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Abstract

For the transfer function T(z)=z+exp(z), the entire superfunction f
is constructed as solution of the transfer equation f(z+1)=T(f(z)). The
efficient algorithm for evaluation of Superfunction f is suggested. Its
logarithmic asymptotic behaviour is detected. The application for emu-
lation of the electric field of a charged wire in empty space is discussed.
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Figure 1: y=− ln(−x)
and y=SuTra(x)

Usually, a holomorphic function with loga-
rithmic asymptotic has some singularity (at
least logarithmic) in the complex plane. Such
singularity is absent for function, referred be-
low as SuTra. Plot y=SuTra(x) is shown in
figure 1 with thick curve. For comparison,
the thin curve shows y=− ln(−x). Complex
map of function SuTra is shown in figure 2.
This article describes construction and eval-
uation of function SuTra.

http://mizugadro.mydns.jp


6528 Dmitrii Kouznetsov

y

8

6

4

2

0

−2

−4

−6

−8

−8 −6 −4 −2 0 2 4 6 8 x

u
=
−2
.2

u
=
−2

u
=
−1
.8

u
=
−1
.6

u
=
−1
.4

u
=
−1
.2

u
=
−1 v=3

v
=

2

v=
1

v=0.2

v=0

v=−0.2

v=
−1 v

=
−

2

v=−3

Figure 2: Map of function SuTra; u+iv = SuTra(x+iy)

Function SuTra is superfunction [1, 2, 3, 4] for the elementary function

tra(z) = z + exp(z) (1)

id est, it is solution SuTra of the transfer equation

SuTra(z+1) = tra
(

SuTra(z)
)

(2)

The additional condition

SuTra(0) = 0 (3)

is applied; then, the graphic at Figure 1 passes through points (0,0), (1,1) and
(2,1+e); these values are seen also in the map at figure 2.
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Figure 3: Maps of functions f2(z) by (4), left, and f4(z) by (5), right, over-
lapped with map of f∞(z) by (6) in the same notations as in figure 2

In order to see the logarithmic asymptotic of function SuTra in the complex
plane, figure 3 shows the maps of functions

f2(z) = SuTra(2z) + ln(2) (4)

f4(z) = SuTra(4z) + ln(4) (5)

For comparison, the map of function

f∞(z) = − ln(−z) (6)

is shown in the same pictures. The straight lines and ideal circles correspond
to function f∞; other curves refer to functions f2 and f4. In the right hand
side picture, the deviation is so small, that it is difficult to guess, which line
corresponds to the elementary function f∞ by (6) and which refer to function
f4 by (5).

The logarithmic function can be approximated with entire function SuTra
in wide range of values; for the most of the complex plane (except z≤0)

ln(z) = lim
S→∞

(
− SuTra(−Sz)− ln(S)

)
(7)

In such a way, in the whole complex plane (except zero and negative part of the
real axis), logarithm appears as limit of the entire function. Representation (7)
justifies the title of this article. The following sections describe the construction
and evaluation of function SuTra:

Section 2 provides some preliminary notes and definitions about the super-
functions, collecting formulas and notations from the literature cited.
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Section 3 specifies the asymptotic behaviour of function SuTra and provides
its definition.

Section 5 analyses the range of validity of the primary approximation of func-
tion SuTra and describes its numerical implementation.

Section 5 discuss the relation of function SuTra to other functions

Section 6 concludes the article.

2 Preliminary Notes

This section collect some definitions about superfunctions and some basic for-
mulas. Term “superfunction” seems to be most convenient among variety of
terminologies used in the literature [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16]
for a solution of the transfer equation (8). Formulas of this section are not
new, but I hope, they release the reader from the need to browse previous
publications on the topic mentioned above.

Definition 2.1 Let C ⊂ C : z ∈ C → z+1 ∈ C.
Let T : D 7→ D be holomorphic at some D ⊂ C. Let C and D be connected
manifolds. Then, holomorphic function F : C 7→ D is called superfunction
of function T , iff for z ∈ C, the equation below holds

T
(
F (z)

)
= F (z+1) (8)

In this case, function T is qualified as transfer function for function F ;
and equation 8 is called transfer equation.
If, in addition to (8), for a ∈ C and b ∈ D, the relation F (a)= b holds, then,
F is “a 7→ b superfunction of T”.

Several examples of super functions are collected in the Tables of super-
functions [1, 23]. Super function is indicated adding prefix “Super” or “Su” to
the name of its transfer function. For example, any superfunction of exponen-
tial is called “superexponential”. Superexponential with specific value at zero
and specific asymptotic behaviour in the complex plane is called “tetration”,
and efficient algorithms for the precise evaluation are available [10, 11, 12, 13].

Definition 2.2 Let F : C 7→ C be superfunction for function T .
Let c ⊂ C : z ∈ c → T (z) ∈ c , and let G : c 7→ c be holomorphic function
such that ∀z ∈ c the equation below holds.

F (G(z)) = z (9)

Then, function G is called abelfunction of function T .
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In this way, the abelfunction G appears as inverse of the superfunction F ,
id est, G = F−1. The abelfunction satisfied the special Abel equation below:

Theorem 2.3 Let G be abelfunction of T . Then, there exists c ∈ C such
that for all z ∈ c, the following equation holds

G(T (z)) = G(z) + 1 (10)

Proof Begin with the transfer equation (8). Replace z to G(z). This gives

T (F (G(z))) = F (G(z) + 1) (11)

Apply equation (9) to the left hand side of equation (11). The result is

T (z) = F (G(z) + 1) (12)

Apply function G to both sides of equation (12). This gives

G(T (z)) = G(F (G(z) + 1)) (13)

In the range of isomorphism of F ↔ G, function F is inverse of function G.
For this range, the Abel equation (10) holds.
End of Proof

In the literature, various equations are called “The Abel equation”. In
order to avoid confusions, in this article the following definition is used:

Definition 2.4 Let T be given transfer function. Then, equation (10) for
the abelfunction G is called Abel equation.

Properties of superfunction F and abelfunction G allow to define the nth
iterate of the transfer function T in the following way:

Definition 2.5 Let F be superfunction of function T , and let G be corre-
sponding abelfunction. Then, the nth iterate of T is the following function:

T n(z) = F (n+G(z)) (14)

In this article, the number in superscript after the name of function indi-
cates number of its iterate, and never indicates argument of exponentiation
to apply after the evaluation of function; if exponentiation, the argument is
written as a superscript after the end of specification of the base of the ex-
ponent. For example, in these notations, sin2(z) = sin(sin(z)) , but never
sin(z)2. The similar notation is used in Quantum mechanics; where P̂ 2ψ or
P̂ 2(ψ) meas P (P (ψ)), but never (P (ψ))2. Notation T n for the nth iteration of
function T is not new; Walter Bergwejer used this notation in century 20 [9].

Holomorphism of superfunction F determines that, at fixed z from the
range of definition of G, the iterate T n is holomorphic function with respect to
the number n of iterations. Definitions of superfunction and the abelfunction
provide that.
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Theorem 2.6 For given transfer function T and its superfunction F and
corresponding abelfunction G, there exist some open set of ranges of complex
numbers m,n, z, where the following equation holds:

Tm(T n(z)) = Tm+n(z) (15)

Proof Using definition of iteration,express the left hand side of equation
(15) in terms of superfunciton F and abelfunction G. For G(z+n) that belongs
to the range of isomorphism of functions F and G, the relation G(F (n +
G(z))) = n + G(z) can be used. Then, these F and G can be canceled,
providing expression F (m+ n+G(z)) in the left hand side of (15). Then, the
definition (14) converts the equation to identity.

End of proof.

In such a way, the theorem above states the group properties of the iter-
ation. In particular, this group property can be used for integer values of m
and n. The group property (15) justifies the use of superscripts to indicate
the iterate; the functions can be combined, as if they would be powers of some
operators, as it takes place in the Quantum Mechanics. (This analogy does not
go far: for non-linear holomorphic functions, there is no distributive law, e.g.,
P (ϕ+ψ) = Pϕ+Pψ, postulated for linear operators in Quantum Mechanics.)

Ability to evaluate non-integer iterates of functions greatly extends the set
of functions that can be used to approximate the physical dependences. This
is expected to find application in physics and other sciences.

The iterates above are not unique, as not unique are pairs (superfunction,
abelfunction). For this reason, the definition of iterates indicates, that the
superfunction F and the abelfunciton G are given. In many cases, the criteria
of simplicity allow to choose the most “physical” superfunction among various
solutions of the transfer equation (8) [16]. For the transfer function tra by (1),
the simplest and, in this sense, most “physical” seems to be the superfunction
SuTra, defined in the foliowing section.

3 Asymptotic expansion and definition

In general, solution of equation (2) is not unique, even if the additional condi-
tion (3) is applied. Another holomorphic solution F of the same equation can
be constructed as follows:

f(z) = SuTra(z + s(z)) (16)

where s is holomorphic function with period unity. The simple example is
s(z) = ε sin(2πz) for some real constant ε. For 0<ε< 1, the modified super-
function still keeps the monotonous growth. The modified superfunction may
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have new asymptotic behaviour at infinity, because the real-holomorphic entire
periodic function with real period has at least exponential growth along some
lines in the direction of the imaginary axis. In order to specify the unique
function SuTra, consider the construction below.

Let M be positive integer constant. Let function F have the following
expansion:

F (z) = FM(z) +O
(

ln(z)

z

)M

(17)

where

FM(z) = − ln(−z) +
M∑

m=1

m∑
n=0

am,n ln(−z)n

zm
(18)

and a1,0 = 0. Other coefficients a are determined by substitution of equations
(17),(18) into the transfer equation tra(F (z)) = F (z+1) and equalising the
coefficients with equal powers of ln(−z) and z in the right hand side and in
the left hand side of the asymptotic relation.

The coefficients a can be calculated automatically with the Mathematica
software, using the code shown in Table 1. For simplicity, the evaluation of
coefficients am,n for m = 1, m = 2 and m = 3 is programmed; the extension
to larger m is straightforward. Several coefficients a, calculated with this
extension, are shown in Table 2.

Expression (18) can be considered as primary approximation of superfunc-
tion of the Trappmann function (1). Then, the exact solution of the transfer
equation can be constructed as follows:

F (z) = lim
k→∞

trak(FM(z−k)) (19)

In order to get superfunction, that satisfies also the additional condition (3),
define

SuTra(z) = F (z + x0) (20)

where x0≈−1.1259817765745026 is real solution of equation

F (x0) = 0 (21)

As the real part of the argument gets large negative values, the derivative
of the transfer function tra by (1) approaches unity. In the same limit, the
contribution of the highest terms in the expansion (18) decays. Therefore, the
resulting function SuTra does not depend on the number M of terms in sum
in (18); in principle, value M=1 could be used. However, for M=1, the limit
in (19) converges slowly. Value M = 11 is chosen in the next section for the
numeric implementation of function SuTra.
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Table 1: Mathematica code, that calculates coefficients a in expansion (17),(18)

T[z_] = z + Exp[z];

Clear [n, m, M];

P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]; P[m, L];

F[z_] = -Log[-z] + a[1, 1] Log[-z]/z + Sum[ P[m, Log[-z]]/z^m, {m, 2, M}]

M = 12;

F1x = F[-1/x + 1];

Ftx = T[F[-1/x]];

s[1] = Series[F1x - Ftx, {x, 0, 2}];

t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]

A[1, 1] = ReplaceAll[a[1, 1], t[1]];

su[1] = t[1]

m = 2; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];

t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];

u[m] = Collect[t[m], L];

v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];

w[m] = Table[a[m, n], {n, 0, m}];

ad[m] = Extract[Solve[v[m], w[m]], 1];

su[m + 1] = Join[su[m], ad[m]];

ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

m = 3; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];

t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];

u[m] = Collect[t[m], L];

v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];

w[m] = Table[a[m, n], {n, 0, m}];

ad[m] = Extract[Solve[v[m], w[m]], 1];

su[m + 1] = Join[su[m], ad[m]];

ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]
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Table 2: Coefficients a in the expansion (17),(18)

0 −1
2

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8
1
6

−1
4

1
8

a2,3 a2,4 a2,5 a2,6 a2,7 a2,8
7
48

− 7
24

3
16

− 1
24

a3,4 a3,5 a3,6 a3,7 a3,8
647
4320

−35
96

5
16

−11
96

1
64

a4,5 a4,6 a4,7 a4,8
1427
8640

−4163
8640

25
48

−17
64

25
384

− 1
160

a5,6 a5,7 a5,8
1380863
7257600

−1883
2880

5963
6912

− 653
1152

305
1536

− 137
3840

1
384

a6,7 a6,8
3278773
14515200

−2171723
2419200

97603
69120

−3961
3456

537
1024

− 263
1920

49
2560

− 1
896

a7,8
251790467
914457600

−35981749
29030400

1049251
460800

−920881
414720

69953
55296

−13381
30720

4123
46080

− 363
35840

1
2048

4 Implementation of function SuTra

In general, any function can be declared as “special function”, as soon as its
properties are known and the efficient (id est, simple, robust, fast and precise)
algorithm for the evaluation is supplied. One of goals of this article is to pop-
up function SuTra to the set of special functions. In this section, the efficient
numerical implementation for function SuTra is suggested. The code is loaded
as http://mizugadro.mydns.jp/t/index.php/Sutran.cin and described in
this section.

At large negative values of <(z) and/or at large values of =(z), expression
FM(z + x0) can be considered as approximation of function SuTra(z):

SuTra(z) ≈ FM(z + x0) (22)

The precision of this approximation can be characterized with the agreement
function

A(z) = − lg

(
|FM(z+x0)− SuTra(z)|
|FM(z+x0)|+ |SuTra(z)|

)
(23)

The agreement A indicates, how many correct decimal digits does the approx-
imation (22) provide. For M = 11, levels of the agreement function are shown
in figure 4. Namely this value of M is used in the C++ numerical implementa-
tion http://mizugadro.mydna.jp/t/index.php/sutran.cin, that provides
of order of 15 correct decimal digits.

The map of agreement in the figure 4 is symmetric with respect to reflection
from the real axis; only the upper part of the complex plane is shown. The
thick curve is built of segment of line x=−11, the arc of circle of radius 18,
centered at point (5,0), and the half-line along y=6. This thick line separates
the range, where the approximation qualified as “precise” (outer area) from

http://mizugadro.mydns.jp/t/index.php/Sutran.cin
http://mizugadro.mydna.jp/t/index.php/sutran.cin
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Figure 4: Map of the agreement A = A(x+ iy) by (23)

the range, where the the approximation is “poor” (inner area). For values from
the inner area, formula

SuTra(z)≈tran(F11(z+x0−n)) (24)

is used for a minimal natural n such that z−n is at the left hand side from the
thick contour. The resulting implementation returns of order of 15 significant
figures.

5 Discussion

This section mention some functions, related to function SuTra defined with
(18),(19),(20),(21), and the possible applications.

Once some superfunction F is defined, other superfunctions can be con-
structed with equation (16). They grow in the direction of the imaginary axis
faster than logarithm, due to the exponential growth of the periodic function
s. For these reasons, these modified functions fall out of scope of this article.

For given superfunction SuTra by (20), the inverse function, let it be called
AuTra, can be constructed;

SuTra(AuTra(z)) = z (25)

Function AuTra is Abel function for the Trappmann function tra by (1); it
is described at http://mizugadro.mydns.jp/t/index.php/AuTra (and not
included in this article, to keep it short); the expansion of AuTra can be ob-
tained, inverting expansion (17),(18), and also with similar asymptotic analysis

http://mizugadro.mydns.jp/t/index.php/AuTra
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Figure 5: y=tran(x) by (27) for various n; case n=1 refers to y=x+ex.

of the Abel equation

AuTra(tra(z)) = AuTra(z) + 1 (26)

With functions SuTra and AuTra, the iterates of function tra by (1) can be
expressed as follows:

tran(z) = SuTra(n+AuTra(z)) (27)

In this expression, the number n of iteration has no need to be integer. The
iterates are shown in figure 5.

Function tra can be iterated non-integer number of times, and even com-
plex number of times. Earlier, the similar iterates had been constructed and
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discussed for the exponential to various bases [10, 12, 13] and other functions
[1, 14, 16] .

The Trappmann function tra by (1) is named after Henryk Trappmann,
who had indicated, that it is difficult to build-up a superfunction for a transfer
function without fixed points. It happened to be not really so: in wide range
of values of the argument, the superfunction of tra can be expressed through
superfunction of another transfer function, let it be called zex:

zex(z) = z exp(z) (28)

Function zex has the real fixed point, namely, zero. For the transfer function
zex, the superfunction SuZex and the Abel function AuZex = SuZex−1 can be
constructed, using the formalism, described in [13]. Function SuZex satisfies
the transfer equation

zex(SuZex(z)) = SuZex(z + 1) (29)

Then in the wide range of values of z, function SuTra can be expressed as

SuTra(z) = ln(SuZex(z)) (30)

The inverse function AuTra = SuTra−1 can be expressed as

AuTra(z) = AuZex(exp(z)) (31)

As the SuZex had been implemented since year 2012, the first evaliations of
SuTra were performed using equation (30). In particular, the representations
(30),(31) through SuZex and AuZex are used to plot figure 5. However, with
representation (30), the holomorphism of function SuTra in the whole complex
plane is not seen. So, in this article, the representation (18), (19), (20) is
suggested.

Ability to construct the non-integer iterates of a function without fixed
points indicates, that the formalism of superfunctions is more powerful, than
that of the Schroeder functions [27, 28] (that also allows to evaluate the same
non-finiteger iterates). Various applications are expected. In particular, the
charged conducing surfaces along lines <(SuTra(x+iy) = const could be used to
emulate the logarithmic potential of a charged wire in the space without wire.
The “handle”, seen along the positive part of the real axis in figures 2 and 3 is
unavoidable; so, the trapping of the particle should be provided in other way
(see, for example, [29]). Providing the logarithmic potential without to place
any material object along the centre of this potential may have application in
the atom optics.

I expect, the formalism of superfunctions becomes important tool dur-
ing century 21. The results above confirm the general guess, that for any
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physically-meaningful transfer function, the physically-meaningful superfunc-
tion can be constructed. In particular, this refers to the case, when the transfer
function has no fixed points at all, as the Trappmann function (1) has no fixed
points. For any growing special function, the non-integer iterate can be evalu-
ated; the pictures, similar to figure 5 can be plotted. The non-integer iterates
greatly extend the arsenal of functions, that can be used to describe the phys-
ical processes or to fit non-trivial dependences in other sciences.

6 Main Results

Function SuTra by equations (18),(19),(20),(21) and Tables 1,2 is constructed
as superfunction for the transfer function tra = z 7→z+ez. The analytical and
numerical analysis of this function lead to the conjecture:
Function SuTra is entire and has logarithmic asymptotics, namely,
for any ε>0 , SuTra(z) = − ln(−z) +O( ln(−z)/z) at |z| → ∞
in the whole complex plane except the range | arg(z)| < ε.

The complex(double) C++ implementation of function SuTra is loaded as
http://mizugadro.mydns.jp/t/index.php/Sutran.cin. It returns 15 sig-
nificant figures and allows to plot the complex maps (Figs. 2, 3) in real time.

With function SuTra, the logarithmic function can be approximated through
z 7→ −SuTra(−Sz) + ln(S) for large positive values of S for all complex plane
except zero and the negative part of the real axis. Up to my knowledge,
before, no entire function with logarithmic asymptotics had been published,
and no approximation of logarithm with entire function for huge values of the
argument had been reported.
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http://leo.nit.ac.jp/~ishi/CMFT-Red.pdf

[29] M.Horikoshi; K.Nakagawa. Atom chip based fast production of Bose-
Einstein condensate. Applied Physics B 82 (3): (2006), 363 - 366.

Received: October 20, 2013

http://mizugadro.mydns.jp/t/index.php/Abel_function
http://www.proofwiki.org/wiki/Definition:Tetration
http://en.citizendium.org/wiki/Tetration
http://mizugadro.mydns.jp/t/index.php/Tetration
http://mizugadro.mydns.jp/t/index.php/Table_of_superfunctions
http://mizugadro.mydns.jp/t/index.php/Doya_function
http://mizugadro.mydns.jp/t/index.php/Keller_function
http://mizugadro.mydns.jp/t/index.php/Tania_function
http://leo.nit.ac.jp/~ishi/CMFT-Red.pdf

	Introduction
	Preliminary Notes
	Asymptotic expansion and definition
	Implementation of function SuTra
	Discussion
	Main Results

