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PORTRAIT OF THE FOUR REGULAR SUPER-EXPONENTIALS

TO BASE SQRT(2)

DMITRII KOUZNETSOV AND HENRYK TRAPPMANN

Abstract. We introduce the concept of regular super-functions at a fixed
point. It is derived from the concept of regular iteration. A super-function
F of h is a solution of F(z+1)=h(F(z)). We provide a condition for F being
entire, we also give two uniqueness criteria for regular super-functions.

In the particular case h(x)=bˆx we call F super-exponential. h has two
real fixed points for b between 1 and eˆ(1/e). Exemplary we choose the base
b=sqrt(2) and portray the four classes of real regular super-exponentials in the
complex plane. There are two at fixed point 2 and two at fixed point 4. Each
class is given by the translations along the x-axis of a suitable representative.

Both super-exponentials at fixed point 4—one strictly increasing and one
strictly decreasing—are entire. Both super-exponentials at fixed point 2—
one strictly increasing and one strictly decreasing—are holomorphic on a right
half-plane. All four super-exponentials are periodic along the imaginary axis.
Only the strictly increasing super-exponential at 2 can satisfy F(0)=1 and can
hence be called tetrational.

We develop numerical algorithms for the precise evaluation of these func-
tions and their inverses in the complex plane. We graph the two corresponding
different half-iterates of h(z)=sqrt(2)ˆz. An apparent symmetry of the tetra-
tional to base sqrt(2) disproved.

1. Super-functions

The functional equation

F (z+1) = h(F (z))(1.1)

refers to the building-up of a super-function F of some given base-function h. Mul-
tiplication F (x) = bx is a super-function of addition h(x) = b+ x. Exponentiation
F (x) = bx is a super-function of multiplication h(x) = bx. Such an equation also
occurs in the phenomenological description of a nonlinear optical fiber of fixed
length [11], where F (z) represents some parameter (for example, the logarithm of
the power) at distance z from the input tip, and h is the transfer function. In that
application z is supposed to be real. In general, we assume that equation (1.1)
holds for z ∈ C ⊆ C, and F is holomorphic on C.

Definition 1 (super-function, base-function, super-exponential, tetrational). Let
C be a domain such that for each z ∈ C also z+1 ∈ C. A function F defined on C is
called a super-function of h, if it satisfies equation (1.1) for all z ∈ C. We call h the
base-function of F . Applying the prefix a �→ d (to “super-function”) means that
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additionally F (a) = d. Sometimes we also include the domain of holomorphism C
into the prefix, writing (C, a �→ d), which additionally means that F is holomorphic
on C. Any super-function of h(z) = bz is called super-exponential to base b. Any
0 �→ 1 super-exponential to base b is called tetrational to base b.

The name super-exponential is due to Bromer [6], although other names (gener-
alized exponential, iterated exponential, tetration, ultra-exponential, etc.) are also
used for the iteration of an exponential function [10, 9, 3, 16].

In order to illustrate the definition of super-function, we suggest a few examples
below.

Let h(z) = b+z on z ∈ C. Then, the function F (z)= b ·z on z ∈ C is a (C, 0 �→ 0)
super-function of h.

Now let h(z) = b ·z on z ∈ C. Then F (z) = expb(z) = bz is a (C, 0 �→ 1)
super-function of h.

Now we let the previous super-function again be the base-function h = expb. For
C = C\{x ∈ R : x ≤ −2}, the tetrational F by [11] is a (C, 0 �→ 1) super-function
of exp- or super-exponential to base e.

For some base-functions it is possible to obtain elementary super-functions by
using special functional relations, for example, F (z) = cos(π2z) is a (C, 0 �→ −1)
super-function of the quadratic base-function h(z) = 2z2 − 1. More trigonometric
examples can be found in [18]. Also, for real j > 0, and base-function h(z) = zj

the function F (z) = exp(jz) is a super-function.
No representation through elementary or special functions is reported for non-

constant super-exponentials yet. So it would make sense to lift them into the
status of new special functions after clarifying the uniqueness situation (similar to
the complex extension of the factorial through the Gamma function).

Without additional conditions a super-function is not unique, generally. If F is a
(C, a �→d) super-function of h, then for any 1-periodic holomorphic function θ, such
that θ(a) = 0, the function E(z) = F

(
z+θ(z)

)
will be a (D, a �→d) super-function

of h for D = {z : z+θ(z) ∈ C}:

E(a) = F (a+ θ(a)) = d,(1.2)

E(z+1) = F (z + θ(z+1) + 1) = h(F (z + θ(z))) = h(E(z)) .(1.3)

However, the range D of holomorphism of the function E may be different from
C. Here is a question how an appropriately large domain of holomorphism restricts
the possible solutions. We give a uniqueness criterion in Proposition 7.

This paper is motivated by discussions on [17] about a generalization of the
algorithm [11] for a holomorphic tetrational, which seems to work for various values
b > exp(1/e), in particular, for b= 2, see [12, 19], but cannot be applied “as is”
for the case 1 < b ≤ exp(1/e). In order to elaborate a robust algorithm for the

evaluation of the tetrational in this case, we consider one specific value b =
√
2 from

this interval. We consider not only the tetrational, but also some super-exponentials
to this base which can be easily generalized to bases 1 < b < exp(1/e).

In order to be explicit, we look for holomorphic, real solutions F of the equation

F (z+1) = expb
(
F (z)

)
(1.4)

for the specific value b =
√
2. (We call any C �→ C function f real, if f(z∗) =

f(z)∗ ∀z ∈ C.)
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2. Super-functions by regular iteration

In this section we assume, that the function h has some fixed point λ, i.e.,
h(λ)=λ. For example, λ=2 and λ=4 are the only real fixed points of h=exp√2

and λ = e is the only real fixed point of h=expexp(1/e) . Assume that the function
h is holomorphic at least in some vicinity of the fixed point λ. Then, a super-
function F of h can be constructed (under certain additional conditions), such that
F approaches λ asymptotically, at least in some directions in the complex plane.

The holomorphic function h can be expanded in a series that converges in some
domain around the fixed point

f(z) = h(λ+ z)− λ =

∞∑
n=1

fnz
n.(2.1)

In this paper, for a function f we use notation fn for the nth Taylor coefficient
at λ. The formal solution F with exponential behavior can be constructed in the
following way. Let

F (z) = λ+G(E(z)),(2.2)

for some function G expandable into a series

G(z) = z +

∞∑
n=2

Gnz
n(2.3)

and

E(z) = exp
(
(z+t) κ

)
= s exp(κz)(2.4)

for some constant parameters t and κ, where s = eκt. Substitution z �→ z+1 in
equation (2.2) gives

F (z+1) = λ+G(KE(z))(2.5)

where K=exp(κ). Then, equation (1.1) can be written as

λ+G(KE(z)) = h
(
λ+G(E(z))

)
,(2.6)

λ+G(Kω) = h
(
λ+G(ω)

)
.(2.7)

The Taylor expansion of both sides of (2.7) at ω=0 leads to the equalities for the
coefficients

K = f1,(2.8)

G2K
2 = f1G2 + f2,(2.9)

G3K
3 = f1G3 + 2f2G2 + f3,(2.10)

G4K
4 = f1G4 + 3f3G2 + 2f2G3 + f2G

2
2 + f4.(2.11)

It seems as if Gn can be determined without solving polynomial equations. This is
indeed the case and it turns out that this approach is equivalent to the well-known
approach of regular iteration via the Schröder equation [15, 14, 7].

A few notes about notation. For any (formal) powerseries f we denote the
coefficients by fn; f(z) =

∑∞
n=0 fnz

n (although the series has no need to converge.)
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We write fm for the mth power of the function f , and f [m] for the mth iterate of
f , i.e.,

f [m](z) = f
(
f
(
...f(z)...

))
︸ ︷︷ ︸

m evaluations of f .

(2.12)

For example, below fm
n means the nth Taylor coefficient of the function that is

the mth power of function f . It should not be confused with fm
n , which is the mth

power of the nth Taylor coefficient, or with f
[m]
n , which is the nth coefficient of the

expansion of the mth iterate of function f at 0. There are few exceptions to this
rule. First, we keep the usual notation F−1 for the inverse function of F , although
it is actually minus the first iteration of function F ; and of course we use subscripts
as usual on non-functions, like κ2 or T4. You can find a table of notation in the
appendix; we tried to distribute the semantic load uniformly among the letters of
the Latin alphabet, but we use a few Greek letters too.

Definition 2 (Schröder equation, Schröder function). For a function h with fixed
point λ and K = h′(λ), we call any function χ that satisfies the Schröder equation

χ(h(z)) = Kχ(z)(2.13)

a Schröder function of h at λ.

For ease of derivation we first assume that the fixed point is 0. If we want the
Schröder function χ to be analytic, then it is already determined by χ′(0) = 1. We
show this in the next proposition.

Proposition 1 (Schröder powerseries). Let f be a formal powerseries with f0 = 0
(fixed point 0) and fn

1 	= f1 for all integer n > 1 (particularly if |f1| 	= 0, 1). Then
there is a unique formal powerseries solution χ with χ1 = 1 of the Schröder equation

χ(f(z)) = f1χ(z).(2.14)

We call this solution the Schröder powerseries of f . The Schröder powerseries χ
and its inverse η = χ−1 are given by χ0=η0=0, χ1=η1=1, and, for n>1, by the
recursive formulas

χn=
1

f1 − f1
n

n−1∑
m=1

χmfm
n, ηn=

1

f1
n − f1

n∑
m=2

fmηmn(2.15)

where the mth power of an arbitrary formal powerseries g is defined by

gmn =
∑

n1+···+nm=n

gn1
. . . gnm

.(2.16)

Proof. The recursive solutions are a direct consequence of the composition formula
of two formal powerseries f and g with g0=0:

(f ◦ g)n =

n∑
m=0

fmgmn(2.17)

applied to our Schröder equation (2.14) or its inverse η(f1z) = f(η(z)):

f1χn =

n∑
m=0

χmfm
n , f1

nηn =

n∑
m=1

fmηmn .
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First we can observe at the left side that f1χ0 = χ0, which implies χ0 = 0 for
f1 	= 0, 1. In consequence η0 = 0. For the indices above 1 we rearrange the
equations to get the χn or ηn that occur in the sum of the right side to the left side
and where we take into account that fn

n = fn
1 and η1n = ηn. �

Proposition 2. Every formal powerseries X solution of (2.14) can be expressed
as X (z) = sχ(z) for some s ∈ C.

Proof. Setting X1 = s in the above derivation, one inductively gets Xn = sχn. �

Now we apply this to our original problem (2.7). We see that G is just the inverse
Schröder function of h(z+λ)− λ. Let us write down the first few coefficients of G.

G0 = 0, G1 = 1,

G2 =
1

f2
1 − f1

f2g
2
2 =

f2
f2
1 − f1

,(2.18)

G3 =
f2

(∑
n1+n2=3 Gn1

Gn2

)
+ f3G

3
3

f3
1 − f1

=
f2 (2G1G2) + f3

f3
1 − f1

=
2f2

f2
f2
1−f1

+ f3

f3
1 − f1

=
2f2f2 + f3f

2
1 − f3f1

(f3
1 − f1)(f2

1 − f1)
=

2f2
2 + f3f

2
1 − f3f1

(f1−1)(f2
1 −1)f2

1

.(2.19)

Proposition 3. If the powerseries f with f0 = 0 and |f1| 	= 0, 1 has non-zero
convergence radius, then the Schröder powerseries χ of f has non-zero convergence
radius also.

Proof. For a proof you can see [14], Theorem 4.6.1. �

Proposition 4. Let f be holomorphic in a vicinity of 0, f(0) = 0, set K = f ′(0),
let |K| 	= 0, 1. If f is entire and |K| > 1 or if f−1 is entire and |K| < 1, then
the inverse Schröder function of f (i.e. the function with the inverse Schröder
powerseries development at 0) is entire.

Proof. We continue the inverse Schröder function to the whole complex plane. By
Proposition 3 there is a disk Dδ with radius δ > 0 at 0 where the inverse Schröder
function η of f is analytic. We then define η̂ on the disk with radius |K|±1 δ for all
z ∈ Dδ via

η̂(Kz) := f(η(z)) for |K| > 1,(2.20)

η̂(z) := f−1(η(Kz)) for |K| < 1.(2.21)

η̂ coincides by the Schröder equation with η on Dδ and is hence a continuation to
D|K|±1δ ⊃ Dδ. We repeatedly apply this process to continue η to the disk with

radius |K|±n δ and so continue η to the whole complex plane. �

Proposition 5. Let f be analytic at the fixed point 0, set K = f ′(0) and assume
|K| 	= 0, 1. Then, the Schröder powerseries χ of f can be analytically continued to
the basin of attraction Ω(f) = {z : limn→∞ f [n](z) = 0} of f at 0 (for |K| < 1) or
to Ω(f−1) (for |K| > 1), and the convergence radius R of χ is bounded by

R ≥ sup
{
r > 0: Br(0) ⊆ Ω(f [±1])

}
.
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Proof. By the equation χ
(
f [n](z)

)
= Knχ(z) we get a rule to continue χ to Ω(f±1):

χ(z) =
χ
(
f [±n](z)

)
K±n

. �

We saw that we can express a super-function F of f through the inverse Schröder
function: F (z)= η(sekz). As mentioned in the introduction, there is a wide range
of other a �→ d super-functions: If F is a holomorphic a �→ d super-function of
f , then for every holomorphic 1-periodic function θ with θ(c) = 0 the function
E(z) = F (z+θ(z)) is another holomorphic a �→d super-function of f . Therefore, a
condition, that singles out the solutions η(seκz), would be quite welcome. Such a
condition is given in the next two propositions.

Proposition 6. Let κ be a complex number with (κ) 	= 0. Then for each s ∈ C

the function F (z) = seκz is the only 0 �→ s solution of F (z+1) = eκF (z), that is,
holomorphic and bounded on some strip Sx,ε = {z/κ+x−ξ : 0 ≤ ξ < 1+ε, (z)=0}
(which is the strip between the straight lines orthogonal to κ going through the points
x and x−1−ε).

Proof. First F (z) = seκz is indeed a 0 �→ s solution and it is bounded on w ∈ Sx,ε

for any fixed x and ε > 0 because |seκw| = |s| e�(z+κ(x−ξ)) = |s| e�(κ)(x−ξ) ≤
|s| e|�(κ)|(1+ε+|x|).

F1(z) := eκz is also bounded from below by |F1(z)| ≥ e−|�(κ)|(|x|+1+ε). Let F̃

be another solution, consider θ(z) = F̃ (z)/F1(z) which must be bounded on Sx,ε.
Then θ(z+1) = θ(z), θ is a periodic function on Sx,ε. The translations of the strip
Sx,ε by integers k overlappingly cover C,

⋃
k∈Z

(Sx,ε+k) = C. (Note that this is not
the case for (κ) = 0.) Then, function θ can be holomorphically continued to C by

θ(z+k) = θ(z). Now θ is entire and bounded and hence constant: F̃ (z) = sF1(z),

where s must be F̃ (0). �

The following proposition characterizes the solutions η(seκz) as those which sat-
isfy a certain asymptotic property in the direction κ of the complex plane.

Proposition 7. Let f be analytic at 0, f(0) = 0, K := f ′(0), and |K| 	= 0, 1,
let κ be some number with eκ =K, and let Hκ,x := {z/κ : (z) ≤ x} be the half-
plane bounded by the straight line going through and being orthogonal to x/κ. Then
the set of any Hκ,x holomorphic and bounded super-functions F of f which satisfy
limx→∞ sup |F (Hκ,−x)| = 0 consists exactly of the functions

F (z) = η(seκz), s ∈ C,(2.22)

where η is the inverse Schröder powerseries of f .

Proof. First, each F (z) = η(seκz) is clearly a holomorphic super-function of f .
It is bounded, because seκz maps Hκ,x to the closed disk |z| ≤ |s| ex, where η is
holomorphic (continuous) and hence bounded.

Now let F be arbitrary on Hκ,x holomorphic and a bounded super-function of f
which satisfies limx→∞ sup |F (Hκ,−x)| = 0; consider the function g(z) = η−1(F (z)).
Choosing x small enough, by limx→∞ sup |F (Hκ,−x)| = 0 we can ascertain that
F (z) has values only within the convergence disk of η−1 for z ∈ Hκ,x. So g is
holomorphic, and bounded on Hκ,x, and satisfies

g(z+1) = η−1(f(F (z))) = Kη−1(F (z)) = Kg(z)
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for all z such that z, z+1 ∈ Hκ,x. As |K| 	= 1, we know that (κ) 	= 0; and from
Proposition 6 it follows, that g(z) = seκz and hence F (z) = η(seκz). �

Now we switch from the fixed point 0 to an arbitrary fixed point λ. If λ is a
fixed point of h, then 0 is a fixed point of z �→ h(z+λ) − λ. It is clear, that, if χ
is a Schröder function (meaning that is satisfies the Schröder equation) of h, then
z �→ χ(z+t) is a Schröder function of z �→ h(z+t)− t for any t;

χ
((

h(z+t)− t
)
+ t

)
= χ

(
h(z+t)

)
= Kχ(z+t)

and vice versa. If η is an inverse Schröder function of h, then z �→ η(z) − t is an
inverse Schröder function of z �→ h(z+t)− t and

η(Kz)− t = h
(
η(z)

)
− t = h((η(z)− t) + t)− t .

Definition 3 (regular and principal super-function). Let h be analytic at its fixed
point λ and eκ = h′(λ), (κ) 	= 0. We call the functions z �→ η(seκz)+λ, s ∈ C, the
κ-regular super-functions of h at λ, where η is the inverse Schröder powerseries of
z �→ h(z+λ)−λ. We call the function z �→ η(eκz)+λ the κ-principal super-function
of h at λ. Omitting κ above means κ = log(h′(λ)) for the standard branch of the
logarithm.

Corollary 8. Every κ-regular super-function F is periodic with period T =2πi/κ
and F (z) is a translation of the κ-principal super-function F(z) along the z-plane,
i.e. F (z)=F(z+t) for some t ∈ C. We can always choose t=log(s)/κ, where s is
taken from the previous definition.

Corollary 9. Let h be analytic at λ, h(λ) =λ, K := h′(λ), such that |K| 	= 0, 1,
let κ be some number with eκ=K, and let Hκ,x be as in Proposition 7. Then the
set on some Hκ,x holomorphic and bounded super-functions F of h which satisfy
limx→∞ sup |F (Hκ,−x)− λ| = 0 is the set of the κ-regular super-functions of h at
λ.

Let us now consider strictly increasing real-analytic super-functions. We know
that the inverse Schröder function of a real-analytic function h is strictly increasing
in a vicinity of the fixed point because η′(0) = 1, and we want to define the super-
function as F (x) = η(seκx) + λ.

There is a natural distinction between positive and negative s. (We exclude the
trivial case s=0, which gives the constant function F (x)=λ). Different s with the
same sign just translate the graph of F along the x-axis; ± |s| eκx=±eκ(x+ln|s|/κ).
The change of sign of s is more dramatic; it corresponds to a translation along the
imaginary axis and inverses the monotony. We use this for a classification of the
regular super-functions of real base-functions:

Definition 4 (super-function above and below). Let h be real-analytic at the fixed
point λ = h(λ) such that 0 < h′(λ) 	= 1. Let κ = ln(h′(λ)). Let η be the inverse
Schröder powerseries of x �→ h(x+λ)− λ. Then, we call the function

F (z) = η(seκz) + λ

a super-function of h below λ, for each s < 0; a super-function equal to λ (i.e. the
constant function F (z) = λ), for s=0; and a super-function above λ, for each s>0.
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Let I be the maximal interval around λ such that η is analytically continuable
to I and strictly increasing there. For any d ∈ η(I) + λ and

s = η−1(d−λ)(2.23)

we call the function

F (z) = η(seκz) + λ(2.24)

the regular 0 �→ d super-function F of h at λ.

The reader may verify that these functions are indeed all possible real-analytic
regular super-functions.

Let F (x) = η(seκx) + λ, i.e. as in the previous definition. Let the word “finally”
mean: “there exist an x0 such that for all x>x0” in the case κ<0, and “there exist
an x0 such that for all x<x0” in the case κ> 0. Then we can apply our previous
propositions and state:

(1) For all ε>0 finally |F (x)−λ| < ε.
(2) Finally F (x) > λ if s > 0.
(3) Finally F (x) < λ if s < 0.
(4) Finally F is strictly increasing if κs > 0.
(5) Finally F is strictly decreasing if κs < 0.
(6) F is holomorphic on a right half-plane if κ < 0.
(7) F is entire if κ > 0.
(8) F is periodic with the imaginary period T = 2πi/κ.

Actually the conditions (1), (6) and (8) already determine F to be a regular super-
function, as we show in the next proposition for the case κ < 0. This is a supple-
mental uniqueness criterion to the one given in Proposition 7 and Corollary 9.

Proposition 10. Let h be a function, real-analytic in a vicinity of its fixed point
λ, with 0 < h′(λ) < 1; let κ = ln(h′(λ)). Each real-analytic super-function F
holomorphic on a right half-plane Hx = {z ∈ C : (z) > x} and 2πi/κ periodic that
satisfies limx→∞ F (x) = λ is a regular super-function.

Proof. Let G(z) = η(eκz)+λ be the principal super-function of h. It is finally either
strictly increasing or strictly decreasing, hence finally injective. As limx→∞ F (x) =
λ there is an x0 such that

W (x) = G−1(F (x))(2.25)

is well defined for x > x0. It satisfies

W (x+ 1) = G−1(h(F (x))) = W (x) + 1(2.26)

and we can express F with G and W for x > x0:

F (x) = G(W (x)) = η(eκW (x)) + λ.(2.27)

Now we have the precondition that F is 2πi/κ periodic. We know also that η(x)
is injective in a vicinity ε of 0. Hence we possibly increase x0 somewhat so that
eκx < ε for x > x0. We then apply the injectivity of η on the periodic equality:

η (exp (κW (x+ 2πi/κ))) + λ = η (exp (κW (x))) + λ,

exp(κW (x+ 2πi/κ)) = exp(κW (x)),

κW (x+ 2πi/κ) = κW (x) + 2πiN,
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for some integer N . So W has the property

W

(
x+

2πi

κ

)
= W (x) +

2πi

κ
N,(2.28)

By (2.26) θ(x) = W (x) − x is 1-periodic. It has a Fourier development, which
means that there is a Laurent series ρ at 0 such that

W (z)− z = θ(z) = ρ
(
e2πiz

)
,

W (z) = ρ
(
e2πiz

)
+ z.

Now we plug this into equation (2.28) and derive

ρ
(
e2πi(z+2πi/κ)

)
+ z +

2πi

κ
= ρ

(
e2πiz

)
+ z +

2πi

κ
N,

ρ
(
e2πize−4π2/κ

)
= ρ

(
e2πiz

)
+

2πi

κ
(N − 1),

ρ
(
ze−4π2/κ

)
= ρ(z) +

2πi

κ
(N − 1).

As the Laurent series development is unique, we obtain the equations

ρne
−4nπ2/κ = ρn

for n 	= 0 which implies ρn = 0 and

ρ0 = ρ0 +
2πi

κ
(N − 1)

which implies N = 1. Hence ρ(x) = ρ0 is constant, then W (x) = x + ρ0, then
F (x) = G(x + ρ0), which actually means that F is a regular super-function of h;
see Definition 3. �

Next we apply the previous propositions and statements to h=exp√2 with the
two fixed points λ = 2, 4.

3. Super-exponential below fixed point 2

For base b > exp(1/e) a super-exponential can be evaluated through the Cauchy
integral, that gives the integral equation for values of the function along the imag-
inary axis [11]. For b =

√
2, this algorithm cannot be applied as is, because both

fixed points λ=2 and λ=4 are real; but regular iteration can be applied for precise
evaluation.

Throughout this section, the base is b=
√
2, h=expb; we consider the fixed point

λ=2, so,

K2 = h′(λ) = exp√2
′(2) = 2 ln

(√
2
)
= ln(2) ≈ 0.69314718055995,(3.1)

κ2 = ln(K2) = ln
(
ln(2)

)
≈ −0.36651292058166 .(3.2)

With formula (2.15) we compute the coefficients of the inverse Schröder function

v(z) = z +

∞∑
n=2

vnz
n(3.3)
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Table 1. Evaluation of coefficients v and V in (3.3), (3.18)

n vn Vn

1 1.0000000000000000 1.0000000000000000
2 −0.5647228383177324 0.5647228383177324
3 0.3381775868511833 0.2996461813840881
4 −0.2103313021386278 0.1559323904892543
5 0.1344548790521098 0.0803518797481544
6 −0.0877843886012191 0.0411584960662439
7 0.0582880930830947 0.0209985209544120
8 −0.0392407117837278 0.0106825803202636
9 0.0267232860342981 0.0054228810223159
10 −0.0183765205976376 0.0027482526618683
11 0.0127420898467766 0.0013909151872678
12 −0.0088986329515697 0.0007031815862125
13 0.0062531995639749 0.0003551700677648
14 −0.0044181328624397 0.0001792537427482
15 0.0031365295362696 0.0000904088765718
16 −0.0022361213774487 0.0000455725430285
17 0.0016001999145218 0.0000229602263218
18 −0.0011489818761273 0.0000115627707503
19 0.0008274921384317 0.0000058201696570
20 −0.0005975832172069 0.0000029289688393

of

h[2](z) := exp√2(z+2)− 2 = 2

(
exp

(
ln(2)

2
z

)
− 1

)
,

h[2](z) =

∞∑
n=1

ln(2)n

2n−1n!
zn,(3.4)

h[2]1 = ln(2),(3.5)

h[2]2 =
ln(2)2

4
,(3.6)

h[2]3 =
ln(2)3

24
,(3.7)

and so on. As an example we compute v2 and v3 via (2.18) and (2.19):

v2 = ln(2)/4
ln(2)−1 ≈ −0.56472283831773236365,

v3 = ln(2)2(2+ln(2))/24
(ln(2)−1)(ln(2)2−1) ≈ 0.33817758685118329988.

(3.8)

More values for the coefficients v are shown in Table 1.
The regular 0 �→ 1 super-exponential is then, by Definition 4,

F2,1(z) = v(s2,1e
κ2z) + λ = v

(
s2,1 ln(2)

z
)
+ 2,(3.9)

s2,1 = V (1−λ) = V (−1) ≈ −0.63209866105083,(3.10)

where V is the inverse powerseries of v (i.e. the Schröder powerseries of h[2]).
Because κ2 is negative the function F2,1(z) is holomorphic on some right half-plane
(see the statement list at the end of Section 2).
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Figure 1. Function f= F̃2,1,20(z) by (3.11) in the z=x+iy plane:
levels p=(f)=const and levels q=�(f) =const are shown with
thick lines for integer values of p and q; left. Agreement f=A2(z)
by (3.12) in the z=x+iy plane; levels f = 1, 4, 8, 12, 16 are shown
with thick lines; right.

The truncation of the series (3.3), keeping the last term at index N gives a

function, let us call it F̃2,1,N , which approximates F2,1(z) at large positive values
of (z):

F̃2,1,N (z) = 2 +

N∑
n=1

vns
n
2,1 ln(2)

zn.(3.11)

For N = 20, this function is shown in the left-hand side of Figure 1 with lines of
constant real part and those of constant imaginary part. In the figure, the level
p= 1 visually goes through the origin of coordinates; in reality F̃2,1,20(0) slightly
deviates from unity.

The precision of the approximation can be characterized with the agreement

A2(z) = − lg

∣∣∣∣∣ F̃2,1,N (z)−logb
(
F̃2,1,N (z+1)

)
F̃2,1,N (z)+logb

(
F̃2,1,N (z+1)

)
∣∣∣∣∣ ,(3.12)

Roughly, this agreement indicates, how many significant figures we may expect to
get with this approximation. On the left-hand side, the agreement is smaller than
unity; even the first decimal digit of the approximation is doubtful. On the right-
hand side, the agreement is of order of 16. We expect, at (z)> 3 the precision

of approximation F̃2,1,20(z) is limited mainly by the rounding errors. Even in the

vicinity of the origin of coordinates, the approximation F̃2,1,20 gives several correct
decimal digits.

To evaluate F2,1(z) for various values z, the integer iterations can be used:

F (z−k) = log
[k]
b (F (z)).(3.13)

For the complex〈double〉 implementation of F2,1, we suggest the approximation

F̃2,1(z) =

{
F̃2,1,20(z), (z) > 3,

logb
(
F̃2,1(z+1)

)
, (z) ≤ 3.

(3.14)
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This approximation is estimated to return at least 14 significant decimal digits; it is
used to plot function F2,1 in Figure 2 in the same notations, as in Figure 1. In the
right-hand side of the plot, the function coincides with the primary approximation
F̃2,1,20. The approximation also reproduces the periodicity of F2,1:

F2,1(z+T2n) = F2,1(z), T2=
2πi

κ2
≈−17.1431481793548471 i, n ∈ Z.(3.15)

The function F2,1(z) has a branchpoint with logarithmic singularity at z=−2;
we place the cut along the line z < −2. Due to the periodicity, there is a set of
singularities and cut lines translated with period T2 by (3.15). The other pictures
in the Figure 2 represent functions considered in the following sections.

In Figure 3 we plot the function F2,1 versus the real argument; see the thick
curve at the bottom. The other curves correspond to the super-exponentials which
we define and analyze in the following sections. We indicate the fixed point λ as
the first subscript of function F , and its value at zero as the second subscript. We
choose this value as the natural number, closest to the fixed point. In such a way,
we deal with the following super-exponentials:
F2,1, developed at λ=2, with range of values (−∞, 2) along the real axis,
F2,3, developed at λ=2, with range of values (2, 4) along the real axis,
F4,3, developed at λ=4, with range of values (2, 4) along the real axis,
F4,5, developed at λ=4, with range of values (4,∞) along the real axis,
and their inverse functions. All these functions are plotted in Figure 2; their be-
havior along the real axis is shown in Figure 3.

3.1. The inverse super-exponential below 2. The inverse function of F2,1(z) =
v(s2,1e

κ2z) + λ is given by

F−1
2,1 (z) = log (V (z − λ)/s2,1) /κ2(3.16)

where V is the Schröder powerseries of h[2](z) := h(z + 2)− 2 = 2(
√
2
z − 1). The

function F−1
2,1 is shown at the top of the right-hand side of Figure 2. We calculate

the first few coefficients according to formulas (3.7) and (2.15):

V1 = 1,

V2 = −v2 = 1
4

ln(2)
1−ln(2) ≈ 0.56472283831773236365,

V3 = ln(2)2

24
1+2 ln(2)

(1−ln(2))2(1+ln(2)) ≈ 0.29964618138408807683.

(3.17)

More values are printed in the right column of the Table 1.
The series can be truncated, keeping the term of the Nth power, giving the

approximation

F̃−1
2,1,N (z) =

1

κ2
log

(
1

s2,1

N∑
n=1

Vn · (z−2)n

)
.(3.18)

It is useful at small values |z−2|. The range of approximation can be extended
with the function

F̃−1
2,1 (z) =

{
F̃−1
2,1,N (z), |z−2| ≤ ρ,

F̃−1
2,1

(
expb(z)

)
− 1, |z−2| > ρ.

(3.19)

In particular, for N = 20 and ρ= 0.4, the approximation F̃−1
2,1 returns of order 14

correct decimal digits and can be used for the complex〈double〉 implementation in
numerical analysis.
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Figure 2. Functions f = F2,1(z), f = F2,3(z), f = F4,3(z), f =
F4,4(z), left, and their inverse functions, right, in the z = x+iy
plane, in the same notations as in Figure 1.
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Figure 3. F2,1 by (3.9), F2,3 by (5.1) (which coincides with F4,3

by (5.2) with 24 significant figures), and F4,5 by (4.9). The asymp-
totes are shown with thin lines. The difference w by (5.11) scaled
with factor 1024 is shown with the oscillating curve in the vicinity
of the abscissa axis.

The plots of functions F2,1 and F−1
2,1 look similar. This similarity indicates ap-

proximate symmetry x ↔ −y of the graph y = F2,1(x); this function is shown again
in left-hand side of Figure 7; indeed, it looks pretty symmetric. We analyze this
visual effect in Section 8.

4. Super-exponential above fixed point 4

In this section we have

b =
√
2, h(z) = expb(z), λ = 4,

K4 = h′(λ) = exp√2
′(4) = 4 ln

(√
2
)
= 2 ln(2) ≈ 1.3862943611199,(4.1)

κ4 = ln(K4) ≈ 0.32663425997828098238.(4.2)

With formula (2.15) we compute the powerseries u of the inverse Schröder func-
tion of h[4](z) := h(z+4)− 4:

h[4](z) = 4

(
exp

(
ln(2)

2
z

)
− 1

)
= 2h[2](z),(4.3)

h[4](z) =

∞∑
n=1

ln(2)n

2n−2n!
zn,(4.4)

h[4]1 = 2 ln(2), h[4]2 =
ln(2)2

2
, h[4]3 =

ln(2)3

12
, . . . ,(4.5)
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Table 2. Coefficients u and U in expansions (4.9) and (4.22)

n un Un

1 1.0000000000000000 1.0000000000000000
2 0.4485874311952612 −0.4485874311952612
3 0.1903722467978068 0.2120891200549197
4 0.0778295765369683 −0.1021843675069717
5 0.0309358603057080 0.0496986830373718
6 0.0120221257690659 −0.0243075903261196
7 0.0045849888965617 0.0119330883965109
8 0.0017207423310577 −0.0058736976420089
9 0.0006368109038799 0.0028968672871058
10 0.0002327696003030 −0.0014309081060793
11 0.0000841455118381 0.0007076637148566
12 0.0000301156464937 −0.0003503296158730
13 0.0000106807458130 0.0001735756004664
14 0.0000037565713616 −0.0000860610119291
15 0.0000013111367785 0.0000426959089013
16 0.0000004543791625 −0.0000211930290682
17 0.0000001564298463 0.0000105244225996
18 0.0000000535232764 −0.0000052285174354
19 0.0000000182077863 0.0000025984499916
20 0.0000000061604765 −0.0000012917821121

u2=
ln(2)/4

2 ln(2)−1 ≈ 0.44858743119526122890,(4.6)

u3=

(
1+ln(2)

)
ln(2)2/12

1−2 ln(2)−4 ln(2)2+8 ln(2)3 ≈ 0.19037224679780675668.(4.7)

More values for the coefficients u are printed in Table 2.
While in the case λ = 2 the preferable initial condition is F2,1(0) = 1, which

implies

F2,1(n) = exp√2
[n](1) =

√
2
..
.
√

2

︸ ︷︷ ︸
n×

√
2

,(4.8)

we see no evident preference for λ = 4. So we choose F (0) = 5 for the super-
exponential above 4. From (2.22), for η = u, we get

F4,5(z) = u(s4,5e
κ4z) + 4,(4.9)

s4,5 = U(5−4) = U(1) ≈ 0.69470714714324.(4.10)

In analogy with v and V , let U denote the inverse function of u; and let F4,5

denote the corresponding super-exponential. The choice F4,5(0) = 5 allows the
interpretation of F4,5(n) as a result of n applications to number 5 of the exponential

to base
√
2:

F4,5(n) = exp√2
[n](5) =

√
2

. . .
√

25

︸ ︷︷ ︸
n repetitions of

√
2

,(4.11)
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Figure 4. Left: Function f = F4,5(z) in the x+iy plane; levels
p = (f)=const and levels q = �(f)=const are shown with thick
lines for integer values of p and q. Right: Function f = A4(z) by
(4.13) in the x+iy plane; levels f = 1, 4, 8, 12, 16 are shown with
thick lines.

at least for natural numbers n.
Note, that the super-exponentials below 2, for example F2,1, remain smaller than

2 along the real axis, actually in the interval (−2,∞), as we did not define it for
(−∞,−2]; but the super-exponentials above 4, for example F4,5, remain larger than
4 along the whole real axis. The super-exponential below 4 will be considered later
together with the super-exponential above 2; along the real axis, these functions
are also plotted in Figure 3.

For the evaluation of (4.9) and (4.10), in analogy with super-exponential devel-
oped at λ= 2, we truncate the powerseries. The truncation of the powerseries u,
keeping N+1 terms, leads to the following approximation, let us call it F̃4,5,N , of
the super-function F4,5:

F̃4,5,N (z) = 4 +
N∑

n=1

uns
n
4,5 exp(nκ4z);(4.12)

The function F̃4,5,20 is plotted in the complex z-plane in the left-hand side of Figure
4. In the right part of the left picture, the density of the levels is so high, that the
plotter cannot draw them; this part is left empty.

In order to characterize the precision of the approximation of solution F4,5 of
equation (1.1), in the right-hand side of Figure 4, the agreement

A4(z)=−lg

∣∣∣∣∣ F̃4,5,20(z)−expb
(
F̃4,5,20(z−1)

)
F̃4,5,20(z)+expb

(
F̃4,5,20(z−1)

)
∣∣∣∣∣(4.13)

is plotted. The plot indicates, that, at (z)<−1, the error of evaluation is deter-
mined by the rounding errors of the complex〈double〉 arithmetic, not by the error of

the approximation F̃4,5,20. For the approximation of the solution F4,5 in the whole
complex plane, we suggest the function

F̃4,5(z) =

{
F̃4,5,N (z), (z) < xN ,

expb
(
F̃4,5(z−1)

)
, (z) ≥ xN .

(4.14)
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For N=20 and x20=−1 it returns of order of 14 significant figures of function F4,5.
This approximation is used to plot F4,5 in Figures 2 and 3. The evaluation can be
performed also at smaller values of N ; then, for good precision we need to choose
|xN | > |x20|.

In the left-hand side of the complex plane, F4,5 approaches the fixed point λ=4.
Along the real axis, the function grows faster than any exponential, and it shows the
fractal behavior in the vicinity of the positive part of the real axis. At moderated
distances from the real axis, the function F4,5 changes slowly, approaching the fixed
point λ=2.

The function F4,5 is periodic; the period T4 is expressed by

T4 =
2πi

κ4
≈ 19.236149042042854712 i,(4.15)

so, at the distance of order of 19 from the real axis, the fractal structure is repro-
duced, although it is out of range of its plot in Figure 2. The function shows rapid
growth in the positive part of the real axis and complicated behavior in its vicinity,
but it is analytic in every point of the complex plane:

Proposition 11. F4,5 is entire.

Proof. h = exp√2 is entire and K = 2 ln(2) > 1. So Proposition 4 can be applied.
�

However, the growth of the entire F4,5 in the vicinity of the real axis is so rapid,
that even in the range of the plot in Figure 2, the values cannot be stored in a
complex〈double〉 variable; there values are marked with the symbol ∞. Such a
rapid growth is typical for the growing super-exponentials.

4.1. Inverse super-exponential above 4. The inverse function F−1
4,5 of function

F4,5 can be defined with the relations

F4,5

(
F−1
4,5 (z)

)
= z ∀z ∈ C\{x ∈ R : x ≤ 4},(4.16) ∣∣∣�(F−1

4,5 (z)
)∣∣∣ < �(T4)/2 ≈ 9.6180745210214273558.(4.17)

It is shown at the bottom of Figure 2. The range of validity of the reciprocal
relation

F−1
4,5

(
F4,5(z)

)
= z(4.18)

is narrower than C\{x ∈ R : x ≤ 4}; it is limited by a single period of function F4,5

along the imaginary axis. The function F−1
4,5 (z) has only two singularities at z=2

and z=4, we choose the cut line along the real axis, z<4. In the positive direction
of the real axis, the function slowly grows, slower than a logarithm. We consider
the properties of this function and its evaluation in this section.

The inverse function satisfies the Abel equation [1, 3]

F−1
4,5

(
expb(z)

)
= F−1

4,5 (z) + 1.(4.19)

This function can be expressed with the Schröder powerseries U of h[4]:

F−1
4,5 (z) = log(U(z−4)/s4,5) /κ4.(4.20)
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We compute first some coefficients of U with formula (2.15):

U1= 1,

U2= −u2 = ln(2)/4
1−2 ln(2) ≈−0.4485874311952612289,

U3=
(4 ln(2)+1)/24

1−2 ln(2)−4 ln(2)+8 ln(2)2 ≈ 0.21208912005491969757.

(4.21)

More values are printed in the second column of Table 2. Numerically, the inverse
function can be implemented with

F̃−1
4,5,N (z) =

1

κ4
log

(
1

s4,5

N∑
n=1

Un ·(z−4)n

)
;(4.22)

this approximation is useful for small values of |z−4|. The range of the approxi-
mation can be extended with the function

F̃−1
4,5 (z) =

{
F̃−1
4,5

(
logb(z)

)
+1, |z−4| > ρ,

F̃−1
4,5,N (z), |z−4| ≤ ρ.

(4.23)

At N=20 and ρ=0.4 such an approximation returns at least 14 significant figures
and can be recommended for a complex〈double〉 implementation.

5. Super-exponentials above 2 and below 4

In this section, we consider the two remaining classes of super-exponentials to
base

√
2. These are exemplary given by

F2,3(z) = v(s2,3e
κ2z)+2 , s2,3 = V (3−2) = V (1) ≈ 2.1844747586390,(5.1)

F4,3(z) = u(s4,3e
κ4z)+4 , s4,3 = U(3−4) = U(−1) ≈ −1.8604041940071.(5.2)

s is chosen such that F2,3(0) = F4,3(0) = 3.
Every regular super-exponential F (z) at fixed point λ is a translation in the

z-plane of the principal (see Definition 3 and Corollary 8) super-exponential. If s
is positive, it is a real translation, otherwise it is a complex translation. The super-
exponential with s = −1 can be obtained by a translation along the imaginary axis
by half of the corresponding period T = 2πi/κ:

−eκz = eκz+πi = eκ(z+πi/κ) = eκ(z+T/2).

For systematization of our super-exponentials, let us begin with the case, when,
in (2.22), the Schröder parameter s is unity. We call the corresponding super-
function “principal super-exponential” or, if we need to indicate the value of κ, “the
κ-principal super-exponential”. Let Fλ denote the principal super-exponential at λ,
i.e., Fλ(z) = η(exp(κλz))+λ; we use this expression for functions η = u and η = v.
Then, all our super-exponentials can be expressed as principal super-exponentials
with displaced arguments:

F2,1 = F2(z+t2,1+T2/2) t2,1 =
ln |s2,1|

κ2
≈ 1.25155147882219,(5.3)

F2,3 = F2(z+t2,3) t2,3 =
ln(s2,3)

κ2
≈−2.13191778709503,(5.4)

F4,3 = F4(z+t4,3+T4/2) t4,3 =
ln |s4,3|

κ4
≈ 1.90057764535872,(5.5)

F4,5 = F4(z+t4,3) t4,5 =
ln(s4,5)

κ4
≈−1.11520724513161.(5.6)
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Figure 5. Functions w and w̃ by (5.11) in the complex plane

In consequence the functions F2,3 and F4,3 correspond to a complex translation of
the functions F2,1 and F4,5, respectively:

F2,3(z) = F2,1(z+t2,3−t2,1−T2/2),(5.7)

F4,3(z) = F4,5(z+t4,3−t4,5−T4/2).(5.8)

We place the cut lines of F−1
2,3 and F−1

4,3 along the half-lines (z) < 2 and (z) > 4,
in order to keep them analytic in the vicinity of z=3. F2,3 and F4,3 are shown in
the left-hand side of Figure 2 and their inverse are plotted in the right-hand side.

The plots for F2,3 and F4,3 look similar. At least for �(z) < T2/2, the two
(0 �→ 3) super-exponentials are related to

F2,3(z) = F4,3

(
z + θ2,4(z)

)
, θ2,4(z) = F−1

4,3

(
F2,3(z)

)
− z,(5.9)

where θ2,4 is a 1-periodic function. At least in the vicinity of the real axis, it can
be approximated with the sinusoidal formula

θ2,4(z) ≈ θ̃2,4(z) = ξ ·
(
sin(φ+2πz)− sin(φ)

)
(5.10)

with parameters ξ=0.7252175546 · 10−24 and φ=0.74633983476. The approxima-
tion θ̃2,4 can be used for the complex〈double〉 implementation of w(z) =F4,3(z)−
F2,3(z) for |�(z)|<4:

w(z) = F4,3(z)−F2,3(z) ≈ w̃(z) := θ̃24(z) · F4,3
′(z).(5.11)

Function w is plotted in the left-hand side of Figure 5, and function w̃ in the right-
hand side. The plots of w and w̃ look identical at moderate values of the imaginary
part of the argument. In addition, each of them is zero, while the argument is
integer. However, the entire function w̃ reproduces neither the cut lines, nor the
singularities of function w; and the deviation of w̃ from w becomes visible at the
distance of order of |T2| /2 ≈ 8.5 from the real axis.

Any small periodic or quasi-periodic perturbation of a holomorphic function,
real along the real axis, grows up in the direction of the imaginary axis. The quasi-
period unity determines the increment of this growth and is of the order of 2π.
In the case of function w, this perturbation becomes of the order of unity at the
distance of the order of |T2| /2. This allows us to estimate the smallness of the
deviation w in the vicinity of the real axis. At the distance of order |T2| /2 from
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the real axis, the quasi-periodic perturbation of the function grows up until unity
(and even becomes infinite at the singularities of F2,3). This gives an estimate of
the order of magnitude of this deviation; for moderate values of �(z), i.e., in the
vicinity of the real axis,

|w(z)| < σ := exp(−π |T2|) = exp

(
−2π2

|ln(ln(2))|

)
(5.12)

≈ exp(−53.8) ≈ 4 · 10−24.

The perturbation is not exactly sinusoidal. As we leave the real axis, the highest
harmonics grow faster; so, we may expect, that, at the real axis, the deviation is
smaller than σ. The function 1024w(x) versus real x is shown at the bottom of
Figure 3; it oscillates in the vicinity of the real axis and, indeed, for real x the
values of |w(x)| are an order of magnitude smaller than σ.

In such a way, the order of magnitude of the deviation between the two (C, 0 �→3)
super-functions of expb is determined by their periods, which, in turn, is determined
by the derivatives of the exponentials at the fixed points λ=4 and λ=2 for b=

√
2.

The deviation D by (7.3) of the iterated exponentials, made of super-function
with periods T4 and T2 is also smaller than σ in the (2,4) interval; this deviation is
considered in Section 7. The deviation between two holomorphic functions cannot
remain small everywhere (while this deviation is not a constant); therefore it can
be seen comparing the maps of these functions in the complex plane. The extension
to the complex plane is a universal tool for the analysis of functions that differ only
a little at the real axis.

6. Periodicity of inverse super-exponentials

When considering inverse holomorphic super-functions in the complex plane one
is tempted to make some mistakes of the same category as the branch-related
mistake log(ab) = log(a)+log(b) for a, b ∈ C \ {0}. One merely can state that for
each a and b we can choose a branch of the logarithm on the left side such that the
previous equation is true. Or one can restrict the validity of the equation to the
right half-plane.

Without going too deep into the theory of global holomorphic functions, we want
to mention this source of confusion. Especially for derivations like:

F (z+1) = h
(
F (z)

)
,(6.1)

F−1(z) + 1 = F−1
(
h(z)

)
.(6.2)

The inverse of a super-function may be an Abel-function only on some restricted
domain or up to choosing the correct branch.

Moreover, for inverse real-analytic super-exponentials G the following derivation
is correct only up to choosing the proper branch. Let T = 2πi/ ln(b) be the period
of z �→ bz:

G(bz) = G(z) + 1,(6.3)

G(z) + 1 = G(bz) = G
(
bz+T

)
= G(z+T ) + 1,(6.4)

G(z) = G(z+T ).(6.5)

Proposition 12. Let G be the inverse (taken along the real axis and analytically
continued) of a regular super-exponential to base b ∈ (1, e1/e), then G is periodic
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such that

G(z+T ) = G(z), T =
2πi

ln(b)
,(6.6)

up to choosing a suitable branch of G.

From the considered inverse super-exponentials — with cuts as indicated — the
only properly periodic function is F−1

2,1 , i.e.,

F−1
2,1 (z+Tslog) = F−1

2,1 (z), Tslog =
4πi

ln(2)
≈ 18.129440567308775239 i(6.7)

for each z 	= (2,∞) + Tslogk, k ∈ Z.
The period Tslog is determined by the jump of the function F2,1 at the cut between

points −1 and −2; which is of the same order of magnitude as the period of the
super-exponential F4,5 by (4.15) and the period T2 of the tetrational by (3.15). The
closeness of the periods T2 to the period Tslog seems to be a specific property of

the tetrational to base
√
2. In particular, such a closeness allows functions F2,1 and

x �→−F2,1
−1(−x) to be nearly identical along the real axis; this topic is considered

in Section 8.

7. Non-integer iteration of the exponential to base

√
2

The pair Fλ,d and F−1
λ,d can be used to define fractional iteration of the exponen-

tiation to the base b=
√
2. For λ=4, we define

exp
[c]
b,4(z) = F4,d

(
c+ F−1

4,d (z)
)
∀z ∈ C\{x ∈ R : x ≤ 4} .(7.1)

In particular, we may use d=3 or d=5 in (7.1).
Due to relation (5.8), the displacement of the argument of function Fλ,d is com-

pensated by the displacement of the value of function F−1
λ,d . For this reason, we do

not specify the value of d in the left-hand side of (7.1); it does not depend on d.

For c=0.5 the exp
[c]
b,4 by (7.1) is shown in the right-hand side of Figure 6 in the

same notation as in Figure 1.
However, the shape of the iterated exponential depends on the fixed point λ used

to construct the super-functions. The pair of functions F2,d and F−1
2,d also allows us

to construct the iterated exponential

exp
[c]
b,2(z) = F2,d(c+ F−1

2,d (z))(7.2)

in a similar way as is constructed with the pair F4,d and F−1
4,d in equation (7.1).

The range of holomorphism is a little bit more complicated than in the case λ=4
because of the complicated behavior of the F−1

2,d shown in the right-hand side of

Figure 2. Similarly, due to relation (5.7), we can use any of the already described

functions, either d=1 or d=3, and get the same exp
[c]
b,2. For c=0.5, this function

is plotted in the left-hand side of Figure 6.

The functions exp
[c]√
2,2

and exp
[c]√
2,4

versus real argument are plotted in the bot-

tom, right picture of Figure 6. In the range 2<x< 4 these curves overlap. (They
were expected to overlap, because, along the real axis, the functions F2,3 and F4,3

overlap with 24 significant figures; see Figure 3).
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Figure 6. Comparison of functions exp
[c]
b,4 (top, left) and exp

[c]
b,2

(top, right) for c= 0.5; difference D (left,bottom) in the complex
plane; and both functions versus real argument (right, bottom):

y=exp
[c]
b,4(x) by 7.1, solid, and y=exp

[c]
b,2(x) by 7.2, dashed; func-

tion D by (7.3), scaled with factor 1024, oscillates in the vicinity
of the abscissa axis, 2<x<4.

In spite of the similar values along the real axis, functions exp
[0.5]√
2,4

and exp
[0.5]√
2,2

are different. Function exp
[c]
b,4(z) has a single cut-line at z < 2. Function exp

[c]
b,2(z)

has two sets of cut-lines

(z)>4 , �(z)=�(Tslog)n , n ∈ N;

and

(z)>
(
F2,1

(
−5

2
± oi

))
≈ 0.8386449382477, �(z)=�

(
Tslog

)2n+1

2
, n ∈ N;

also, this function has a fractal of singularities and additional cut-lines at (z)>4,
due to the singular behavior of function F−1

4,5 (z) in that region.

Function exp
[c]
b,4(z) is not periodic, as F

−1
4,5 is not periodic.

Function exp
[c]
b,2(z) is periodic, as F

−1
2,1 is periodic; the period Tslog is determined

by (6.7).
In order to characterize the deviation of the two iterated exponentials, we analyze

the difference

D(z) = exp
[0.5]√
2,4

(z)− exp
[0.5]√
2,2

(z) .(7.3)
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Function D, scaled with factor 1024 is plotted in the range 2< x< 4 in the right
bottom part of Figure 6; |D(x)|<σ.

The two iterated exponentials strongly deviate from each other in the vicinity

of z = (F2,1(−2.5 + oi)) + Tslog/2, where the function exp
[c]
b,2(z) has a singularity.

(Symbol oi indicates that the function should be evaluated just above the cut-line.)
For |z−3| < 1, the function D(z) can be roughly approximated with the 6-

parametric fit

D̃(z) = 2.48 · 10−25(z−2)(4−z)
(
1 + 0.120(z−3) + 0.006(z−3)2

)
× sin

(
0.747− 0.068(z−3) + 0.007(z−3)2 + T4 ln(4−z) + T2 ln(z−2)

)
.

(7.4)

The constants T2 and T4 are determined by (3.15) and (4.15). In Figure 7, both

functions 1024D and 1024D̃ overlap well and the error of the approximation D̃ is
not seen even at the zooming-in. For detailed numerical analysis of the deviation
between the two (0 �→ 3) super-exponentials in the vicinity of the real axis, even
a more precise fit of function D can be elaborated on the base of approximation
(5.11) of the difference w between the two super-exponentials, treating the constant
σ by (5.13) as a small parameter.

As in the case of super-exponentials F2,3 and F4,3 and as in the case of the

iterated exponentials exp
[c]
b,2 and exp

[c]
b,4, the precise evaluation is required to see

that the two functions are not the same. Dan Asimov privately communicated
that he, Dean Hickerson and Richard Schroeppel recognized this deviation of the
half-iterate around 1991 by computing the values to 25 digits of accuracy. The only
accessible reference is his posting [8] on sci.math in the form of an April fool’s joke.

However, the deviation becomes more visible outside the real axis, functions are
clearly distinguishable without any zooming-in. In the following section we consider
an additional (and last) example when leaving the real axis significantly simplifies
the consideration.

8. About the apparent (x,−y) symmetry of the graph of the

super-exponential below 2

The (x,−y) symmetry of graph of y = f(x), apparently shown in Figure 7 for
f=F2,1, can be described by the formula

f−1(−x) = −f(x)(8.1)

or, by applying function f to equation (8.1),

f
(
− f(x)

)
= −x .(8.2)

Generally, for some function f , there is nothing wrong in relations (8.1), (8.2).
For example, each of the functions

f(x)=1+x , f(x)=
√

25−(3−x)2 − 3 , f(x)=
2x+3

x+2

satisfies (8.1), (8.2); and the graphic of the last of them even has the same vertical
and horizontal asymptote x = −2 and y = 2 (although does not approach them
exponentially). In this section we show, that function f , satisfying (8.2), (8.1),
cannot be F2,1.
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Figure 7. Function y = F2,1(x) of real argument left; functions

y = F2,1(−F2,1(x)) + x and y = F2,1(x) + F−1
2,1 (−x)), right.

Below, we present two independent proofs. The first proof shows, that such a
symmetry does not hold for a function with asymptotic behavior of function F2,1.
The second proof shows, more generally, that such a symmetry cannot hold for any
super-exponential f to base

√
2 that is monotonous on the (−2,∞) interval. Both

propositions below and their proofs operate exclusively with real quantities.

Proposition 13. y = F2,1(x) is not (x,−y) symmetric.

Proof. Here, we do not put indices on the function f , assuming that f =F2,1. We
show that for such a function, equation (8.2) does not hold. The deduction is based
on the asymptotic properties of the function. Consider the behavior of function
f(x) in the vicinity of the singularity at x=−2:

f(−2+x) = logb(f(−1+x)) = logb

(
f ′(−1)x+O(x2)

)
.(8.3)

In the right-hand side of (8.3), the expansion of f begins with a linear term, because
f(−1)=0. Using notation

Φ:=f ′(−1)=
F2,1

′(0)

ln
(√

2
) ≈1.69973893 ,(8.4)

equation (8.3) can be rewritten as

f(−2+x) = logb
(
Φx+O(x2)

)
= logb

(
(Φx)·

(
1 +O(x)

))
.(8.5)

For positive u, v, ln(uv) = ln(u)+ln(v); so, at least for positive x, we have

f(−2+x) = logb(Φ) + logb(x) + logb
(
1 +O(x)

)
= logb(x) + logb(Φ) +O(x) .(8.6)

Now remember the asymptotic behavior of F2,1(z) at large values of (z); from
(3.9) and (3.3), we can represent f(x) as follows:

f(x) = 2− ω −O(ω2) ,(8.7)

where ω = −s2,1e
κ2x > 0. Then, consider the expansion at large positive x of the

expression

f
(
− f(x)

)
= f

(
− 2 + ω +O(ω2)

)
.(8.8)



SUPER-EXPONENTIALS TO BASE SQRT(2) 1751

Using the expansion (8.6) at x = ω +O(ω2), we get

f
(
− f(x)

)
= logb

(
ω · (1 +O(ω))

)
+ logb(Φ) +O(ω)

= logb(ω) +O(ω0).(8.9)

Substituting ω to exp
(
(x+ln |s2,1|)κ2

)
, for x → ∞ we get

f
(
− f(x)

)
=

κ2x

ln(
√
2)

+O(x0) =
2 ln(ln(2))

ln(2)
x+O(x0) ;(8.10)

equation (3.2) is used to get the last equality. The coefficient

2 ln(ln(2))

ln(2)
≈ −1.057532745889795(8.11)

is close to minus unity, but not exactly minus unity. At large positive x, the
expression −f

(
− f(x)

)
deviates from x asymptotically linearly, with tangent of

order of 6%. This deviation is seen at the plot of y = f(−f(x)) + x in the right-
hand side of Figure 7. �

The symmetry can be negated also without reference to the asymptotic analysis,
just from the observation that f is a monotonous (increasing or decreasing) function.
The deduction based on the sequential application of hypothesis (8.2) is presented
below.

Proposition 14. There is no monotonous function f on (−2,∞) that satisfies

f(0) = 1,(8.12)

f(x+1) =
√
2
f(x)

,(8.13)

f(−f(x)) = −x.(8.14)

Proof. Below we show that there exist 3 points x1, x2, x3 such that x1 < x2 < x3,
but f(x1) < f(x2) > f(x3). No one monotonous function is allowed to have such a
property.

Let us show that there are these 3 points x1 < x2 < x3; set b =
√
2. We start

with the more difficult part of finding x2 < x3 with f(x2) > f(x3). Applying (8.13),
we get

f(0) = 1,

f(1) = b,

f(2) = bb =: c.

It follows further that

f(4) = bb
c

,

f(−bb
c

) = −4,

f(−bb
c

+ 1) = b−4,

and we set

x2 := −b−4 f(x2) = bb
c − 1.(8.15)
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On the other hand, we conclude

f(−c) = −2,

f(−c+ 1) = b−2,

f(−b−2) = c− 1,

f(−b−2 + 1) = bc−1,

f(−bc−1) = b−2 − 1,

and set

x3 = −bc−1 + 1 f(x3) = bb
−2−1.(8.16)

Now we compare x2 and x3:

x2 = −b−4 = −0.25 < −0.24510159 ≈ −bc−1 + 1 = x3

and their values

f(x2) = bb
c − 1 ≈ 0.84091087 > 0.84089642 ≈ bb

−2−1 = f(x3).

x1 can then easily be found; say x1 = −1 < x2, then f(−1) = 0 < f(x2). �

There is no need to depart from the real axis in order to see that the (x,−y)
symmetry of the graphic in the left-hand side of the Figure 7 is only an approxima-
tion, although in the range (−1, 0), this “symmetry” holds with 4 decimal digits.
Having the complex〈double〉 implementation of function f , the left-hand side of the
expression (8.2) can be precisely evaluated; the residual is plotted in the right-hand
side of Figure 7, confirming the approximate character of the (x,−y) “symmetry”.

We included both propositions above, because they are beautiful and could be
good exercises for the first-grad students who do not yet deal with functions of
complex variable. However, the approximate character of the (x,−y) “symmetry”
follows directly from the periodicity of functions F2,1 and F−1

2,1 . Both functions are

periodic, but their periods T2 by (3.15) and Tslog by (6.7) are not equivalent. If two
functions, holomorphic at some domain C, coincide at some interval, for example,
(−1, 0), then they coincide in the whole domain, and cannot have such different
periods, assuming that they are not constant.

We have considered three pairs of “similar” functions: (F2,3, F4,3) by equations

(5.1),(5.2), shown in Figure 3;
(
exp

[0.5]√
2,2

, exp
[0.5]√
2,4

)
by equations (7.2),(7.1), shown

in Figure 6, and, in conclusion,
(
F2,1 , x �→−F−1

2,1 (−x)
)
by equations (3.9),(3.16),

plotted in the left-hand side of Figure 7. Here, the “similarity” means, that at
the real-real plot, visually we cannot distinguish the function from its partner. In
the last case (considered in this section), the difference between these functions is
plotted with a dashed curve in the right-hand side of Figure 7; the float precision
of evaluation is sufficient to reveal the deviation. In the first two cases, of order
of 30 decimal digits should be evaluated in order to reveal the deviation along the
real axis. In all examples considered, a high precision of evaluation is not required
to see the deviation in the complex plane.

The different periodicity (in our case, periods T2, Tslog, T4 and ∞) allows us
to reject the hypothesis of the coincidence of the two functions without making
any numerical evaluation, without the asymptotic analysis of Proposition 13, and
without the algebraic deduction of Proposition 14.
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9. Summary and prospects

I. We have constructed four real super-functions Fλ,d of the base-function exp√2

by (5.3)-(5.6). All these functions are periodic, their periods Tλ are pure imaginary
and are determined by the fixed points λ = 2 and λ = 4. F2,1 by equation (5.3)
is a tetrational. The functions are bijective on the real axis with the following
(co)domains (see Figure 3):

F2,1 : (−2,∞) → (−∞, 2) strictly increasing,

F2,3 : (−∞,∞) → (2, 4) strictly decreasing,

F4,3 : (−∞,∞) → (2, 4) strictly decreasing,

F4,5 : (−∞,∞) → (4,∞) strictly increasing.

II. The complex translations of the argument relates function F2,1 to function
F2,3; both functions are holomorphic at least in the right-hand side of the complex
plane. The complex translations of the argument relates function F4,3 to function
F4,5; both functions are entire. We describe the complex〈double〉 implementation
for each of these functions and their inverses (see Figure 2), and that for the devi-
ation of F4,5 from F4,3, see Figure 5. In the vicinity of the real axis, this deviation

is of the order of 10−24. Function F2,1 and its inverse function F−1
2,1 have similar

periods T2 by (3.15) and Tslog by (6.7); in the range −1≤ x≤ 0, the deviation of

−F−1
2,1 (−x) from F2,1(x) is of order of 10

−4; see Figure 7.

III. With functions Fλ,d, the two different iterated exponentials exp
[c]
b,2 and exp

[c]
b,4

are constructed; they coincide at integer values of c, but for non-integer c, they have
different asymptotic properties and different ranges of holomorphism. For c=0.5 we
plot both functions in Figure 6; in the range (2, 4) along the real axis, the deviation
between these functions is of order of 10−24, and each of these two functions can
be arguably considered as a “true”

√
exp√2.

IV. The construction of the base-function h for a given super-function F is easier
than the construction of a super-function for a given base-function. In principle the
base-function is given by h(z) = F (1 + F−1(z)). Such an “inverse” method could
be used to build-up some “table of super-functions” as an analogy of a table of
integrals. To the best of our knowledge, no such table for super-functions has been
published. The compilation of such a table could be a matter for future research.

V. The regular iteration of the base-function at a fixed point, can be used for
construction of various real super-functions for real base-functions with real fixed
points. For example, there should exist at least two different holomorphic half-
iterates of the factorial (i.e.,

√
! ); this function has been used as the logo of the

Physics Department of the Moscow State University since the last century, without
implementing an algorithm for the efficient evaluation. Only recently an algorithm
for evaluation of such a function has been suggested [13].
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Appendix A. Notations

symbol description ref.

A2 agreement for complex(double) implementation of F2,1 (3.12)
A4 agreement for complex(double) implementation of F4,5 (4.13)
a reference point; for ex., F (a) = d (1.2)

b=
√
2≈1.414213562373 base of the super-exponential (1.4)

C set of complex numbers
C ⊆ C range of the holomorphism of the super-function F (1.1)
c number of iterations; c=0.5 is used as example (7.2)
χ = η−1 general symbol for Schröder function (2.13)
X (z) = sχ(x) any solution of (2.14) in Proposition 2
D ⊆ C range of holomorphizm of function G (2.3)
D(z) = exp0.5b,4 − exp0.5b,2 difference of two generalized exponentials (7.3)

D̃(z) approximation of D(z) for |z − 3| < 1 (7.4)
d variable used in definition of the super-function (1.2)
E(z) = F (z + θ(z)) super-function with modified argument (1.3)
e = exp(1) =

∑∞
n=0 1/n! ≈ 2.71 base of natural logarithms

exp(z) = ez natural exponential
expb(z) = bz = exp(ln(b)z) exponential on the base b (1.4)
expcb,λ(z) = Fλ,d(c+ F−1

λ,d(z)) iterated exponential developed at λ (7.2)

E(z)=e(z+t)κ parameter to expand F (z) in (2.2) (2.4)
η = χ−1 inverse Schröder function; F (z) = η(seκz) (2.21)
ηn general Taylor coefficient of the inverse Schröder
F super-function of base-function h, see (1.1) (2.22) (1.4)
Fλ,d (C, 0 �→d) super-function of expb developed at λ; for ex., (5.3)
Fλ principal super-function (5.3)
Φ = F2,1

′(−1) = 2
ln(2)F2,1

′(0) ≈ 1.69973893 mathematical constant (8.4)

G(E(z))=F (z)−λ displaced super-function of modified argument (2.2)
gn , n ∈ N Taylor coefficients of function G at zero (2.2)
Hk,x = {z/k ∈ C : (z) ≤ x} range of holomorphizm Prop. 7
h base-function (or the transfer function) (1.1)
hn for n ∈ N, Taylor coefficients of h at λ (2.1)
I interval, where the regular superfunction is defined by (2.24)
i = i =

√
−1 imaginary unity

j ∈ R, j > 0 used in the example h(z)=zj , F (z)=exp(jz)
K = Kλ = h1 = h′(λ) derivative of base-function h at λ (2.8)
K2 = h′(2) = ln(2) derivative of h at the fixed point λ=2 (3.1)
K4 = h′(4) =2 ln(2) derivative of h at the fixed point λ=4 (4.1)
κλ=ln(Kλ) wave-number (3.2)
κ2=ln(ln(2))≈−0.36651292058166432701 wave-number for λ=2 (3.2)
κ4=ln(2 ln(2))≈ 0.32663425997828098238 wave-number for λ=4 (4.2)
λ fixed point, solution of h(λ) = λ
ln logarithm, inverse of exponentiation; ln = loge; exp(ln(z)) = z
m, n used as integer variables (2.1)
N set of natural numbers
R set of real numbers
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symbol description ref.

O grows up not faster (or decays not slower), than its argument (8.9)
o infinitesimal parameter, F2,1(−2.5+oi) refers to upper manifold
◦ infix operation of composition of two functions (2.17)
p, q dependent variables,  and � parts of a function Fig.1
π = 4arctan(1) ≈ 3.14 −i/2 of period of exp (3.15)
r various radii
real function: any f such that f(z∗)=f(z)∗ for all z where f is defined
s = Kt constant factor in the argument of the inverse Schröder (2.22)
s2,1 = V (−1) ≈−0.63209866105083 Schröder parameter (3.10)
s2,3 = V ( 1) ≈ 2.1844747586390 Schröder parameter (5.1)
s4,3 = U(−1) ≈−1.8604041940071 Schröder parameter (5.2)
s4,5 = U( 1) ≈ 0.69470714714324 Schröder parameter (4.10)
σ = exp(−2π2/T2) ≈ 4·10−24 upper bound for |w(x)| at x ∈ R (5.13)
T2=2πi/κ2 ≈−17.143148179354847104 i period of F2,1 and F2,3 (3.15)
T4=2πi/κ4 ≈ 19.236149042042854712 i period of F4,5 and F4,3 (3.15)
Tslog=

4πi
ln(2) ≈18.129440567308775239 i period of F−1

2,1 , F
−1
2,3 , exp

c
b,2 (6.7)

t displacement of argument of super-function (2.4)
t2,1=ln(s2,1)/κ2≈1.251551478822188 displacement for F2,1(0)=1 (5.3)
t2,3=ln(s2,3)/κ2≈0.880366308272851 displacement for F2,3(0)=3 (5.4)
t4,3=ln(s4,3)/κ4≈1.90057764535874 displacement for F4,3(0)=3 (5.5)
t4,5=ln(s4,5)/κ4≈1.11520724513161 displacement for F4,3(0)=5 (5.6)
θ modification of argument of super-function (1.3)

θ2,4(z) = F−1
4,3

(
F2,3(z)

)
−z ≈ θ̃2,4(z) (5.10)

θ̃2,4(z) = ξ ·
(
sin(φ+2πz)− sin(φ)

)
approximation of θ24(z) (5.10)

ξ=0.7252175546·10−24≈0.2 σ parameter in approximation θ̃24 (5.10)

φ=0.74633983476 parameter in approximation θ̃24 (5.10)
u inverse Schröder function for λ=4 (4.9)
un, Un Taylor coefficients of G and G−1 for λ=4 Table 2
v inverse Schröder function for λ=2 (3.9)
vn, Vn Taylor coefficients of G and G−1 for λ=2 Table 1
w(z)=F4,3(z)−F2,3(z) deviation between two super-exponentials (5.11)
ω = E(z) small parameter used to expand function G (2.7)
x, y used as independent real variables Fig.1
z complex variable; sometimes, z=x+iy Fig.1
Z set of integer numbers
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