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SOLUTION OF F (z + 1) = exp
(
F (z)

)
IN COMPLEX z-PLANE

DMITRII KOUZNETSOV

Abstract. Tetration F as the analytic solution of equations F (z − 1) =
ln(F (z)), F (0) = 1 is considered. The representation is suggested through

the integral equation for values of F at the imaginary axis. Numerical analysis
of this equation is described. The straightforward iteration converges within
tens of cycles; with double precision arithmetics, the residual of order of 1.e-
14 is achieved. The numerical solution for F remains finite at the imaginary
axis, approaching fixed points L, L∗ of logarithm (L = ln L). Robustness of
the convergence and smallness of the residual indicate the existence of unique
tetration F (z), that grows along the real axis and approaches L along the
imaginary axis, being analytic in the whole complex z-plane except for singu-
larities at integer the z <−1 and the cut at z <−2. Application of the same
method for other cases of the Abel equation is discussed.

1. introduction

The practical ability to deal with big numbers depends on their representation.
The positional numeral system has allowed us to write most of the required numbers
throughout the centuries. Invention of the floating point enabled huge numbers,
although the “floating overflow” still occurs, if the logarithm of a number happens
to be too large. The range of huge numbers, distinguishable from infinity in com-
putational mathematics, can be drastically extended, using a function with fast
growth [1], for example, the Ackermann functions [2]. Perhaps, the fourth of the
Ackermann functions provides fast enough growth for the needs of this century.
The function A(4, x) can be expressed in the form

A(4, z) = 22..
.2︸ ︷︷ ︸

z−3 times

− 3 = exp2
z−3(1) − 3

,(1.1)

where

exp z
a (t) = expa

(
expa

(
... expa(t)...

))
︸ ︷︷ ︸

z exponentials

,(1.2)

means application of the exponential z times. Various names are used for the this
operation: “generalized exponential function”[1], “ultraexponentiation”[3], “super-
exponentiation” [4], “tetration”[5]. I use the shortest one, “tetration”. This name
indicates that this operation is forth in the hierarchy of operations, after summa-
tion, multiplication and exponentiation. For the first three operations, the analytic
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extension for the complex values of the argument is established; and these opera-
tions are recognized as elementary functions [6, 7]. Tetration is not yet considered
as a special function; the extension for real and complex values is not yet estab-
lished; iteration of a transcendental function of a complex variable is not trivial
[8, 9, 10].

The tetration (1.2) can be written as the recurrent equation

expz
a(t) = expa

(
expz−1

a (t)
)
; exp0

a(t) = t,(1.3)

for the integer z > −2. In this paper, I consider only the case t=1 , a=e=exp(1).
In order not to write the main argument z as a superscript, let F (z) = expz

e(1);
then, for F I have the equation

F (z + 1) = exp
(
F (z)

)
,(1.4)

mentioned in the title. Together with the condition

F (0) = 1,(1.5)

equation (1.4) can be considered as the definition of tetration of an integer argu-
ment, larger than −2; it is a special case of equation (1.2) at a = e and t = 1.
Such a tetration, as well as the Ackermann functions [2], could be used as a rapidly
growing function to represent huge numbers in computers.

Equation (1.4), even together with condition (1.5), does not define an unambigu-
ous function; for additional requirements, assumptions are necessary to specify it.
Such an assumption could be that F ′(z) is a continuous nondecreasing function in
the range z > −1. This leads [3] to the piecewise uxp, which can be defined in the
following way:

uxp(z) =

⎧⎨
⎩

ln
(
uxp(z+1)

)
at �(z) ≤ −1,

z + 1 at −1 < �(z) ≤ 0,
exp

(
uxp(z−1)

)
at 0 < �(z).

(1.6)

This function is shown in the top of the Figure 1(a); lines of constant amplitude and
constant phase are drawn. Discontinuities (cuts) are marked with thick lines. At
the real axis, function uxp has continuous derivative; it is analytic in the complex z-
plane with cuts at z ≤ −2 and at �(z) ∈ integers. These cuts separate the complex
plane to almost independent segments. The figure raises questions of whether all
of these cuts are necessary, or if some solutions of equation (1.4) are more regular.
As a sketch of such a solution, in Figure 1(b), I also plot the function

Fit3(z) =

⎧⎨
⎩

ln
(
Fit3(z+1)

)
at �(z) ≤ −1,

fit3(z) at −1 < �(z) ≤ 0,
exp

(
Fit3(z−1)

)
at 0 < �(z),

(1.7)

where

fit3(z) = 0.6 fit2(z) + 0.4 ln
(
fit2(z + 1)

)
,(1.8)

fit2(z) = ln(2+z) + (1+z)
(

1 +
z

2
exp

(
(z−1)s2(z)

)(
e− 2+ln

4
3

)
− ln 2

)
,(1.9)

s2(z) = exp
(

exp(z − 2.51)
)
− 0.6 + 0.08(z+1).(1.10)

Function Fit3 has the same cuts of the range of analyticity, as function uxp, but in
the range of Figures 1(a,b), the jumps are small and are not seen.
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Figure 1. (a) Function f = uxp(x+iy) by equation (1.6) at
the complex plane. Levels |f | = 1, exp(±1), exp(±2), exp(±3),
exp(±4) and arg(f) = 0, ±1, ±2, ±3 are shown with thick lines.
(b)–(d) the same for functions Fit3 by equation (1.7), Fit4 by equa-
tion (2.16), and solution F by (5.5).
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In the following, I assume that there exists unique analytic tetration F , which
has properties, similar to those of the function Fit3, seen in Figure 1(b); then I
guess the asymptotic behavior of function F , which allows one to plot part (c) of
the figure. I collect such guesses and assumptions in Section 2.

In Section 3, I interpret the asymptotic fit in terms of the entire solution of (1.4).
In Section 4, I express the analytic tetration with the contour integral, which

leads to the integral equation (4.5) for values of tetration at the imaginary axis.
In Section 5, I describe the numerical (iterational) solution of this integral equa-

tion, which allows one to evaluate function F and plot Figure 1(d).
In Section 6, I estimate the precision of the numerical solution and provide tables

of its values at the imaginary axis and those at the real axis.
In Section 7, I discuss properties of the inverse function.
In Section 8, I compare the values of the analytic tetration with other solutions

of equation (1.4) at the real axis.
In Section 9, I suggest possible application of the formalism to the fiber optics.
In Section 10, I discuss the generalization for other cases of the Abel equation

and complex Ackermann functions.
In Section 11, I formulate the theorem pertaining to existence and uniqueness of

analytic tetration and request for the mathematical proof.

2. Assumptions

In this section I discuss properties of the function Fit3, seen in Figure 1, and
postulate them as assumptions, as requirements for the analytic tetration F (z).

The equation (1.4) could allow more solutions than equation

ln(F (z + 1)) = F (z) .(2.1)

In this paper I assume that the logarithm ln is a single-valued function, that is,
analytic at the complex plane with the cut along the negative part of the real axis.
Then, all the solutions of equation (2.1) are solutions of (1.4), but it is not obvious
that a solution F of (1.4) also satisfies (2.1). One could add term 2πi to the right
hand side of equation (2.1), and the solution of the resulting equation will also be
the solution of (1.4). In searching for the simple tetration, I begin with analytic
solutions, which also satisfy equation (2.1).

Assumption 0. The analytic solution F (z) of equation (2.1) exists in the whole
complex z-plane, except for part of the real axis z ≤ −2; this solution satisfies
F (z∗) = F (z)∗, and F (0)=1.

From Assumption 0 it follows that F (z) is real at real z > −2. As the argument
z emerges from the real axis, the approximation Fit3(z) approaches (although it
does not reach this asymptotic exactly within the range of approximation) the fixed
points L and L∗ of the logarithm, which are solutions of the equation

L = ln(L).(2.2)

The graphic (computational) search for the solution of equation (2.2) is shown in
Figure 2(a). Fixed points of the logarithm should not be confused with fixed points
of the exponential, shown in Figure 2(b); fixed points of exponentials are solutions
of equation

L = ln(L) + 2πi m(2.3)
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Figure 2. Graphical search for fixed points of logarithm (a) and
for the exponential (b). Functions f = | ln(z)−z| and f = | exp(z)−
z| are shown with levels f =1/4, f =1/2, f =1, f =2, f =4, f =8,
f =16 in the complex z-plane.

for integer values of m. All fixed points of the logarithm are fixed points of the
exponential, but only two of the fixed points of the exponential are fixed points of
the logarithm, and only one of them is in the upper half-plane. The straightfor-
ward iteration of equation (2.2) converges within a hundred evaluations, giving the
approximation

(2.4) L ≈ 0.31813150520476413 + 1.3372357014306895 i .

More rigorous analysis of the fixed points of the exponential (Ruhewerte der Expo-
nentialfunktion) can be found in [11].

Let the analytic tetration F approach values L and L∗ at ±i∞:

Assumption 1. Tetration F satisfies the relation

lim
y→+∞

F (x + iy) = L for all real x .(2.5)

From Assumption 0, it follows that

lim
y→−∞

F (x + iy) = L∗ for all real x .(2.6)

The imaginary part of Fit3 becomes positive at positive values of the imaginary
part of the argument; this corresponds to positive values of the derivative of tetra-
tion at the real axis. For initial value with positive real part and positive imaginary
part, the iteration of equation (2.2) converges to L. Within the range of Figure
1(b), function Fit3(z) approaches L at negative �(z) and positive �(z), and Fit3(z)
approaches L∗ at negative �(z) and negative �(z). Due to convergence of the itera-
tive solution of equation (2.2), the analytic tetration F should keep the asymptotic
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(2.5) at any fixed value of the imaginary part of the argument:

lim
x→−∞

F (x + iy) = L at y > 0,

lim
x→−∞

F (x + iy) = L∗ at y < 0.
(2.7)

The iteration of the logarithm leads to the exponentially convergent sequence.
Let the function F (x + iy) at x → −∞ approach its limiting value, also exponen-
tially:

F (z) = L + ε(z) + o(ε(z)) ,(2.8)

where

ε = exp(Qz + r),(2.9)

Q and r are complex constants, �(Q) > 0,�(Q) > 0.
The substitution of equation (2.8) to equation (1.4) gives Q = L. The constant

T = 2π/L ≈ 1.05793999115694 − 4.44695072006701i,(2.10)

is quasi-period: for moderate values of �(z),

F (z + T ) ≈ F (z) at �(z)�1.(2.11)

The conjugated symmetry should take place for the case −�(z) � 1. The structure
at the right upper corner of Figure 1(b) is partially reproduced in the vicinity of
the central part, above the real axis; the deviation is seen only at y<1. Let such
behavior be the property of the analytic tetration F .

Assumption 2.

F (z) = L + ε(z) + o(ε(z)) at �(z) > 0,(2.12)

where ε = exp(Lz + r), and r is complex constant.

From Assumption 0 and Assumption 2 it follows that

F (z) = L∗ + ε(z∗)∗ + o(ε(z∗)∗) at �(z) < 0.(2.13)

In order to check that Assumption 2 is consistent with Figure 1(b), define functions
F+ and F− as follows:

F+(z) = L + exp(Lz + r̃) ,(2.14)

F−(z) = L∗ + exp(L∗z + r̃∗) .(2.15)

Let

Fit4(z) =

⎧⎨
⎩

F+(z) for �(z)<−8 , �(Z) > 0,
F−(z) for �(z)<−8 , �(Z) < 0,

exp
(
Fit4(z−1)

)
for �(z) ≥ 8.

(2.16)

Function Fit4 is plotted in Figure 1(c) for

r̃ = 1.07582 − 0.94664 i(2.17)

in the range |�(z)|≤9, 0.3 < |3(z)| < 2. In this range, function Fit4(z) looks very
similar to Fit3(z). I expect that r̃ approximates parameter r in equation (2.12),
although I do not use this approximate value as the assumption, building up to the
analytic extension of tetration.

The assumptions above leave to function F almost no freedom. F (z) should have
the cut at x≤ 2; F (n)= uxp(n) at integer values of n >−2; F (z) has logarithmic
singularity at z = −2; F (z) decays at ±i∞ to its asymptotic values according to
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(2.12), and it should quickly grow up in the positive direction of the real axis. In
the vicinity of range |y|<0.2x, function F (x+iy) should show complicated, quasi-
periodic and perhaps fractal behavior, similar to that of Fit3 and Fit4; fractal
behavior is typical for iterated functions of complex variable [9].

3. Fits and asymptotic

Function Fit4 by equation (2.16) has deep mathematical meaning. At �(z) > 0
(upper part of Figure1(d)), it is just the shifted-argument approximation of the
entire function

Fentire(z) = lim
m→∞

expm
(
L + exp(L(z−m))

)
.(3.1)

This function was described in the past century by Helmuth Kneser [11]; he used
the notation X for the function such that

Fentire(−z) = X−1(eLz) = exp
(
X−1

(
exp(Lz + L)

))
.(3.2)

Function Fentire satisfies equation (2.1), although it does not satisfy Assumption 0.
Kneser analyzed the existence and uniqueness of this function and applied it for
the construction of the function

√
exp; such entire functions were under intensive

research in the past century [12, 15, 16, 17], although ancient researchers did not
have computer facilities for the efficient evaluation.

Due to Assumption 2, the combination of asymptotic (3.1) with fitting in the
vicinity of the real axis allows one to approximate the function F (z) at any complex
z (except z ≤ −2):

F (z) ≈ Fit4(z) ≈ Fentire(z∗ + r/L)∗ can be used at �(z)<−1,
F (z) ≈ Fit3(z) can be used at |�(z)| < 2), and
F (z) ≈ Fit4(z) ≈ Fentire(z + r/L) can be used at �(z)>1;

in the strips 1 < |�(z)| < 2, both fits are valid, Fit3(z) ≈ Fit4(z).
The improvement of precision of the approximation can be achieved with nu-

merical solution of equation (2.1) using the Cauchy integral.

4. Contour integral

In this section, the expression of the analytic tetration in terms of contour inte-
gral is suggested; this allows one to replace the functional equation (1.4) for function
F with the integral equation for its values at the imaginary axis.

According to the assumption of the previous section, function F is analytic.
In the range of analyticity, it can be expressed with the Cauchy contour integral
[18, 19, 20, 21, 22, 23]:

F (z) =
1

2πi

∮
Ω

F (t) dt

t − z
,(4.1)

where the contour Ω evolves the point z just once.
I apply the Cauchy formula (4.1) to express tetration F (x+iy) in the range

|x| ≤ 1, |y| ≤ A, where A is the large positive parameter. Let the contour Ω consist
of 4 parts:

A. integration along the line �(t)=1 from t = 1−iA to t = 1+iA,
B. integration from point t = 1+iA to t = −1+ iA, passing above point z,
C. integration along the line �(t) = −1 from t = −1+ iA to t = −1−iA,
D. integration from point t = −1−iA to t = 1−iA, passing below point z.
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Such a contour has several advantages. Values at the imaginary axis are related
to values at parts A and C through equation (2.1); as for the parts B and D, the
integral can be estimated analytically, using the asymptotic values L and L∗. Then,
tetration F can be expressed with four integrals:

F (z) =
1
2π

∫ A

−A

F (1 + ip) dp

1 + ip − z
− 1

2π

∫ A

−A

F (−1 + ip) dp

−1 + ip − z

(4.2)

− fup

2πi

∫ 1+iA

−1+iA

dt

t−z
+

fdown

2πi

∫ 1−iA

−1−iA

dt

t−z
,

where fup is some intermediate value of function F at the upper part of the contour,

min
t∈ΩB

�(F (t)) < �(fup) < min
t∈ΩB

�(F (t)), min
t∈ΩB

�(F (t)) < �(fup) < min
t∈ΩB

�(F (t))

and, similarly, fdown is the analogous intermediate value for ΩD. Fup has no need
to belong to the set of values of function F ; at the contour ΩB, there may exist no
point zu such that F (zu) = fup.

Using equations (1.4) and (2.1), the integrands in the first two integrals can be
expressed in terms of the function F at the imaginary axis; the last two integrals
can be simplified analytically.

The equation (4.2) is still exact. However, it becomes approximate when I sub-
stitute fup and fdown with their asymptotic values, using the assumptions from the
previous section. Such a substitution leads to the equation for the approximation
FA:

FA(z) =
1
2π

∫ A

−A

exp
(
FA(ip)

)
dp

1 + ip − z
− 1

2π

∫ A

−A

ln
(
FA(ip)

)
dp

−1 + ip − z
+ K(z) ,(4.3)

where

K(z) = L

(
1
2
− 1

2πi
ln

1 − iA + z

1 + iA − z

)
+ L∗

(
1
2
− 1

2πi
ln

1 − iA − z

1 + iA + z

)
.(4.4)

The placement of the cuts of the logarithms at the transition from equation (4.2)
to equations (4.3) and (4.4) is not obvious; these cuts are shown in Figure 3. The
figure represents the map of constant modulus and constant phase of the function
K by equation (4.4). This function depends on a single real parameter A; for A=3,
A=5 and A=10, the lines |K(z)| = constant and arg

(
K(z)

)
= constant are shown

in the complex z-plane. A thick dashed line indicates arg(K) = ±π. Thick solid
lines indicate the cuts of the logarithmic functions. Values of K in the shaded region
are required for the evaluation of tetration; then, using equations (1.4) and (2.1), it
can be extended to the range of Figure 1(c) and 1(d). Figure 3 shows also, that just
neglecting K in equation (4.3) would lead to a poor approximation; huge values of
A would be necessary to obtain good precision.

Consider the case z = iy. This case is important, so I give a special name to the
function E(y) = FA(iy). At z = iy, the equation for E can be written as follows:

E(y) =
1
2π

∫ A

−A

exp
(
E(p)

)
dp

1 + ip − iy
− 1

2π

∫ A

−A

ln
(
E(p)

)
dp

−1 + ip − iy
+ K(iy).(4.5)

From this equation, E(y) should be found for the range −A≤y≤A. (The quadra-
ture formula for the approximation may use values of the function at the tips of the
interval of integration.) Then, from equation (1.4), the approximation FA of the
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Figure 3. Behavior of the function K = K(x+iy) by (4.4) at
A = 3 (left), 5 (central) and 10 (right). Levels |K| = 1, exp(−1),
exp(−2), exp(−3) , exp(−4) and arg(K) = 0, ±1, ±2, ±3 are
shown with thick curves. Thick horizontal lines indicate the cuts
of the logarithmic functions.

tetration F (z) can be expressed for |�(z)| < 1. For the precise evaluation, the value
of z should be evolved by the contour, but should not approach it. For the evalu-
ation, it is sufficient to work with |�(z)| ≤ 0.5 and then extend the approximation
to the whole complex z-plane, except z < −2 with equation (1.4).

The solution E of equation (4.5) has no need to satisfy equality E(0) = 1 exactly;
the correction of the argument can be applied to the reconstructed tetration to
satisfy condition (1.5).

In such a way, for reconstruction of the approximation FA in the whole complex
plane, it is sufficient to calculate it along the imaginary axis, or along any vertical
line in the complex z-plane. The error of such an approximation comes from the
replacement of the function at the upper and lower contour of integration to its
asymptotic values. Due to the assumption about exponential decay of the tetration
F to these asymptotic values, the number of correct decimal digits at the evaluation
is proportional to parameter A. Another source of error arises at the approximation
of integrals as finite sums for the numerical integration. While the contour does not
get too close to the value z, the integration can be performed with high precision.
One example of such an evaluation is described in the next section.

5. Numerical evaluation of tetration

For the numerical implementation, I replace the integrals in equation (4.5) with
finite sums. The approximation with Gauss-Legendre quadrature formulas [6, 27]
allow the good precision. Values A = 10 and N = 100 are sufficient to achieve the
camera-ready quality of figures; at A = 24 and N = 2048, the precise check with
14 significant decimal digits can be performed.

For the computation, values of function E are stored in a mesh with nodes at
yn, for n = 0 . . .N −1; let En approximate E(yn), and let the integral of a function
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f be approximated as follows:∫ A

−A

f(y) dy ≈
N−1∑
n=0

Wnf(yn).(5.1)

Applying this rule to equation (4.5), I get the approximation

En =
1
2π

N−1∑
m=0

Wm

(
exp(Em)

1 + iym − iyn
− ln(Em)

−1 + iym − iyn

)
+ K(iyn).(5.2)

Equation (5.2) gives a straightforward method for the iterational solution; just in-
terpret the equality as operator of assignment. At the parallel assignment of the
whole array E, the iterations may diverge; but they converge quickly, if the ele-
ments of the array E are updated one by one. Such an update is slow in high level
languages such as Matlab, Mathematica and Maple; but it is fast at the implemen-
tation with C++. Several tens of iterations can be performed during a minute at
a laptop class computer, giving the residual of the resulting approximation at the
level of rounding errors.

Equation (4.5) looks similar to the equation of Fredholm of the second kind
[26, 24, 25], but the kernel is nonlinear. The soluiton is stable, at least with a
good initial approximation. For the convergence, the amplitude at the center of the
grid should be of the order of unity; at positive values of yn the phase should be
nonnegative, and at the negative values of yn, the phase should be nonpositive. An
occasional appearance of zero in the solution gives an infinity in the evaluation of
the logarithm and ruins the algorithm. In particular, the iterations do not converge
with the conjugation of the function fit2 by equation (1.9) as the initial distribution.
For the initial condition

(5.3) En =

⎧⎪⎨
⎪⎩

L, 3 < yn,

Fit3(iyn), −3 ≤ yn ≤ 3,

L∗, yn < −3

the algorithm converges to a smoothly-looking function after a few updates of each
point of the mesh. The typical resulting function E is in Figure 4. For comparison,
the initial condition is plotted with light strips. The real part of E is represented
with a symmetric curve, and the imaginary part corresponds to the antisymmetric
curve. Visually, I would not be able to distinguish these functions from scaled
and shifted 1/cosh and tanh. At the zooming in, the defects (jumps) of the initial
condition at |y| = 3 are seen, while the solution (thin lines) looks perfect. After
a few tens of iterations, the precision of the resulting solution cannot be improved
more due to the rounding errors.

The discrete analogy of equation (4.3) can be written as follows:

FA,N (z) =
1
2π

N−1∑
n=0

exp(En) Wn

1 + iyn − z
− 1

2π

N−1∑
n=0

ln(En) Wn

−1 + iyn − z
+ K(z) .(5.4)

The function FA,N approximates F :

F (z) = lim
A→∞

lim
N→∞

FA,N (z + x1) , |�(z)| < 1,(5.5)

where x1 is the solution of equation

FA,N (x1) = 1,(5.6)
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Figure 4. Initial condition of E(y) corresponding to equation
(5.3) versus y (thick lines) and the solution of equation (4.5) is
calculated iterating equation (5.2) (thin lines). Real and imaginary
parts are plotted.

which depends not only on A and N , but also on the initial condition, and on the
mode of iterations. I use the automatic update of EN−1−n each time when En is
calculated, forcing the symmetry

EN−1−n = E∗
n .(5.7)

In this case, the displacement x1 is always real. Typically, this correction is of order
of one percent. Such a displacement of the argument should be applied each time
when we have constructed a function satisfying equation (1.4) and want to get a
function F which also satisfies condition (1.5).

The procedure above allows one to construct approximations of F (z) within the
strip |�(z)| < 1. As the point z approaches the contour of integration, the approx-
imations with finite sum become inaccurate. Therefore, equation (5.4) should be
used for reconstruction of approximations of F (z) at |�(z)| ≤ 1/2; values outside
this range should be recovered using equation (2.1).

Function F evaluated in such a way is plotted in Figure 1(d). As it was men-
tioned, visually, it looks like a superposition of Figures 1(b) and 1(c).

At small values of ε(z), oscillation of (2.14) is weak compared to the quick
approach of the function to the asymptotic L; this oscillation is not seen in Figure
4. In order to reveal this oscillation, in Figure 5, the difference F (z)−L is plotted
in the same notation, as in Figure 1. In the upper-left corner of the figure, the
lines of constant modulus and constant phase make an almost rectangular grid,
typical for the exponential function. The figure makes an impression that the small
(“linear”) perturbation of the steady-state solution L of the equation of tetration
comes from direction −1.061 + 4.75i and becomes strong in the vicinity of the real
axis. The iteration of the exponential produces the quasi-periodic “garden” of self-
similar “flowers” in the vicinity of the positive direction y ≈ 0.22x. The conjugated
wave of perturbation comes from the third quadrant of the complex plane. The
condition (1.5) “synchronizes” these perturbations in such a way that the function
F (z) becomes zero at z = −1, causing the sequence of singularities at the negative
part of the real axis and the cut at z ≤ −2.
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Figure 5. Lines of constant modulus and constant phase of F (x+
iy)−L in the same notations as in Figure 1. Scratched lines indicate
the jumps of phase.

Figures 1(d) and 4 and 5 confirm that the analytic tetration F with assumed
properties can be approximated using integral equation (4.5). Visually, the plots
of the resulting approximation satisfy the requirements formulated in Section 2.

6. Accuracy

The plots of tetration F raise the question of how precisely its analyticity can be
checked. The precision of evaluation of function F with equation (5.5) depends on
parameters A and N which are supposed to be large. In this section I show that at
A = 24, using the Gauss-Legendre quadrature formula with N = 2048 points and
double-precision arithmetic, the residual at the substitution of approximation (5.5)
to the equation (1.4) becomes of order rounding errors.

Due to the smallness of the resulting parameter x1 by equation (5.6), values
of F (z) at the imaginary axis are close to values of array E. For values of z,
which are integer factors of 0.1 i, approximations for F (z) are printed in Table 1.
The representation (5.4) allows straightforward differentiation; so, I print the first
derivative also. Similar data for the real axis are shown in Table 2. At the real
axis, the function F is invertible; so, I print there also values of t = F−1(x) which
is the solution of equation F (t) = x.

In order to estimate the precision of calculated values, consider the residual.
From equation (2.1) it follows, that F (−0.5 + iy) = ln

(
F (0.5 + iy)

)
. At real y,

both z = −0.5 + iy and z = 0.5 + iy are inside the contour Ω of integration and
within the range of approximation expected for the function FA,N (z). Functions
FA,N (−0.5 + iy) and FA,N (0.5 + iy) are shown in the top part of figure 6. The
bottom part of Figure 6 shows the real and imaginary parts of

residual(y) = FA,N (−0.5 + iy) − ln
(
FA,N (0.5 + iy)

)
.(6.1)
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Table 1. Tetration F and its derivative at the imaginary axis

y F (iy) F ′(iy)
∞ 0.31813150520476 + 1.33723570143069 i 0.00000000000000 + 0.00000000000000 i
2.2 0.46205977590137 + 1.29516316398653 i 0.10524026273402 + 0.16943328263392 i
2.1 0.47984927595632 + 1.28360656694651 i 0.12642114268197 + 0.18649812732321 i
2.0 0.49938479980586 + 1.26976723502480 i 0.15095297930087 + 0.20432273436087 i
1.9 0.52073186937763 + 1.25329276909992 i 0.17918029261924 + 0.22268620786941 i
1.8 0.54393020954940 + 1.23379706941951 i 0.21142955072994 + 0.24129189880084 i
1.7 0.56898571838240 + 1.21086312875581 i 0.24798859588585 + 0.25975862529059 i
1.6 0.59586167470516 + 1.18404812970916 i 0.28908112588736 + 0.27761443401317 i
1.5 0.62446951205594 + 1.15289133555805 i 0.33483641789324 + 0.29429444323243 i
1.4 0.65465965324104 + 1.11692521645276 i 0.38525509140219 + 0.30914451353276 i
1.3 0.68621307873134 + 1.07569013479634 i 0.44017250164697 + 0.32143254761397 i
1.2 0.71883447558204 + 1.02875270845089 i 0.49922229471440 + 0.33036904052764 i
1.1 0.75214795374738 + 0.97572766747336 i 0.56180365001189 + 0.33513800375778 i
1.0 0.78569638858019 + 0.91630262108129 i 0.62705663243943 + 0.33493851305935 i

0.9 0.81894541361165 + 0.85026467624571 i 0.69385066719156 + 0.32903587645367 i
0.8 0.85129291145694 + 0.77752734034087 i 0.76079119151234 + 0.31681986197241 i
0.7 0.88208451053588 + 0.69815566451266 i 0.82624879777085 + 0.29786574159447 i
0.6 0.91063509163399 + 0.61238722872001 i 0.88841350542975 + 0.27199237376058 i
0.5 0.93625567282687 + 0.52064642918836 i 0.94537418225559 + 0.23931050362376 i
0.4 0.95828434050920 + 0.42354968973591 i 0.99521978881155 + 0.20025425056736 i
0.3 0.97611922542662 + 0.32189973245718 i 1.03615549420131 + 0.15558963085388 i
0.2 0.98925100004340 + 0.21666790754930 i 1.06662345026663 + 0.10639600379842 i
0.1 0.99729210719977 + 0.10896472393191 i 1.08541583925225 + 0.05401936304801 i
0.0 1.00000000000000 + 0.00000000000000 i 1.09176735125832 + 0.00000000000000 i

Table 2. Tetration F , its derivative, and its inverse at the real axis

x FA,N (x + x1) F (x) F ′(x) F−1(x)
-1.1 -0.00000001547015 -0.11279679776258 1.16819644635938 -1.67261575378528
-1.0 -0.00000000000000 -0.00000000000000 1.09176735125833 -1.63635835428603
-0.9 0.10626039927151 0.10626040042411 1.03653178245952 -1.59610183735171

-0.8 0.20785846728047 0.20785846728047 0.99791089741917 -1.55146594044381
-0.7 0.30629553437625 0.30629553437625 0.97291281085669 -1.50206743429127
-0.6 0.40282959178360 0.40282959178360 0.95959569174883 -1.44753575532149
-0.5 0.49856328794111 0.49856328794111 0.95675517789104 -1.38753447917073
-0.4 0.59450765927989 0.59450765927989 0.96374036331481 -1.32178907507892
-0.3 0.69163169510089 0.69163169510089 0.98034861830628 -1.25012048301963
-0.2 0.79090416202613 0.79090416202613 1.00677283707697 -1.17248262296575
-0.1 0.89333216876936 0.89333216876936 1.04358746497488 -1.08900005343708
0.0 1.00000000000000 1.00000000000000 1.09176735125832 -1.00000000000000
0.1 1.11211143309340 1.11211143309340 1.15273884603792 -0.90603157029014
0.2 1.23103892493161 1.23103892493161 1.22846715833643 -0.80786507256596
0.3 1.35838369631113 1.35838369631113 1.32158890019997 -0.70646669396340
0.4 1.49605193039935 1.49605193039935 1.43560498704373 -0.60294836953664
0.5 1.64635423375119 1.64635423375119 1.57515793778431 -0.49849837513117
0.6 1.81213853570187 1.81213853570186 1.74643105077407 -0.39430303318768
0.7 1.99697132461831 1.99697132461829 1.95772807888681 -0.29147201034755
0.8 2.20538955455274 2.20538955455274 2.22032629869699 -0.19097820800866
0.9 2.44325711324446 2.44325744833852 2.54975284679259 -0.09361896280296
1.0 0.59665094765656 2.71828182845904 2.96773135183036 0.00000000000000
1.1 0.00000003298313 3.04077200774189 3.50521601526880 0.08946084201600

For A = 24 and N ≥ 1024, at the double-precision arithmetic, the typical values of
this residual are of order of 10−14. The residual characterizes the error of evaluation
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Figure 6. Real and imaginary parts of F (±1/2 + iy) recon-
structed at the array of N = 2048 nodes; function F reconstructed
along the lines z = 0.5 + iy and z = −0.5 + iy, top; residulal
F (−0.5 + iy)− ln

(
F (0.5 + iy)

)
, real and imaginary parts, bottom.

of function F , then the error of the values in Tables 1 and 2 is expected to be of
order of unity in the last decimal digit of the mantissas.

The smooth trends in the lower part of Figure 6 are symmetric for the real part
and anti-symmetric for the imaginary part; these trends should be attributed to
the finiteness of the parameter A. (For smaller values A = 20, these trends were
two orders of magnitude larger, and the deviation was at the level 10−12.) The
irregular structure in Figure 6 appears due to the rounding errors. For double-
precision arithmetics, value A=24 provides a reasonable compromise between the
speed of evaluation and the precision: the error is due to replacement of fup and
fdown with the asymptotic values L and L∗ and rounding errors give comparable
contributions to the error of the resulting approximation.

A similar relation can be checked at the real axis; while the real part of the
argument of the function FA,N does not exceed 0.8, the relation

FA,N (x − .5) − ln
(
FA,N (x + .5)

)
≈ 0(6.2)

holds with 14 decimal digits. The left part of this equation scaled up with factor
1013 is plotted at the bottom of Figure 7.

The same data are used in Table 2. The zeroth column has a sense of the
argument x; in this table, this argument runs real values from −1.1 to 1.1 . It is
the same x that appears in Figure 7.

The first column represents the corresponding estimate FA,N (x + x1), evaluated
with equation (5.5) using value x1 = −0.00743143611046. This value is specific
for A = 24, N = 2048, initial condition (I used approximation Fit3 in the central
part of the initial distribution), on the order of updating values at the iterational
solution, and even on maximal number of iterations, because the value at the center
is not fixed; it drifts from iteration to iteration, decreasing for ∼ 10−13 per cycle of
iterations. Indeed, 64 iterations were sufficient to make errors of the approximation
comparable to the rounding errors at the double-precision arithmetic.
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Figure 7. Bottom: left hand side of equation (6.2) scaled with
factor 1013. Central part: approximation FA,N (x) by equation
(6.2) (dashed) and its correction FA,N (x+x1) (solid).

However, the thirst column approximates the tetration F only in the central
part of the table; at values |x| > 0.8, the point x is too close to the contour of
integration. Therefore, I offer the second column, where, at |x| > 0.5, the value of
tetration is estimated with equation (2.1); in the central part it coincides with the
first column. This central part has length larger than unity, which confirms the
high precision of the evaluation.
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The third column is a derivative of tetration F . For the extension of the approx-
imation to values |x| > 0.5, the following relations were used:

F ′(z + 1) = F ′(z) exp
(
F (z)

)
, F ′(z − 1) = F ′(z)/F (z).(6.3)

The fourth column shows the inverse function; for each x, it contains value t
such that F (t) ≈ x; |F (t) − x| is estimated to be of order of 10−14.

In such a way, the first column of the table serves as confirmation of the proce-
dure, the other three show behavior of tetration at the real axis.

I used the Gauss-Legendre quadrature with N = 2048 nodes in order to get a
wide region with good approximation, |x| < 0.8, and to confirm that the equation
F (x + 1) = exp(F (x)) holds with many decimal digits. At the evaluation of the
function in the range |x| ≤ 0.5, the same precision can be obtained with N ∼ 1024.
The moderate number of nodes of the mesh is sufficient for the precise evaluation
of the function F ; this indicates the stability of the algorithm.

For the fast convergence, A should be of order of twice the number of correct
decimal digits required in the estimate, and the initial condition for the array E
should have values of order of unity at y ≈ 0, of order of L at y � 1, and of the
order of L∗ at −y � 1. In particular, fast convergence takes place when Fit3 is
used for the central part of the initial distribution.

7. Inverse function

Tetration F can be used for calculation of functional fractal powers of exponen-
tial, and, in particular,

√
exp [11]. However, the inverse function F−1 is necessary

for such an evaluation,

F (F−1(z)) = z .(7.1)

This function is shown in Figure 8. Function F−1 has singularities at fixed points
L, L∗ of the logarithm. These singularities are branch points that imply cuts. In
order to simplify the comparison with Table 2, it is convenient to put the cuts along
levels �(F−1(z)) = −2. In this case, function F−1 has no singularities at the real
axis. As �(z) → −∞, function F−1(z) approaches its asymptotic value −2 in the
whole strip between cuts. In the positive direction of the real axis, function F−1

grows slowly (slower than any logarithm), whith corresponds to the rapid growth
of tetration F .

8. Other tetrations

The results above refer to the specific function F (x + iy) that approaches fixed
points of logarithm (2.4) at fixed real x and y → ± i∞. However, different require-
ments may lead to different tetrations. I compare them in this section.

We may require that the tetration is defined as a sequence of differentiable func-
tions. An example of such a sequence is constructed below. Let

h0(x) = x,

hn(x) = x + exp
(
hn−1(x−1)

)
for integer n > 0.(8.1)

The first elements of this sequence are plotted in the left hand side of Figure 9.
The terms with h negative arguments give an exponentially small contribution; so,
this sequence converges rapidly. Consider the limit

h∞(x) = lim
n→∞

hn(x) .(8.2)
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Figure 8. Function f = F−1(z) by equation (7.1) in the complex
z-plane. Levels �(f) = −2,−1, 0, 1, 2 and �(f) = −2,−1, 0, 1, 2
(thick lines) and intermediate levels (thin lines).

The function h has rapid growth, similar to that of tetration. Their logarithms
behave even more similarly. So, consider the functional sequence g such that

g0(x) = h∞(x) ,

gn(x) = ln
(
gn−1(x+1)

)
for integer n > 0 .(8.3)

For x > −2, this sequence also converges; the first few elements are shown in the
right hand side of Figure 9. The limit

g∞(x) = lim
n→∞

gn(x)(8.4)

satisfies the equation (1.4); equation (1.5) is satisfied for function

Fg(x) = g∞(x−x0) ,(8.5)

where x0 is the solution of equation

g∞(x0) = 1 .(8.6)

This equation can be solved numerically, giving value x0 ≈ 0.014322263393. I
compare such a tetration with the function F in Table 3.

At the real axis, in the range from minus unity to zero, every tetration F (x) look
similar to the function 1+x. In Figure 10, I plot the difference between tetrations
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Figure 9. Functions h1, h2, h∞ by equations (8.1) and (8.2);
g1, g2, g∞ by equations (8.3) and (8.4). In the graphics, h3 al-
most overlaps h∞ and g3 almost coincides with g∞, although the
differences can be seen at the zooming in.

and this linear function. All the tetrations happen within a strip of width equal to
one percent; the uxp function by (1.6) in this range just coincides with the abscissa
axis, and all the tetrations deviate for less than one percent from uxp. Function
g∞(x − x0) − (1+x) is shown with a thick line, and function F (x) − (1+x) is
plotted with a thin line. The difference g∞(x−x0) − F (x) is plotted in the lower
part of Figure 10. At the same graphic, I also plot Fit3(x) − F (x). In the range
−1 ≤ x ≤ 0, the error of the approximation Fit3 is of order of 10−4.

The sinusoidal-like difference g∞(x−x0)−F (x) may mean, that there exist some
analytic extension of g∞, growing in the direction of imaginary axis with increment
of order of 2π. In general, a lot of various analytic tetrations can be constructed
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Table 3. Comparison of various tetrations

x uxp(x) g∞(x−x0) Fit3(x) F (x)
-1.1 -0.105360515658 -0.112273219465 -0.112743778423 -0.112796797763
-1.0 0.000000000000 -0.000000000001 0.000000000000 -0.000000000000
-0.9 0.100000000000 0.106179688230 0.106412412786 0.106260400424
-0.8 0.200000000000 0.208093402820 0.208104295564 0.207858467280
-0.7 0.300000000000 0.307095312397 0.306588453868 0.306295534376
-0.6 0.400000000000 0.404237363416 0.403131965155 0.402829591784
-0.5 0.500000000000 0.500408437490 0.498845079828 0.498563287941
-0.4 0.600000000000 0.596458714817 0.594745797295 0.594507659280
-0.3 0.700000000000 0.693307316434 0.691810291661 0.691631695101
-0.2 0.800000000000 0.792014962172 0.791015663894 0.790904162026
-0.1 0.900000000000 0.893800020573 0.893379533907 0.893332168769
0.0 1.000000000000 0.999999999999 1.000000000000 1.000000000000
0.1 1.105170918076 1.112021675762 1.112280500628 1.112111433093
0.2 1.221402758160 1.231328173701 1.231341586317 1.231038924932
0.3 1.349858807576 1.359470536292 1.358781651654 1.358383696311
0.4 1.491824697641 1.498159513017 1.496504365065 1.496051930399
0.5 1.648721270700 1.649394807818 1.646818228388 1.646354233751
0.6 1.822118800391 1.815677569929 1.812570126163 1.812138535702
0.7 2.013752707470 2.000320297393 1.997328008677 1.996971324618
0.8 2.225540928492 2.207840662685 2.205635473317 2.205389554553
0.9 2.459603111157 2.444400798181 2.443373176304 2.443257448339
1.0 2.718281828459 2.718281828457 2.718281828459 2.718281828459
1.1 3.019740552946 3.040499088409 3.041286147031 3.040772007742

F (x) − (x+1)
0.01

0

-0.01 -1 -0.5 0

x

g∞(x+x0) − F (x)
0.002

0.001

0 -1 -0.5 0
x

Figure 10. Comparison of various tetrations for the real argu-
ment. Upper graphic: Tetrations with substracted linear part:
uxp(x) − (x+1) (lies at the abscissa axis), g∞(x+x0) − (x+1)
(thick curve), and F (x) − (x+1) (thin curve). Lower graph: dif-
ferences g∞(x+x0)−F (x) (thick line) and Fit3(x)−F (x) (thin
line).
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from function F in the form

Gα(z) = F

(
z +

∞∑
n=−∞

αn exp(2πinz)

)
,(8.7)

where coefficients are such that α−n = α∗
n; they should decay at n → ∞ fast enough

to provide the convergence of the series. Such a Gα satisfies the initial equation
in the title of the article, and Gα(0) = 1 at α0 = −

∑
n�=0 αn. In this sense, it

can be considered as tetration, at least in the vicinity of the real axis. Outside
the real axis, due to the exponential growth of some of terms, the argument of the
“true” tetration F may get large negative values at relatively moderate values of
z. Consider the imaging of the complex z-plane with function in the argument of
F in (8.7). The image Z(z) of a smooth contour in the range |�(z)| < 1 may cross
the cut Z < 2; the resulting function G is not continuous. Roughly, at |�(z)| < 1,
the range of analyticity of function G(z) can be estimated with equation

|�(z)| ≤ y0 ∼ min
n

d

2πn ln(|αn|)
,(8.8)

where d(z) is the distance from to the point z to the closest singularity of function
F ; for �(z) > −2 this distance d(z) = |z + 2|. The range of analyticity is only a
strip along the real axis, even at small values of coefficients α. One has no need to
evaluate function F in order to estimate the imaginary part of the singular points of
the function G. The additional singularities and cuts of function G outside the real
axis indicate that function F is the only tetration, analytic in the whole complex
z-plane except for z ≤ −2.

9. Fiber optics and the Abel equation

Pure mathematicians may skip this section; there are only speculations and no
new formulas here. In this section I discuss the possible application of the algorithm
used to calculate F above to the recovery of an analytic function from the recurrent
equation.

Assume that one Manufacturer offers to some Scientist one piece of optical fiber
of length, say, one meter, in exchange that the Scientist investigates and reports its
nonlinear properties; but the Manufacturer does not allow the Scientist to cut the
fiber to the smallest pieces. In the following, I treat this fiber as a single-dimensional
homogeneous object. To be more specific, let the fiber be the optical amplifier with
some transfer function H. I assume that the signal in the fiber is determined by its
intensity. (This assumption tosses out many physical effects.) The laboratory of
the Scientist is assumed to be well equipped, so, the Scientist can launch the signal
of calibrated power and measure the transfer function H with as many decimal
digits as he needs. Assume, he counts also with with an advanced software, which
allows him to invert the transfer function and to extend it to the complex plane. In
other words, the Scientist knows everything about the transfer function H, but the
Scientist is not allowed to open the jacket of the fiber and to measure the power
inside; he just believes the Manufacturer that the fiber is uniformly pumped. The
signal power as the function of length of propagation is supposed to be continuous
and analytic. How does one reconstruct this function in a long fiber, assuming,
that at the coordinate zero, the signal power is just one watt?
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Figure 11. Graphic of the function D by equation (9.2).

Such a problem leads to the Abel equation [13, 14]

ϕ(z+1) = H
(
ϕ(z)

)
;(9.1)

ϕ(x) may have a sense of the logarithm of the power of the signal in the fiber at
coordinate x. In the case of H = exp, this equation becomes (1.4), and F is one
of its solutions. The Scientist knows the value of the function F at integer points,
and wants to reconstruct the behavior in the whole real axis. In a similar way, if
the Scientist has no idea about Gamma-function, he could “reconstruct” factorial
values at the noninteger values of its argument using transfer function H(z, f) = zf ;
in this case, the transfer function has an additional argument, but it still leads to
the recursive equation.

The simple approach could be just linear approximation. Choose one segment
of unit length, approximate the solution with linear function at this segment and
extend this approximation to the whole range, using equation (9.1). Such an ap-
proach is an analogy to the definition of ultraexponential uxp(x) by [3] at the
segment −1≤x ≤0 and the extension to the real axis using equation (1.3).

The Scientist may expect, that function F is analytic, and reconstruct the solu-
tion of equation (9.1) with the desired behavior at ±i∞, just replacing exp and ln
in the equations (4.5), (5.2), (5.4) to H and H−1. However, after such a replace-
ment, the straightforward iteration has no need to converge, then other methods
of numerical solution of the system of nonlinear equations may be required to ap-
proximate array E. Knowledge of nonzero asymptotic values L and L∗ in equation
(4.4) seem to be important not only for the precision of the algorithm, but also for
its convergence.

The requirement of analyticity of the reconstructed function is much stronger
than just existence of all the derivatives along the real axis. Leaving from the real
axis is important not only for efficiency of the evaluating algorithms, but also for
the uniqueness of the solution. At the real axis, various differentiable functions
may satisfy the equation (1.4), even if the additional requirement of the existence
of all derivatives is applied. Let F be the solution; consider a new function G(x) =
F (x) + αD(x) defined at the range 0≤x≤1 and extended to the positive values of
x using (1.4). Let α =constant and D(x) is function differentiable along the real
axis (at least, −1 ≤ x ≤ 0), which vanishes with all its derivatives at x =−1 and
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x=0. Such a function can be

D(x) =
{

exp
(
− 0.1/x2 − 0.1/(x+1)2

)
, (x+1)x �= 0,

0, (x+1)x = 0.
(9.2)

The graphic of this function is shown in Figure 11. At the real axis, function D(x)
has all the derivatives; in particular, in points x = −1 and x = 0; and all these
derivatives are zero in these points. Then, the function G is also the solution, and
has all its derivatives along the real axis.

The difficulties with reconstruction of real-differentiable and real-analytic func-
tions seem to be typical for the analytic extension of a function to the real axis
[1], and the extension to the complex plane seems to be essential for the robust
evaluation at noninteger values of the argument.

10. Discussion

The precise numerical evaluation of analytic tetration, that remains limited at
the imaginary axis, is aimed to catch any contradiction, following from the assump-
tion of its existence. Such a contradiction could provide a hint to the generalization
of the proof of the nonexistence by [3]. No such contradictions were detected. I
conclude, that the analytic extensions or tetration exist, and one of them remains
limited at x ± i∞ for any real x.

The generalization of tetration can be expressed with equation (8.7); such tetra-
tion G may be analytic in the vicinity of the real axis. However, due to the exponen-
tial growth in the imaginary direction, the tetration G cannot satisfy Assumption 1,
and the tetation F seems to be unique. The construction of the solution G growing
up at z → ±i∞ and analytic in the upper half-plane is difficult, if at all, because
the argument of the function F in (8.7) may have values which correspond to the
cuts of the function F .

The method of recovery of an analytic function with required behavior at ±i∞
may be useful also for the more general equation (9.1). In particular, at H = expa,
the equation becomes

F (x + 1) = exp(�F (x)) ;(10.1)

where � = ln(a). At real values of � of order of unity, this equation can be treated
with similar contour integrals. At � = ln(2) such an extension applies to the fourth
Askermann function [2], giving a plot [28], similar to Figure 1(d). The method may
be useful in various applications and, in particular, in nonlinear fiber optics, while
the behavior of some parameter along the fiber can be recovered from the transfer
function of a piece of fiber. The practical application of such a recovery may be a
matter for future research.

The function F−1, approximated in the Table 2 for the real axis is only a spe-
cial example. In general, the recursive exponential expz

a(t) may be treated as the
function of 3 variables; then it may have 3 different kinds of inverse functions. The
analysis of the analytic properties of such functions and the precise evaluation may
be a matter for future research.
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A similar approach can be used for the evaluation of elements of the functional
sequence, determined with equations

F3(z) = exp(z) ,(10.2)
Fn(z+1) = Fn−1

(
Fn(z)

)
for integer n ,(10.3)

Fn(0) = 1 for integer n ≥ 3 ,(10.4)

and the condition that these functions remain analytic outside the real axis. Such
a sequence may be a complex analogy of the Askermann functions [2]. Then,
tetration F , considered above, appears as F4; pentation appears as F5, and so on.
Tetration F4 is already required for mathematics of computation, although it is not
yet implemented as an upgrade of the floating point; pentation F5 and the highest
operations in this hierarchy may be needed in the future.

11. Conclusion

The numerical solution of equation (1.4) is consistent with requirements (1.5),
(2.5) and (2.7) within 14 decimal digits. Such an agreement hints at the following
theorem.

Theorem 0. There exists the solution F (z) of equation (2.1), analytic in the whole
complex z-plane except for z ≤ 2, such that F (z∗) = F (z)∗, F (1) = 0, and, at
�(z) > 0,

F (z) = L + O
(
eLz

)
,(11.1)

where L ≈ 0.31813150520476413 + 1.3372357014306895 i is the fixed point of the
logarithm

(
L = ln(L)

)
. There exists only one such solution of equation (2.1).

The proof of such a theorem may be a matter for future research; I expect the
function F with such properties is unique not only among solutions of equation
(2.1), but also among solutions of equation (1.4).

The method of recovery of an analytic function with required properties at ±i∞
from the transfer function may work also for the more general equation (9.1). The
application for the analytic extension of expz

a(t) of different bases (in particular,
a=2, see [28]) is straightforward. Similar methods may be used in physics and, in
particular, in fiber optics.
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