной проверки имплементации функ-
ции AuTra, используется функция функция SuTra. Читaтель при-
глашается стащить имплементации этих функций и оценить невяз-
ки при подстановке таких приближний в уравнение Абеля (20.42) и
передаточное уравнение (20.22). Мне кажется, что я сделал эти им-
плементации близко к той точности, какую только можно получить
для переменных complex double.

С функциями SuTra и AuTra, потроенными в этой главе, нетрудно
считать нецелые итерации функции Траппманна. Этому посвящена
следующая секция.
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Рис. 20.11: u+iv = AuTra(x+ iy)

7 Итерации траппманна

В этой секции итерируется не сам Генрик Траппманн, а функция
Траппманна tra(z) = z+ez. Как и для других передаточных функ-
ций, итерации выражаются через суперфункцию и абельфункцию;
то есть, в данном случае, через SuTra и AuTra, построенные в этой
главе:

tra(z) = SuTra
(
n+ AuTra(z)

)
(20.54)

Как и при итерациях других передатчных функций, номер итерации
функции Траппманна не имеет надобности быть целым, ни даже
вещественным. Но может быть и вещественным. Для нескольких
вещественныx значений n, графики y = tra(x) по формуле (20.54)
показаны на рисунке 20.12.
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Рис. 20.12: y=tran(x) versus x for various number n of iterate by (20.54)

Итерации функции tra(z) = z+ez на рисунке 20.12 смотрятся схоже с
итерациями других голоморфных передаточных функций. Рисунок
показывает постепенный, голоморфный переход от функции Трап-
пманна tra к арктраппманну ArcTra=tra−1. Oтсутствие и функции
стационарных точек не препятствует её итерированию.

На этом я заканчиваю рассмотрение функции Таппманна. И вооб-
ще заканчиваю рассмотрение примеров всяческих суперфункций,
абельфункций и нецелых итераций. Если Вы дочитали досюда, то
Вы и сами можете строить супрфункции, абельфункции и нецелые
итерации для всевозможных передаточных функций. Для таких пе-
редаточных функций, у которых есть вещественные стационарные
точки и для таких, у которых вещественных стационарных точек
нет. И даже для таких, у которых вовсе нет стационарных точек.
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Глава 21

Заключение

Рис. 21.1:

Эта глава обсуждает то же, что и Введение.
Отличие этой главы от Введения в том, что
здесь я предполагаю, что Читатель уже хо-
тя бы просмотрел некоторые из глав Книги
(рис. 21.1). Чтобы пояснить смысл этого За-
ключения, напомню притчу.

Один император решил изучить историю. Он поручил министерству науки раз-
работать полный курс истории. Министры работали над таким учебником много
лет. Наконец, во дворец приехал грузовик с заказанным тысячетомником. Им-
ператор понял, что он за всю жизнь не сможет прочесть такой курс, и попросил
его сократить. Ведущие историки работали над вторым изданием ещё несколь-
ко лет, и вот, в большом чемодане, императору был доставлен десятитомник.
Но император к тому времени стал слаб глазами, и не мог осилить даже де-
сятитомник. Историкам пришлось опять перерабатывать учебник, и через год
к императору пришёл главный Историк и торжественно вручил ему брошюру
"Краткий курс истории императорского двора". Император к тому времени уже
заболел, и не мог прочесть даже эту брошюру. Он спросил Историка, можно
ли этот курс переработать и сократить. Историк ответил: “Нового издания не
надо. Я расскажу Вам прямо сейчас: Люди рождались, страдали и умирали.”

Как Историк в причте, я предвосхищаю желание Читателя и стара-
юсь изложить тему суперфункций короче. Ниже, основные резуль-
таты Книги представлены в одной секции.

1 Основные результаты

Голоморфные функции можно итерировать. Какую попало голо-
морфную функцию T можно обозвать “передаточной функцией”.
Для передаточной функции T можно построить суперфункцию как
решение F передаточного уравнения

F (z+1) = T
(
F (z)

)
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Обратную функцию, то есть G= F−1 я называю соответствующей
функцией Абеля, или абельфункцией. Абельфункция удовлетворяет
уравнению Абеля

G
(
T (z)

)
= G(z) + 1

Когда суперфункция F и абельфункция G установлены, итерации
функции F выражаются в виде

T n(z) = F
(
n+G(z)

)
где номер итерации n не имеет надобности быть целым числом; пе-
редаточную функцию можно итерировать также нецелое, дробное и
даже комплексное количество “разов”. При этом, для целого n,

T n(z) = T
(
T
(
..T (z)..

))︸ ︷︷ ︸
n evaluations of function T

Решение передаточного уравнения не единственно. Если какое-нибудь
решение F найдено, то еще одно решение f может быть построено
модификацией аргумента,

f(z) = F
(
z + θ(z)

)
где θ есть голоморфная периодическая функция с периодом едини-
ца. Соответственно может строиться и новая абельфункция g. При
этом новая суперфункция и соответствующая абельфункция могут
давать иные итерации передаточной функции.

Произвол в выборе суперфункции может быть уменьшен, если за-
фиксировать асимптотическое поведение этой функции в комплекс-
ной плоскости. Суперфункции с несложным поведением я считаю
основными. Остальные можно получать периодической модифика-
цией аргумента. Голоморфная периодическая функция растет по
крайней мере экспоненциально (как это делают в направлении мни-
мой оси синус и косинус), и даже малая такая модификация легко
проявляется в комплексной плоскости. Поэтому для нецелых итера-
ций следует рассматривать функции в комплексной плоскости; даже
если они будут применяться для вещественных значений аргумента.
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Критерий голоморфизма указывает, которая из суперфункций име-
ет физический смысл и должна рассматриваться как “настоящая”.

Для многих суперфункций и абельфункций есть специальные имена.
Такие функции собраны в Таблице 1. Некоторые из них общеизвест-
ны, и для их использования не требуется знать, что они являются
суперфункциями.

В принципе, для любой голоморфной функции F можно построить
обратную функциюG и определить T (z) = F

(
1+G(z)

)
. Тогда такую

T можно считать передаточной функцией, для которой известны
суперфункция F , абельфункция G и нецелые итерации T n.

Обратная задача, то есть построение суперфункции F для задан-
ной передаточной функции T , рассмотрена в этой Книге. При этом
построении ключевым является вопрос о стационарных точках пе-
редаточной функции, то есть о решениях L уравнения

L = T (L)

Как физик, я интересуюсь прежде всего вещественно-голоморфными
функциями, для которых T (z∗) = T (z)∗. Я сформулировал нахаль-
ный тезис, что я могу построить суперфункцию F , абельфункцию
G и нецелые итерации для какой попало передаточной функции T .
В поддержку этого тезиса, в Книге рассмотрены примеры, когда
функция имеет хотя бы одну вещественную стационарную точку,
L∗ = L; примеры, когда функция таковой точки не имеет, но име-
ет комплексные стационарные точки; а также пример передаточной
функции, у которой вообще ни одной стационарной точки нет.

Для разных функций, предложены методы построения асимптоти-
ческого разложения суперфункции, которoe приближается к ста-
ционарной точке L на бесконечности. С помощью передаточного
уравнения, из асимтотического разложения, суперфункция может
вычисляться с любой аккуратностью; в этом смысле построено точ-
ное решение. Для вещественно-голоморфной передаточной функции
физической системы с вещественной стационарной точкой, метод ре-
гулярной итерации дает решение, имеющее физический смысл.

Может случиться, что все стационарные точки L передаточной функ-
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ции T являются комплексными, как это имеет место для натураль-
ной экспоненты. При этом суперфункцию можно выразить через
интеграл Коши и решение соответствующего интегрального урав-
нения. Исторически, первая комплексная карта суперфункции от
экспоненты, а именно - натуральная тетрация, была построена с по-
мощью такого представления. В верхней части комплексной плоско-
сти такая тетрация стремится к одной из стационарных точек, а в
нижней - к её комплексному сопряжению (которое также является
стационарной точкой экспоненты). Комплексная карта натуральной
тетрации показана на рисунке 14.13 и на первой странице обложки.

Может статься, что передаточная функция T вовсе не имеет стаци-
онарных точек. Примером такой функции является функция Трап-
пманна

T (z) = tra(z) = z + exp(z)

Однако и для такой передаточной функции можно угадать асимпто-
тическое поведение суперфунции и восстановить эту суперфункцию.
Карта супертраппманна показана на рисунке 20.6. Эта целая функ-
ция с логарифмической асимптотикой; похоже, что до публикации
[77], ни одной такой функции представлено не было.

Важным видом суперфункции я считаю тетрацию, то есть решение
tetb передаточного уравнений

tetb(z+1) = etetb(z) , tetb(0) = 1

такое, что tetb(z) ограниченнa в полосе |<(z)|≤1. Для вещественных
b>1 и вещественных x, зависимость y=tetb(x) показана на рисунке
17.1. Тетрацию можно строить даже для комплексного основания;
картa тетрации по основанию b= 1.52598338517+0.0178411853321 i

показанa на рисунке 18.3.

Многие из приведенных в Книге примеров предложены в попыт-
ках придумать передаточную функцию, для которой трудно постро-
ить суперфункцию. Пока все примеры получаются; возможность по-
строения суперфункций является научным фактом.

Выше я перечислил, что сделано. Но ещё много можно сделать по
поводу суперфункций. Этому посвящена следующая секция.

302



2 Будущая работа

Я постарался изложить в Книге то, что известно про суперфункции
и итерации. Но всегда остаются фантазии о том, что ещё было бы
интересно посчитать и нарисовать. Эти фантазии собраны ниже.

Будущей работы могут потребовать более строгие доказательства
существования и единственности суперфункций, а также уточнения
дополнительных условий, требуемых для этой единственности.

Будущей работой может быть применение предлагаемых функций
в физике, и, в частности, в лазерной науке, где физический смысл
суперфункций и нецелых итераций особенно нагляден.

Будущей работой может быть исследование специального случая су-
перфункций, а именно - аскерманнов. На рисунке 19.6, для основа-
ния e, построены графики первых пяти аскерманнов - добавления
константы, умножения на константу, экспоненты, тетрации и пен-
тации. Думаю, что такие графики (и комплексные карты) можно
строить и для более высоких аскерманов.
Трудность может быть связана с появлением у высших аскерман-
нов множественных точек ветвления и соответствующих разрезов.
Такие разрезы ограничивают область голоморфизма, и, таким обра-
зом, область применимости предложенных в Книге методов постро-
ения суперфункций. Возможно, для высших аскерманнов прийдется
работать с многолистными функциями.

Будущей работой может быть автоматизация построения суперфунк-
ций. Я имею в виду алгоритм, который найдет у передаточной функ-
ции подходящие стационарные точки (если они есть), выберет подхо-
дящую асимптотику для суперфункции, построит соответствующее
разложение суперфункции и абельфункции и вычислит требуемую
итерацию (даже не целую, даже комплексную) для такой функции.
В языке “Mathematica” уже даже есть название для такой процеду-
ры, она называется Nest. Но пока её можно использовать лишь в тех
случаях, когда количество итераций выражается целым числом.

Фантазии и любопытство являются основным стимулом любой се-
рьезной научной работы. Я собираю инструменты, с помощью ко-
торых это любопытство может удовлетворяться. Я надеюсь, что эта
Книга будет полезна в такой работе.
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3 Обозначения

Я стараюсь использовать обозначения, единые для всей Книги. Для
этого пришлось отойти от систем обозначений, использованных в
оригинальных журнальных публикациях. Чтобы не запутаться, неко-
торые обозначения представлены в виде таблиц 21.1, 21.2, 21.3.

Не все обозначения уместились в таблицах. Я стараюсь указывать
самые важные, и, особенно, те, которые часто вызывают конфузии.

Таблица 21.1: Обозначения, Русский алфавит

Абель Нильс Генрик Изобретатель функции Абеля и уравнения Абеля
абель приставка к имени функции для обозначения абельфункции
абельфункция решение уравнения Абеля, обратная фукция к суперфункции
Аскерманн Изобретатель функций Аскерманна
aскерманн функция Аскерманна
Генрик Траппманн (Henryk Trappmann) мой критик, оппонент и соавтор
Итерация номер n решение fn уравнений fn+1(z) = f(fn(z)), f 1 =f

Кнезер Хельмут Изобретатель половинной итерации экспоненты
Комплексная карта представление голоморфной функции изолиниями

её вещественной и мнимой частей (или изолиниями её модуля и фазы)
Корень из факториала Factorial1/2(z), решение h уравнения h(h(z)) = z!

Обращение (функции) нахождение обратной функции, InverseFunction
Передаточная функция зависимость выхода усилителя от входa,

функция T в передаточном уравнении
Передаточное уравнение F (z+1) = T (F (z))

Супер приставка для обозначения её суперфункции
Суперфункция решение F передаточного уравнения F (z+1)=T (F (z))

Тетрация решение tet уравнений tet(z+1)=exp(tet(z)) , tet(0)=1

Тетрация по основанию b решение уравнений tetb(z+1)=btetb(z), tet(0)=1

Траппманн Генрик (Henryk Trappmann) мой критик, оппонент и соавтор
Уравнение Абеля G(T (z)) = G(z) + 1

Усилитель фильтр, в котором выход может быть больше входа
Функция Абеля абельфункция. Обратная функция от суперфункции
Функция Дойя Doya(z) = LambertW(zez+1), см. также формулу (5.12)

Функция Келлера Keller(z) = z + ln
(

e− e−z(e−1)
)
, см. формулу (5.15)

Функция Таня Решение уравнения Tania′(z) = Tania(z)
1+Tania(z)

Фукция Шока Shoka(z) = z + ln
(

e−z+e−1
)
, см. формулу (5.19)

Фильтр физическая имплементация передаточной функции
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Таблица 21.2: Обозначения, латинский алфавит

A(m, z) = A
(
m−1,A(m, z−1)

)
канонический аскерманн, (19.14)

An аскерманн порядка n, (19.7)
an Коэффициенты в асимптотических разложениях
AuExpb = SuExp−1

b абельэкспонента по основанию b

AuTra абельтраппманн
AuSin aбельсинус
Arc приставка, указывающая на обратную функцию
b основание для натуральной тетрации
cn Коэффициенты в разложении
Cn Коэффициенты в разложении
e = exp(1) ≈ 2.7 основание натуральных логарифмов
exp экспонента по основанию e

expb экспонента по основанию b

F Имя, используемое для различных суперфункций
Factorial(z) = z! голоморфное решение уравнения z! = z (z−1)!

f имя, используемое для каких попало функций
G = F−1 имя, используемое для обозначения абельфункций
h = T 1/2 Имя, используемое для обозначения половинной итерации
i =
√
−1 мнимая единица, i2 = −1

i переменная, принимающая целые значения
K затычка для контурного интеграла (14.24)
k инкремент асимптотического представления суперфункции
L стационарная точка суперфункции , так что T (L) = L

ln Логарифм по основанию e

logb Логарифм по основанию b

M количество термов в оборванных сериях
O функция, которая растет не быстрее своего аргумента
P период или асимптотический период; функция, обратная к Q
Q Используется как функция, обратная к P
Super приставка, указывающая на её суперфункцию
s Параметр логистического оператора (7.1)
T Передаточная функция
tet натуральная тетрация (14.28), [44]
tetb решение f уравнения f(z+1) = bf(z), см. рисунок 17.1
u вещественная часть функции на комплексных картах
v мнимая часть функции на комплексных картах
x используется в качестве немого аргумента как вещественное число
y используется в качестве немого аргумента
z используется в качестве немого аргумента как комплексное число
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Таблица 21.3: Обозначения, греческий алфавит

α , β , γ используются как коэффициенты в разложениях
η=exp(1/e)≈1.444667861 основание Генрика
ε = exp(kz) малый параметр в разложении суперфункции
θ голоморфная периодичная функция с периодом единица

ζ ζ(z)=
∞∑
n=1

1

nz
, Функция Римана (8.8), [13, 18]

Ω Контур интегрирования в формуле Коши, (14.21)

4 Послесловие

Книга получилась толще, чем я ожидал. И могла бы быть ещё тол-
ще. Потому как всегда кажется, что если добавить одну мааленькую

формулу, то Читателю станет ещё понятнее. Почти к каждой форму-
ле в этой Книге можно построить ещё несколько рисунков. Однако
я думаю, что для Читателя будет полезнее построить их самостоя-
тельно, чем увидеть галлерею однотипных рисунков.

Я старался сделать книгу покороче. Я не включил исследование то-
го, что творится с построенными функциями за линиями разрезов
области аналитичности. Я не включил примеров итерации экспонен-
ты по комплексному основанию. И ещё много других примеров. Это
те примеры, которые не вызвали интереса у коллег и по которым
не ожидается вопросов. Такие примеры могут быть представлены
по специальным запросам от коллег. “Доказательства” (желательно
опубликованные), что чего-то “сделать невозможно” будут рассмот-
рены как важная причина, чтобы сделать это самое [14].

Я изложил основные формулы и методы, туллы, “Теоретические ос-
новы”, инструменты, с которыми получены формулы и рисунки. Я
надеюсь, что выведение новых формул такого типа и построение
соответствующих рисунков не вызовет сложностей.
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Рис. 21.2: Близкие родственники, без которых эта Книга не была бы написана

5 Acknowledgement

Я благодарен родственникам (рисунок 21.2), которые отнеслись с
пониманием к этой Книге и к тому, что её написание потребовало
намного больше времени и усилий, чем ожидалось.

Рис. 21.3: by Carl Spitzweg

Я благодарен коллегам, которые по-
могли подобрать литературy по су-
перфункциям (рис. 21.3) и устано-
вить сервер, базу данных и медиа-
вики: без них я бы запутался в сот-
нях файлов, нужных для этой Кни-
ги. Теперь я могу на вопросы про су-
перфункции отвечать или “Этого не
знает никто”, или “Это есть в моей
Книге”, см. рис. 21.4.

Рис. 21.4: Es ist in meinem Buch!
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Глава 22

Приложения

1 Про обложку

На обложке - карта
от http://mizugadro.mydns.jp/t/index.php/File:Tetma.jpg
Это один из вариантов рисунка 14.13; с карты убраны некоторые
детали, а область, накрываемая картой, расширена так, чтобы ис-
пользовать всю ширину рамки, предложенной редакцией.

В первоначальной версии, для обложки использовались графики
тетрации по различным основаниям, то есть рисунок 17.1, а затем -
комплексная карта абельсинуса с рисунка 13.4. Однако, отношение
высота/ширина этих рисунков плохо подходит для установленного
прототипа обложки. Поэтому в качестве главного изображения об-
ложки Книги использована карта функции tet. Обложка загружена
как http://mizugadro.mydns.jp/t/index.php/File:Covervi.jpg

На последней странице обложки использованя фотография
http://mizugadro.mydns.jp/t/index.php/File:IMG_0712dima.JPG
от Zilberberg Kosty, сделанная 4 марта 2012 года, когда я только на-
чал писать эту Книгу.

Для форзацев я хотел использовать таблицы линков и таблицы ан-
глийских ключевых слов. Однако, Редакция не предоставляет такой
возможности; и эти таблицы перенесены в Заключение.
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2 Ошмётки

В этой секции собираются кусочки, которые выкинуты из основного
текста; в частности, рисунки. Думаю, что эти рисунки дополняют
основной текст Книги и могут помочь его и её пониманию. Некото-
рые из таких прибамбасов собраны в этой секции.

О путанице 1

Рис. 22.1: Если Читатель
запутался, пусть не упор-
ствует, пока крыша не съе-
дет, а спрашивает

Много неясного там, где матан
Можно запутаться и заблудиться:
Даже мурашки залазят в карман,
Чтобы при случае нам пригориться
Даже коллега германский узнал
Как обеспечить единственность функций,
Что нам дает здесь Коши интеграл
И применье дизъюнкций - конъюнкций.
Вдруг сингулярность, и нужен разрез -
Струсишь ли сразу? Взрежешь ли смело?
Раз уж в комплексный анализ залез -
В точкаx ветвленья - все дело!

О терме

Рис. 22.2: Член-
корреспондент

В этой книге, слагаемые функционального ряда на-
зываются термами. Терм - это англицизм, трансли-
терация английского слова term. Оно означает сла-
гаемое в представлении функции в виде ряда.

Русофилы вместо слова “терм” используют слово
“член”. Это слово имеет и иные значения, напри-
мер, в сочетании “Член-корреспондент” (рис. 22.2).
Профессор матана мог воскликнуть: “Посмотрите,
какой у меня тут член стоит!”, чтобы студенты
проснулись, посмотрели на доску и увидели, какое интересное сла-
гаемое получилось в сумме. В ответ на партах писали стишки:
Где бы член найти нам впору,
Чтоб поставить в зад Тэйлору?
Оба члена хороши,
И Лагранжа, и Коши!

Чтобы избежать инсинуаций, я использую термин “терм”, а не “член”.

1 http://www.youtube.com/watch?v=xFmXDo8LT5k В.С.Высоцкий. Много неясного в стран-
ной стране.
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3 Рациональная функция, более общий случай

Для многих других случаев, итерации функции по формуле (4.13)
могут быть выражены через формулы предыдущей секции с помо-
щью линейного сопряжения. Я повторю формулу (4.13):

T (z) =
U + V z

W + z
Теперь пусть

r =

√
U +

(U−V
2

)2

(22.1)

A =
V −W

2
− r (22.2)

B =
V +W

2
+ r (22.3)

c =
2U + V 2 +W 2 − 2(V +W )r

2(VW − U)
(22.4)

P (z) = A+Bz (22.5)

Q(z) = (z − A)/B (22.6)

Тогда функция T по формуле (4.13) может быть выражена как со-
пряжение функции t по формуле (4.14):

T (z) = P (t(Q(z))) (22.7)

Ввиду того, что P (Q(z)) = z, итерации функции T выражаются
через итерации функции t:

T n(z) = P (tn(Q(z)) (22.8)

Функции P , tn и Q определены выше, и tn выражена через формулу
(4.19) таким образом, который не требует, что число итераций n

было целым.

В порядке упражнения, читателям предлагается проверить, что для
итераций, определенных по формуле (22.8),

Tm+n(z) = Tm(T n(z)) (22.9)

Ленивые читатели при этом могут пользоваться Математикой (то
есть которая Mathematica), Кленом (который Maple) или ещё каким-
либо подходящим софтвером. Это нужно хотя бы для того, чтобы
указать мне на опечатку, если я ошибся.
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Я надеюсь, что все формулы этой Книги могут использоваться даже
без того, чтобы прослеживать, как они получаются. Однако какие-
либо тесты, в соответствии а определением термина “наука”, для
нужной Вам формулы прогнать всё-таки рекоммендуется.

Итерация функции T могут быть выражена так, чтобы показать,
что она тоже рациональная функция:

T n(z) =
Un + Vnz

wn + z
(22.10)

Здесь Un = U и от n не зависит; остальные параметры таковы:

Vn =
1

2

r
 2n+2

2n −
(
−−2r(V+W )+2U+V 2+W 2

U−VW

)n − 2

+ V −W


= r

 2n+1

2n −
(
−−2r(V+W )+2U+V 2+W 2

U−VW

)n − 1

+
V −W

2
(22.11)

Wn =
1

2

r
 2n+2

2n −
(
−2r(V+W )+2U+V 2+W 2

VW−U

)n − 2

− V +W


= r

 2n+1

2n −
(
−2r(V+W )+2U+V 2+W 2

VW−U

)n − 1

+
−V +W

2

= Vn +W − V (22.12)

Для представления (22.10) итерации дробно-линейной функции T

через дробно-линейную функцию, групповое соотношение (22.9) так
же может быть проверено; со всеми предлагаемыми выше спекуля-
циями насчет того, как, с моей точки зрения, можно и нужно изу-
чать и делать Науку.

Выражения этого параграфа получены с помощью софтвера Мathe-
matica. Вероятно, Читателю проще получить их самостоятельно (с
помощью того же пакета), чем прослеживать этот вывод. Поэтому
такой случай попал в Приложения, а не в основной текст Книги.
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http://mizugadro.mydns.jp/t/index.php/File:Ausintay40t50.jpg
Рис. 22.3: Карта разложения Тэйлора функции AuSin с 40 термами

Разложение Тэйлора для функции Ausin

В главе 13 упоминается разложение Тэйлора в точке π/2 функции
AuSin, (13.24). На рисунке 22.3 представлена карта частичной сум-
мы этого разложения с 40 термами. Эту карту полезно сравнить
с рисунком 13.4. Коэффициенты этого разложения можно исполь-
зовать для вычисления коэффициентов разложения суперсинуса в
нуле.
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О тетрации по основанию b < η

В этом приложении я ещё раз объясняю, почему я включил в Книгу
специальную главу о тетрации по основанию

√
2. Такое объяснение

восходит к классикам Русской литературы 2.

Грустно надулись мои оппоненты,
Критику выдали мне на "ура":
В книге, хоть есть ключевые моменты,
Но матанализа тоже гора!

Видом нелепым Коши-интеграла
Души студентов негоже смущать.
Если бы Книга теперь показала
Лучшую сторону.. - Рад покзать.

При основании меньше, чем η

Есть для тетраций простой алгоритм;
Каждый, кто здесь прочитает про это,
Схватит резерча научного ритм.

Кто увидал красоту итераций
Тот поимел размодернейший tool;
Для курсовых, да и для диссертаций
И голоморфнейших фитов разгул!

2 http://literatura5.narod.ru/nekrasov_doroga.html Некрасов Николай Алексеевич
(1821 – 1878). Железная дорога. (1864)

313

http://literatura5.narod.ru/nekrasov_doroga.html


О фонтах

Про то, когда какой следует употреблять фонт (шрифт), написано в
каждом серьезном журнале. Однако во многих случаях, авторы ста-
тей, которые приходят на рецензию, как будто нарочно используют
какие попало шрифты. Особенно в индексе. Поставят, например, в
индексе какую-либо букву, италиксом (кривым шрифотм), что бы
читатель гадал, какие значения может принимать эта переменная.
А потом выясняется, что эта буква - лишь метка, потому что авто-
ры выучили лишь часть латинского алфавита и им не хватает букв,
чтобы обозначить разные переменные разными буквами, и индекс
используется, чтобы все-таки как-то отличать эти переменные; но
авторы поленились переключить фонт, чтобы такой индекс был пря-
мым шрифтом. Я старался, чтобы такая критика не относилась к
этой Книге.

Я верю, что Читатель отличает i от i. Прямым шрифтом обозна-
чаются имена функций (если в имени больше одного символа) и
абсолютные математические константы, например, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, .. , e, i; а кривым шрифтом обозначаются переменные
a, b, c, d, f , g, h, i, j, .. z, A, ..

Имеется сложный вопрос о том, что делать, если автор пишет, на-
пример, что c (или C) является константой. Думаю, что подходящим
ответом является декларация, что такое c является относительной
константой, которая у разных авторов (и даже в разных статьях
одного автора) может иметь разный смысл.

Имеется плохой тон, обозначать переменные цифрами. Например, в
советских школах, безграмотные инспекторы РОНО могли спраши-
вать учеников, на сколько увеличивается 2 при умножении на 3. 3

Я надеюсь, что обозначения этой Книги более понятны.

3http://samlib.ru/k/kuznecow_d_j/lessonsrono.shtml Инспекция из Роно
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4 Сайты

Цель Книги - не привлечь внимание Читателя к перечисленным ни-
же сайтам, но дать читателям самосогласованный формализм су-
перфункций, избавив их от надобности лазить по таким сайтам.
http://allmybase.com/dropbox/tetration.pdf
http://cdn.bitbucket.org/bo198214/bunch/downloads/main.pdfH.Trappmann,
D.Kouznetsov. 5+ methods for real analytic tetration. June 28, 2010.
http://en.citizendium.org/wiki/Cauchy-Riemann_equations
http://en.citizendium.org/wiki/Superfunction
http://en.citizendium.org/wiki/Tetrational
http://en.citizendium.org/wiki/Holomorphic_function
http://en.wikipedia.org/wiki/Abel_equation
http://en.wikipedia.org/wiki/Abel_function
http://en.wikipedia.org/wiki/Cauchy’s_integral_formula
http://en.wikipedia.org/wiki/Hellmuth_Kneser
http://en.wikipedia.org/wiki/Niels_Henrik_Abel
http://en.wikipedia.org/wiki/Superfunction
http://en.wikipedia.org/wiki/Tetration
http://math.eretrandre.org/tetrationforum/index.php
http://math.stackexchange.com/tags/tetration
http://mathworld.wolfram.com/Tetration.html
http://oeis.org/wiki/Tetration
http://mizugadro.mydns.jp/t/index.php/Abel_function
http://mizugadro.mydns.jp/t/index.php/ArcShoka
http://mizugadro.mydns.jp/t/index.php/AuSin
http://mizugadro.mydns.jp/t/index.php/AuTra
http://mizugadro.mydns.jp/t/index.php/AuZex
http://mizugadro.mydns.jp/t/index.php/Complex_map
http://mizugadro.mydns.jp/t/index.php/Doya_function
http://mizugadro.mydns.jp/t/index.php/Factorial
http://mizugadro.mydns.jp/t/index.php/Holopmorphic_extension_of_Collatz_
Subsequence
http://mizugadro.mydns.jp/t/index.php/Keller_function
http://mizugadro.mydns.jp/t/index.php/LambertW
http://mizugadro.mydns.jp/t/index.php/Logistic_sequence
http://mizugadro.mydns.jp/t/index.php/Regular_iteration
http://mizugadro.mydns.jp/t/index.php/Shoka_function
http://mizugadro.mydns.jp/t/index.php/Superfunction
http://mizugadro.mydns.jp/t/index.php/Superfactorial
http://mizugadro.mydns.jp/t/index.php/SuSin
http://mizugadro.mydns.jp/t/index.php/SuTra
http://mizugadro.mydns.jp/t/index.php/SuTra
http://mizugadro.mydns.jp/t/index.php/Table_of_superfunctions
http://mizugadro.mydns.jp/t/index.php/Tania_function
http://mizugadro.mydns.jp/t/index.php/Tetration
http://www.proofwiki.org/wiki/Definition:Superfunction
http://www.proofwiki.org/wiki/Definition:Tetration
http://www.tetration.org/Tetration/index.html D.Geisler. What lies beyond
exponentiation?
http://www.youtube.com/watch?v=z-mfxP1TmfwKasane Teto. Tetration ↑↑. 2012.
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5 Новые термины

Могут потребоваться обозначения, не упомянутые в Книге:
Трансферирование (transferation). Для данной функции f , по-
строение предаточной функции T (z) =f

(
1+f−1(z)

)
. Для такой пе-

редаточной функции T , фунция f является суперфункцией.
Трансфирование (transation). Для данной функции f , построение
предаточной функции T (z)=f−1

(
1+f(z)

)
. Для такой передаточной

функции T , функция f является абельфункцией.
Суперирирование (superation). Для данной функции f , постро-
ение суперфункции F как решения уравнения F (z+1) = f

(
F (z)

)
.

При этом f выступает как передаточная функция.
Супирование (supation). Для данной функции f , построение абель-
функции G как решения уравнения Абеля G

(
f(z)

)
=G(z)+1.

F

←
тр

ан
сф

ер
ир

ов
ан

ие
←

−→
су
пе
ри

ро
ва

ни
е
−→

T G−→ супирование −→
← трансфирование ←

←−
InverseFunction

−→

Рис. 22.4: Связь T , F и G=F−1

Трансферирование есть обратная опе-
рация по отношению к суперирова-
нию. Tрансфирование есть обратная
операция по отношению к супирова-
нию. Это показано на рисунке 22.4
для передаточной функции T , супер-
функции F и абельфункции G.

Эта Книга посвящена суперированию
и супированию, а также требованиям,
которые надо добавлять, чтобы эти
операции были однозначными.

В этой Книге я не использую показан-
ные на рисунке 22.4 новые слова; пока

в них нет большой нужды. Примерно так же не требовалось специ-
альных слов для дифференцирования и интегрирования, пока эти
операции не стали рутинами. Однако предложенные тут термины
(или их эквиваленты) понадобятся при реализации автоматического
построения суперфункций и абельфункций. В языке “Mathematica”
для суперирования уже есть имя “Nest”; пока такая процедура под-
держивается лишь для натуральных значений числа итераций.

Уже пора для предложенных операций выработать удобные обозна-
чения, допускающие естественный перевод по крайней мере на ан-
глийский язык. Некоторые английские термины собраны ниже.
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6 English abstract: Superfunctions

The Book is dedicated to construction of superfunction F

and abelfunctionG for given transfer function T . The formalism
of siperfunctions is considered with examples, that are presented
in ready-to-use form. The reader is supposed to know something
about the complex numbers and elementary functions.

The superfunction is solution of the transfer equation
F (z+1) = T

(
F (z)

)
The abelfunction G = F−1 satisfies the Abel equation
G
(
T (z)

)
= G(z) + 1

In order to provide the uniqueness of solution, the additional
requirements on F are applied, referring to its behaviour in
the complex plane.

The nth iterate of function T is denoted with superscript:

T n(z) = T
(
T
(
..T (z)..

))︸ ︷︷ ︸
n evaluations of function T

With superfunction F and abelfunction G, the iterate is
expressed as T n(z) = F

(
n+G(z)

)
. In this representation,

the number n of iterate has no need to be integer.

Examples of superfunctions are considered and collected as
Table 3.1. Superfunctions are constructed for sin, factorial,
exponential, tetration and other functions.
Many explicit plots and complex maps for these functions,
superfunctions, and iterates are included. The figures are
loaded also to TORI together with their generators at
http://mizugadro.mydns.jp/t/index.php/Category:Book

The formalism of superfunctions greatly extends the set of
functions available for applications in the scientific research.
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7 English keywords

T Transfer function

T
(
F (z)

)
= F (z+1) Transfer equation, superfunction

G
(
T (z)

)
= G(z) + 1 Abel equation, abelfunction

F
(
G(z)

)
= z Identity function

T n(z) = F
(
n +G(z)

)
nth iterate

F (z) =
1

2πi

∮
F (t) dt

t− z
Cauchi integral

tetb(z+1) = btetb(z) tetration to base b

tetb(0) = 1 , tetb
(
ateb(z)

)
= z

ateb(b
z) = ateb(z) + 1 arctetration to base b

exp n
b (z) = tetb

(
n+ateb(z)

)
nth iterate of function z 7→bz

Tania′(z) =
Tania(z)

Tania(z)+1
Tania function, Tania(0)=1

Doya(z) = Tania
(
1+ArcTania(z)

)
Doya function

Shoka(z) = z + ln(e−z+e−1) Shoka function

Keller(z) = Shoka
(
1+ArcShoka(z)

)
Keller function

tra(z) = z + exp(z) Trappmann function

zex(z) = z exp(z) Zex function
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