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The realistic transfer function T of the homogeneously-pumped laser amplifier is expressed in terms

of the LambertW function. The intensity F inside the amplifier is reconstructed as superfunction of T

by the method of regular iteration. The reconstructed function is compared to the analytical solution

of the transfer equation. The method of regular iteration is suggested as a tool for characterization of

laser materials from the measurement of the transfer function of a bulk sample.
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1. Introduction

Precision of characterization of laser materials usually refers to two significant figures, and

is very far from the limits due to inhomogeneity of the space-time, that would allow to have

of order of 20 significant figures. One of reasons for this is, that the laser materials are no so

identical, as atoms and simple molecules are. Another reason is the problem of measurement

of the gain and absorption of the optically-thin materials, while the intensity does not change

so much and the property can be attributed to the certain intensity.

For example, until now, it is difficult to estimate, with how many significant figures does

hold the identity for the quasi-two level medium,

G(Ipump, Isignal)/G0 +A(Ipump, Isignal)/A0 = 1 (1)

where G(Ipump, Isignal) is gain at the lasing frequency, assuming given intensities Ipump, Isignal

at the pump frequency and at the signal frequency; , A(Ipump, Isignal) is absorption at the

pump frequency, as function of the same arguments; G0 = const is gain at the strong pump

and A0 = const is absorption of pump at the strong signal.1) In order to make measurements

of gain at a given intensity, the sample should be optically thin. But the precise measurements

of small variation of intensity in the optically-thin sample are difficult. For the optically-thick

sample, it is possible to get many decimal digits in the measurement of the mean gain, but it

is difficult to guess, namely which intensity does this gain correspond to.

For the testing of the specific model, the methodologically-correct would be measurement

of the transfer function of a bulk (id est, optically thick sample), characterising Iout = T (Iin),

where Iin and Iout are input and output intensities (either pump, or signal), and T is corre-
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sponding transfer function. Then, this transfer function can be compared with the simulations

of propagation of light in the nonlinear medium, giving an estimate for the precision of the

model.

For the new laser media, with unknown kinetics, the simulation of the whole experiment,

taking into account the finite thickness of the sample, may be difficult; and it would be

desirable to have a tool for the measurement of gain and measurement of absorption of pump

at the given intensities Ipump and Isignal. In the measurement of the gain, in principle, it

is possible to keep the pump constant (for example, at the lateral delivery of pump), but

variation of signal should be significant in order to measure it with many decimal digits.

The precise measurements of teh transfer function T are possible, but the variation of the

signal inside the sample should be somehow recovered. Similar ideology can be applied to the

absorption of pump, which depends on the pump intensity.

Let F be intensity of the pump or that of the signal in the continuouswave experiment.

This F can be also interpreted as a fluence in the experiment with a short pulse, when the

dependence of gain on fluence is analyzed; for the fluences, the general formulas below remain

the same. For simplicity, assume, that F is intensity of light in a medium.

Let the transfer function T of some sample be precisely measured, expressing the output

as a function of the input. Is it possible to reconstruct the evolution of intensity F (x) along

the coordinate x of the propagation?

For simplicity, assume, that the coordinate x is measured in units of thickness of the

sample (which is supposed to be uniformly pumped for the propagation of the signal). Then

the question above refers to the transfer equation

F (x+1) = T (F (x)) (2)

Equation (2) could corresponds to a long medium; but if at some coordinate x intensity is

F (x), then, after to pass the thickness of the sample, the intensity becomes F (x+1), and it

is also T (F (x)).

For the given transfer function T , the solution F is called ”superfunction”. With super-

function, the iteration of the transfer function T can be vritten as follows:

Tn(z) = T
(
T
(
...T︸ ︷︷ ︸(z)...)

)
z evaluations of function T

= F
(
n+ F−1(z)

)
(3)

where F−1 is minus-first iteration of function F , id est, inverse function of F , so, that

F (F−1(z)) = z. In expression (3), the number n of iterations has no need to be integer;

in particular, the half-iteration of factorial and that of exponential can be evaluated6,7)

in such a way. Corresponding half-iterations can be denoted with
√

! and
√

exp; however,
√

exp(z) = exp1/2(z) should not be confused with
√

exp(z) = exp(z/2). Upper superscript

after the name of the function denotes either the derivative (it it is prime) or number of
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iterations of this function. In these notations, sin2(x) = sin(sin(x)) and never sin(x)2.

The solution of the transfer equation (2) is not unique, even if we measure the intensity

in the units of intensity of saturation and choose the origin of system of coordinates in such

a way, that F (0) = 1. If F is solution, then another solution G can be constructed as

G(x) = F (x+ η(x)) (4)

where η is real periodic function with period unity. For this reasons the equation (2) had been

qualified as ”hopeless”; the reconstruction of the physically-correct superfunction F from the

transfer function T was qualified as impossible an.8–10)

The superfunction F becomes unique at the specific additional conditions on the behavior

in the compelex plane,7,14,15) and the method of regular iterations (if applicable) returns

namely this solution. This has been verified for the quadratic transfer function,14) for T =

Factorial, for T = expb at 1 < b < exp2(−1).15) In principle, these transfer functions may

have applications in various branches of physics, but it is difficult to realize, for example, the

amplifier with factorial transfer function. Realistic transfer functions of optical amplifiers no

not raise their derivatives at large values of the argument, but, contrary, show saturation,

describing reduction of the amplification coefficient for the strong input signal.

In this paper, the realistic transfer function T (z) = Doya(z) = LambertW(ze1+z) is

considered. For this case, the superfunction can be expressed analytically, F (x) = Tania(x−
1) = LambertW(ex). The efficient algorithms for evaluation of functions Tania and Doya are

available, their properties are known11,12) and they can be considered as special functions.

The approximations of F are constructed with method of regular iterations and compared to

the exact solution.

The goal of this paper to convince colleagues to perform the precise measurements of the

transfer functions for uniformly pumped bulk samples. The the precision of the reconstruction

of the properties of the material with formalism of superfunctions should be compared to the

precision of the direct measurements with optically thin samples. This formalism should help

in the correct treatment of experimental data for the optically thick samples, at least to avoid

publications of results contradicting the Second Law of thermodynamics.13)

2. Method of regular iteration

In this section, the method of regular iterations7,14,15) is repeated for the case, when zero

is fixed point of the transfer function, id est, T (0) = 0. This neglects the amplified spontaneous

emission, the zero input leads to the zero output.

Search the approximation F̃ of the solution F of the transfer equation (2) as expansion

with exponentisps

F̃ (x) = ε+ a2 ε
2 + a3 ε

3 + .. (5)
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where ε=ekx; k and a2, a3,.. are constant coefficients; parameter ek has sense of the coefficient

of amplification a weak signal. ε is supposed to be small; then, the truncation of series in the

expansion (5) give the primary approximation F̃ . Parameters k and a are easy to evaluate.

For function with displaced argument in the left hand side of the transfer equation (2),

we have expression

F̃ (x+1) = ekε+ a2 e2k ε2 + a3 e3k ε3 + .. (6)

The expansion of the right hand side of the transfer equation (2), at the substitution of F̃

instead of F , can be written as follows:

T (F̃ (x)) = T ′ε+ T ′a2ε
2 + T ′a3ε

3 +..+
T ′′

2
(ε+a2ε

2+..)2 +
T ′′′

6
(ε+..)3+.. (7)

where T ′ = T ′(0), T ′′ = T ′′(0), T ′′′ = T ′′′(0) are derivatives of the transfer function T at zero.

Then, from the transfer equation (2) we have relations

ek = T ′ (8)

e2ka2 = T ′a2 + T ′′/2 (9)

e3ka3 = T ′a3 + T ′′a2 + T ′′′/6 (10)

and so on, determining parameters in the expansion (5); in particular,

k = ln(T ′) (11)

a2 =
T ′′/2

(T ′ − 1)T ′
(12)

a3 =
T ′′a2 + T ′′′/6

((T ′)2 − 1)T ′
(13)

The truncated series with only one or few terms in expansion (5) gives good approximation

F̃ for small values of ε. At positive k, the approximation refers to the large negative x. For

moderate values of x, the transfer function can be approximated with

F (x) ≈ Tn
(
F̃ (x−n)

)
(14)

determining the regular iteration of the transfer function as a way to approximate the super-

function F with any precision required, id est, to evaluate it.

In previous works,7,14,15) for various transfer functions, using just ”double” arithmetics,

of order of 14 correct decimal digits were achieved, evaluating the superfunctions with regular

iteration, similar to that described above. This indicates the good stability of the algorithm,

and such a precision seems to exceed the needs of characterization of the laser materials of

21th century. In order to confirm, that this method works also for the transfer functions with

saturation, typical for the laser media, in the next section such an example is considered.
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Fig. 1. Left: Transfer function T by (15) and its approximations. Right: superfunction F and its

approximations F̃ by the regular iteration (14) for n=0..4.

3. The Doya function and the Tania function

The simple transfer function for the laser amplifier can be expressed through the Lame-

brtW function; let

T (x) = Doya1(x) = LambertW(x e1+x) (15)

Graphic of this function T is shown in the left hand side of Figure 1 with thick line. Properties

of function Doya are described11) and the efficient (id est, fast and precise) algorithm for the

evaluation is supplied. At small values of the argument,

T (z) = e z − e(e−1) z2 +O(z)3 (16)

The corresponding linear and quadratic approximations of T are shown in the left hand

side of Figure 1 with thin lines. Evaluations by (11) gives k = 1, so, ε = ex; evaluation by

(12) gives a2 =−1. The primary approximation by the expansion (5) with single term gives

F̃ (x) = exp(x); that with two terms give F̃ (x) = ex−e2x. These approximations are shown

with uppest and lowest curves in the right hand side of figure 1. The regular iteration by (14)

of these functions are plotted for n = 1, 2, 3, 4.

For this example, the superfunction F can be expressed analytically through the Tania

function

F (x) = Tania(x−1) = LambertW(ex) (17)

Properties of the Tania function are described12) and the efficient algorithm for the evaluation

is supplied. This exact solution is also plotted in the same figure.

The same function F can be obtained as solution of differential equation

F ′(x) =
F (x)

1 + F (x)
(18)

that corresponds to the amplification of light in the gain medium with simple kinetics. In such
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a way, Figure 1 shows that the regular iteration quickly converges to the physically-meaningful

solution.

One may expect the same method to return the physically meaningful solution, id est,

distribution of the intensity of the signal in the uniformly pumped amplifier, also in more

complicated cases, while the simple analytic representation for the transfer function and that

for the superfunction are not yet available. This can be formulated as the following conjecture:

For realistic transfer function T , the method of regular iterations by (6)-(14) gives namely

that solution of the transfer equation (2), that corresponds to the distribution of intensity F

in the homogeneously pumped amplifier.

4. Conclusions

Superfunctions provide tool for the characterization of laser materials, allowing the recov-

ery of the properties from the measurement of the transfer function T of the optically-thick

uniformly pumped samples. This recovery implies the construction of the appropriate super-

function F , that has sense of distribution of intensity (or fluence) along the amplification.

For realistic transfer function T by (15), the method of regular iteration (14) chooses the

physically-meaningful function F by (17) among variety of solutions of the transfer equation

(2) .
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