
Super sin

Dmitrii Kouznetsov dima@ils.uec.ac.jp

University of Electro Communication, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan

January 20, 2014

Abstract

Iterates of function sin are considered. The superfunction SuSin is constructed as holomorphic
solution of the transfer equation sin(SuSin(z))=SuSin(z+1). The Abel function AuSin is constructed
as solution of the Abel equation AuSin(sin(z))=AuSin(z)+1; in wide range of values z, the rela-
tion SuSin(AuSin(z))=z holds. Iteration of sin is expressed with sinˆn(z)=SuSin(n+AuSin(z)),
where the number n of iteration has no need to be integer. The efficient algorithms for evaluation
of functions SuSin and AuSin are suggested and implemented as complex double routines in C++.
Complex maps of these functions are supplied.
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1 Introduction

Needs and interest to consider the non-integer iterates of holomorphic functions may be related to descrip-
tion of the chaotic dynamics of systems, that are characterised with a transfer function. In the simplest
case, the transfer function is just a single-value holomorphic function of a single variable. Then, the iter-
ates of the transfer function may correspond to the observation of the system at the discrete moments of
time. In this case, the system may show stochastic behaviour. This behaviour becomes regular as soon as
we interpret time, which has sense of the number of iteration, as continuous parameter. This motivation
had been mentioned many times [5, 16, 7, 12, 11]; attempts to evaluate the non-integer iterates are traced
through centuries, since works by Neils Henryk Abel [1] and Hemuth Kneser [3].

In century 20, many algorithms for evaluation of non-integer iterates had been suggested. Some
references are collected recently by Henryk Trappmann [15], and earlier, even more references had been
suggested by Walter Bergweiler [6]. The common feature of early algorithms for the non-integer iterates is,
that they are almost unusable: at the numerical implementation, the CPU time is large, and the precision
of evaluation is poor. No complex map to any non-trivial iterated function had been presented until
years 2009, 2010; when the efficient algorithms for the evaluation of superfunctions and the Abel functions
had been implemented and the half iterates of the exponential and factorial were calculated, plotted and
published [8, 9, 10, 11, 15]. However, from the point of view of application in Physics (see, for example,
[19]), the robust and efficient (fast and precise) algorithms are quire desirable, in order to deal with the
superfunctions, the Abel functions and the non-integer iterate in a way, similar to that one treats other
special functions. In such a way, the mathematical formalism should be developed and adjusted.

Superfunctions and Abel functions are declared as tools of the scientific research in the 2009 at the
Moscow University Physics Bulletin [11]. It is expected, that for any physically-meaningful transfer func-
tion, the reasonable, physically-meaningful superfunction can be constructed. In many cases, the non-
integer iterates can be constructed also through the Schrörer functions [13, 18, 17], and iterates of sin
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can be treated with the Schröder equation too. However, the formalism of superfunctions is more robust,
precise (only the rough approximations are suggested at sites [18, 17]) and more universal. In particular,
with superfunctions, we can construct iterates for the transfer functions without real fixed points [8, 9, 14],
and even for the transfer function without any fixed point [21]. For this reason, in this article, the iterates
are constructed with superfunction and the Abel function, while the Schröder functions are not considered.

The superfunctions are expected to have many applications; they may become so important, as the
exponentiation became one of the most important tools for the scientific analysis since century 19. The
simple application for the laser science is already suggested [19], many others are discussed [11].

For applications, first, the behaviour of functions for the real values of the argument is important.
Nevertheless, the functions should be constructed also for the complex values. Behaviour at the complex
plane is essential to discriminate the solution and choose the simplest one. Some algorithms explicitly use
this behaviour for the evaluation [8]. In addition, the algorithms can be boosted with the Taylor series [9],
and the Cauchi integral formula allows the efficient evaluation of the coefficients in the expansions; again,
evaluation of function in the complex plane is important . For these reasons, as in previous publications
[8, 9, 10, 11, 12, 14, 21], here the functions are considered for the complex arguments.

2 Basic formulas

For some holomorphic function T , referred here as the transfer function, define the superfunction F as
holomorphic solution of the transfer equation

T (F (z)) = F (z+1) (1)

and let the Abel function G be inverse of the superfunction, G = F−1. Here, the number in superscript
after the name of function indicates the number of iteration, and never indicates the power function.
In these notations, P 2(ψ) = P (P (ψ)), but never P (ψ)2; and sin2(x) = sin(sin(x)), but never sin(x)2.
This notation is used since century 20 [6]. One can easy check, that the Abel function satisfies the Abel
equation,

G(T (z)) = G(z) + 1 (2)

Once the superfunction F and the Abel function G are established, the nth iteration of the transfer
function T can be defined with

T n(z) = F (n+G(z)) (3)

in such a way, that for certain range of values of z, the relation Tm(T n(z)) = Tm+n(z) holds. As the
iterate is defined with equation 3, number n of iteration has no need to be integer.

For a given transfer function, the superfunction is not unique. The different superfunctions may
give different iterates. Consideration of the iterates in the complex plane is important to choose the
superfunction, different from the constant, that has simplest behaviour at infinity. In this article, the
superfunction of sin, or super sin, is constructed and denoted with name SuSin; it is assumed, that, for
large values of z,

SuSin(z) =

√
3

z

(
1 +O

(
ln(z)

z

))
(4)

After to force the search engine, I found, that the leading factor
√

3
z

had been already suggested; Kursernas

Hemsidor [17] uses name “Niclas Carlsson formula” for expression SuSin(z) ≈
√

3
z
.

In this article, the superfunction SuSin, satisfying relation (4), is constructed, and the algorithm for
the evaluation is suggested, and many terms are added instead of O in (4). In such a way, this article can
be considered as verification (in the sense of the TORI axioms [20]) of the Niclas Carlsson formula[17].
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3 Super sin

Construction of superfunction for the transfer function T = sin is similar to that for the transfer functions

T (z)=exp
(

1
e
z
)

and T (z)=tra(z)=z+exp(z)) , described recently [15, 21]. Search for the solution f of

the transfer equation

sin(F (z)) = F (z+1) (5)

in the following form

f(z) = FM(z) +O

(
ln(z)M+1

zM+3/2

)
(6)

where

FM(z) =

√
3

z

(
1− 3 ln(z)

10 z
+

M∑
m=2

Pm(ln(z))z−m

)
(7)

Pm(z) =
m∑
n=0

am,nz
m (8)

and coefficients a are constants.
One can guess the factor

√
3/z above even without to read the references mentioned: expand the

transfer function at zero, replace F (z+1) to F (z)+F ′(z) and solve the resulting differential equation; the
solution indicates the leading term of the expansion of the superfunction. In the similar way one can guess
value of the coefficient −3/10 at the first term. In order to calculate other coefficients a, the asymptotic
expansion should be substituted into the transfer equation. This can be done automatically with the
Mathematica code below.

P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]

F[z_] = Sqrt[3/z] ( 1 + Sum[P[m, Log[z]]/z^m, {m, 1, M}])

M = 9; a[1, 0] = 0;

F1x = F[1 + 1/x];

Ftx = Sin[F[1/x]];

s[1] = Series[(F1x - Ftx)/Sqrt[x], {x, 0, 2}]

t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]

A[1, 1] = ReplaceAll[a[1, 1], t[1]]

su[1] = t[1]

m=2; s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3x],{x,0,m+1}], su[m-1]]]

t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]

u[m] = Simplify[Collect[t[m], L]]

v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]

w[m] = Table[a[m, n], {n, 0, m}]

ad[m] = Extract[Solve[v[m], w[m]], 1]

su[m] = Join[su[m-1], ad[m]]

m=3; s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3x],{x,0,m+1}], su[m-1]]]

t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]

u[m] = Simplify[Collect[t[m], L]]

v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]

w[m] = Table[a[m, n], {n, 0, m}]

ad[m] = Extract[Solve[v[m], w[m]], 1]

su[m] = Join[su[m-1], ad[m]]
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Table 1. Coefficients a in equation (8)

1 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8

0 − 3
10

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8
79
700

− 9
50

27
200

a2,3 a2,4 a2,5 a2,6 a2,7 a2,8
411
3500

−1941
7000

27
125

− 27
400

a3,4 a3,5 a3,6 a3,7 a3,8
1606257
10780000

− 7227
17500

1683
4000

− 1917
10000

567
16000

a4,5 a4,6 a4,7 a4,8
140345627
700700000

− 70079931
107800000

566973
700000

− 98739
200000

7533
50000

− 15309
800000

a5,6 a5,7 a5,8
137678711441
490490000000

−7364523
7007000

305491257
196000000

−4155111
3500000

796311
1600000

− 2218347
20000000

168399
16000000

a6,7 a6,8
25317035192599
62537475000000

−8462569406199
4904900000000

32174780481
10780000000

−5367503637
1960000000

407711313
280000000

−181900809
400000000

1960281
25000000

− 938223
160000000

a7,8
20390161579066727223
34157135012000000000

−1191102095494119
416916500000000

111297984941043
19619600000000

−164937331809
26950000000

310033164249
78400000000

−11083463037
7000000000

3104886087
8000000000

− 301983147
5600000000

8444007
2560000000

In order to simplify the tracing of the algorithm above, no loop with respect to m is arranged. The
resulting coefficients is shown in the Table 1.

For some fixed integer M > 1, define function F as the limit

F (z) = lim
k→∞

arcsink
(
FM(z+k)

)
(9)

While f by equation (6) is asymptotic solution of the transfer equation (5), function F by (9) does not
depend on the number M of terms taken into account. However, for larger M , the limit converges faster,
and this is important for the efficient numerical implementation. Then, through function F , the super sin
can be defined as follows:

SuSin(z) = F (z+x1) (10)

where x1≈1.4304553465288 is solution of equation F (1+x1)=1 . This condition determines that

SuSin(1) = 1 (11)

and

SuSin(0) = arcsin(1) = π/2 (12)

Then, SuSin(n) = sinn(π/2) can be interpreted as the result of n applications of function sin to initial
argument π/2, giving sense to this expression for non-integer and even non-real (complex) number n of
iteration.

The numerical algorithm for evaluation of super sin by equation (10) is implemented in C++ with
compel double variables. Chosen value M=8 corresponds to 9 terms (counting the zeroth leading term),
taken into account in equation for FM . Of order of 40 iterations of arcsin are used for evaluation of
SuSin of argument of order of unity. This algorithm is used to plot figures. The accuracy of the resulting
algorithm is estimated to be of order of 14 decimal digits, and it is close to maximal precision, achievable
for the implementation with the complex double variables. This precision should be compared to 7 decimal
figures, achievable with several thousand iterations, reported by [17] for only one leading term taken into
account.

Graphic y=SuSin(x) is shown in the top part of figure 1 with thick line. For comparison, the asymptotic
y =

√
3/x, valid for large values of x, is shown with upper thin line. The leading term of the expansion

at zero, discussed below, is shown with lower thin line.

Complex map of function SuSin is shown in the bottom part of figure 1 with lines u=<(SuSin(x+iy))
and lines v=<(SuSin(x+iy)) in the x,y plane. The cut of range of holomorphism along the negative part
of the real axis is marked with dashed line.
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Figure 1: Top: y= SuSin(x) by (10), thick intermediate curve; y=
√

3/x, upper curve; y= π/2−d0
√
x,

lower curve ; Bottom: complex map of SuSin by (10): u+ iv =SuSin(x+iy) in the x,y plane.
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Function SuSin has the root singularity at zero. Expansion at the singularity be written as follows:

SuSin(z) =
π

2
−
√
z

M∑
m=0

dmz
m +O(zM+3/2) (13)

The coefficients d of expansion (13) can be evaluated with the Cauchi integral. The approximations for
coefficients d are:

d0 ≈ 0.66058238000676
d1 ≈−0.12329860399822
d2 ≈ 0.05094582111508
d3 ≈−0.02828892576497
d4 ≈ 0.01839521673418
d5 ≈−0.01316131268331

The truncated expansion by (13) with M=0 is also shown in figure 1 with the lowest thin curve.

Function SuSin can be approximated also with simple function

SuSin(z) ≈ exp
(

(1−
√
z) ln(π/2)

)
(14)

The approximation by (14) is valid for moderate values ov z; while |z| < 1.5, it returns two correct
decimal digits. This approximation had beed suggested by Thomas Curtright [13] at http://server.

physics.miami.edu/~curtright/Schroeder.html. That approximation allows to draw the explicit plot
of function SuSin of real argument and iterates of function sin.

Function SuSin, constructed in this section is super sin, declared in the title of the article. Up to my
knowledge, formulas (6)-(8) provide the most efficient (fast and precise) algorithm for evaluation of SuSin,
among ever reported in the literature. For evaluation of non-integer iterates, the inverse function is also
required, id est, the Abel sin. In the next section it is denoted with AuSin = SuSin−1.

4 Abel sin

y

3

2

1

00 1 π/2 2 x

Figure 2: y=AuSin(x) by (20)

This section describes function AuSin = SuSin−1, which is Abel func-
tion for sin. The explicit plot of this function is shown in figure 2.
Evaluation of this function is described below.

AuSin satisfies the Abel equation

G(sin(z)) = G(z) + 1 (15)

which is just equation (2) at T =sin. Construction of the asymptotic
expansion for AuSin is similar to that of SuSin. First, some solution
G is constructed with leading term of the asymptotic expansion

G(z) =
3

z2
+O(ln(z)) (16)

which corresponds to function SuSin−1. Then the constant is added
to satisfy the additional condition AuSin(1) = 1. While the asymp-
totic of G corresponds to asymptotic of function F , the conjecture is
that F = G−1 and SuSin = AuSin−1.

Let

GM(z) =
3

z2
+

5

6
ln(z) +

M∑
m=1

cmz
2m (17)
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Substitution of g(z) = GM(z) + O(z2M+2) into the Abel equation (15) gives the coefficients c. The auto-
matic calculation of the coefficients c is straightforward and even simpler, than calculation of coefficients
a in expansion (7),(8); so, I do not copy past the Mathematica code here. The first 8 resulting coefficients
are

c1 c2 c3 c4 c5 c6 c7 c8
79

1050
29

2625
91543

36382500
18222899

28378350000
88627739

573024375000
3899439883

142468185234375
32544553328689

116721334798818750000
4104258052789

1554729734250000000

(18)

Then, function G can be evaluated with

G(z) = lim
k→∞

GM( sink(z))− k (19)

While GM is asymptotic solution of the Abel equation with sin as the transfer function, the limit does
not depend on M . However, the rate of convergence improves with the increase of M .

Through function G, by (19), the Abel sin appears as

AuSin(z)=G(z)−G(π/2) (20)

y

1

0

−1

0 1 π/2 2 3 x

v=0

u
=

2

u
=

1

u=
0

u=−1

v=0

u
=
−

2

u=−
1

u=−0.5

v
=

3
v

=
2

v
=

1

v
=

0.
2

v
=

0
v

=
−

0.
2

Figure 3: u+iv = AuSin(x+iy) by (20)

in such a way that AuSin(π
2
)=0. Con-

stant G(π/2)≈2.089622719729524 .

The numerical implementation of
AuSin is loaded as http://mizugadro.
mydns.jp/t/index.php/ausin.cin.
This algorithm is used to plot figures.
The explicit plot of AuSin is shown in
figure 2. The complex map of AuSin
is shown in figure 3 in the same way,
as map of SuSin is shown in figure 1;
u+iv = AuSin(x+iy). The limit in (19)
converges quicky (within a hundred it-
erations) at least within the range |z −
π/2| < π/2; outside, some fractal be-
haviour is seen in the figure.

The range of validity of relation

SuSin(AuSin(z)) = z (21)

is shown in figure 4 with dense grid.
The dense grid is formed with the com-
plex map of the left hand side of equa-
tion (21).

The inverse relation

AuSin(SuSin(z)) = z (22)

is valid in the whole complex plane ex-
cept the halfline z < 0.

The boundary of the domain of va-
lidity of equation (21) follows the lines =(AuTra(z))=0. These lines are also shown in figure 4, they are
borrowed from figure 3.
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y

1

0

−1

0 1 π/2 2 x
Figure 4: Range of (21) in z=x+iy plane

Within the range shaded with dense rectangular grid in
figure 4, the group relation

sinm ( sinn(z)) = sinm+n(z) (23)

holds at least for real m and n. The numerical implementa-
tion mentioned reproduces it with at least 14 decimal figures.
In particular, relation 23 holds in vicinity of the real axis.

The precise implementation of AuSin for complex argu-
ment allows to calculate the Taylor expansion at π/2

AuSin(z) =
∞∑
n=1

bn(z−π/2)2n (24)

The series converges while |z−π/2| < π/2. The coefficients
b of this expansion can be evaluated through the Cauchi in-
tegral. Approximations for first 6 coefficients in (24) are

b1 ≈ 2.29163807440958 (25)

b2 ≈ 1.96043852439688 (26)

b3 ≈ 1.07862851256147 (27)

b4 ≈ 0.59622997993395 (28)

b5 ≈ 0.28333997139829 (29)

b6 ≈ 0.14193261194548 (30)

Function AuSin has sense of number of iterates of sin, beginning with π/2, required in order to get
value of argument. However, the number of these iterates has no need to be integer. With the expansion
(17) at zero and the Taylor expansion (24), and the Abel equation (15), function AuSin can be evaluated
within few tens operations with 14 decimal figures. Then, with functions SuSin and AuSin, the non integer
iterates of function sin can be expressed also for other initial values of the argument (it has no need to be
π/2 and may have complex value). This is considered in the next section.

5 Iterates of sin

While functions SuSin and AuSin are defined and described, the nth iterate of sin can be defined as

sinn(z) = SuSin
(
n+ AuSin(x)

)
(31)

For real values of argument, the iterates of sin are shown in figure 5; y = sinn(x) is plotted versus x
for various values n. Curves, that correspond to integer values of n, are thick; the thin curves correspond
to non-integer values of number n of iterates. Similar curves can be plotted with the approximation of
SuSin suggested by [13].

In figure 5, curve for n= 1 is just y= sin(x), and that for n=−1 is just y= arcsin(x). In such a way,
the non-integer iterates allow the smooth (holomorphic) transition from a function to its inverse function.
With the efficient algorithms for SuSin end Ausin, described above, all the figures can be generated in real
time; these functions can be used as other special functions.
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Figure 5: y=sinn(x) versus x for various values of number n of iterate

6 Discussion

Iterations of sin may have various applications. The high iterate of sin, say, sin100 may describe the
shape of sledge runners. Figure 6 shows the approximation of the sled runner from photo http://en.

wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg by [2]. The approximating curve is

y=sinn(π/2)−sinn(x) (32)

at n= 100. This number is only adjusting parameter in the fitting. The curve in figure 6 corresponds to
the lowest curve in figure 5, flipped upside-down.

Fitting by (32) is the best single-parametric approximation I could suggest for this case. In this
application, there is no serious reason for n to be integer; it could be some real number instead. This is
one of reasons, why the evaluation of non-integer iterates has sense.

The skeptics may say, that at large n�1, iteration sinn can be approximated with its asymptotic

sinn(x) ≈

√
3

n+ 3/x2
(33)

Then one can replace the constants in expresson (33) to parameters and even improve the fitting. However,
the result will not be a single-parametric fit.

In formalism of superfunctions, sin is simple example of a transcendent transfer function, that has
unity derivative and zero second derivative at the fixed point. For this case, the superfunction cannot be
constructed as the expansion with exponentials, as it can be done for the exponential to base b between 1
and exp(1/e) [10], for factorial [11] and for many other transfer functions. Sin is widely used function, so,
its non-integer iterates should be considered as special functions too.
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y
0.1
0 0 1 π/2 2 x

Figure 6: Approximation of shape of the sledge runner by [2] with iterate of sin, y= sinn(π/2)−sinn(x)
with single adjusting parameter n=100.

7 Conclusion

The super sin function named SuSin is defined with equation (10) as solution of the transfer equation
(5) with sin as the transfer function. Expansions of this function at zero and at infinity are suggested.
The complex double implementation in C++ is loaded at http://mizugadro.mydns.jp/t/index.php/

susin.cin; the complex map of SuSin is shown in figure 1. The algorithm suggested is significantly more
efficient, than the approximations reported recently [17, 18].

The Abel sin function named AuSin = SuSin−1 is constructed with equation (20). This function is
solution of the Abel equation (15). The complex double implementation in C++ is loaded at http:

//mizugadro.mydns.jp/t/index.php/ausin.cin; the complex map of AuSin is shown in figure 3.

With SuSin and AuSin, iterates of function sin can be expressed with equation (31); the iterate has
the group property sinm(sinn(z)) = sinm+n(z). The range of validity of this representation is shown in
figure 4. For real values of the argument, the iterates of sin are shown in figure 5. Up to my knowledge,
this figure represents the most precise evaluation of noninteger iterates of sin, ever reported.

In general, superfunctions, Abel functions and the resulting non-integer iterates of special functions
greatly extend the arsenal of holomorphic functions available for the description of physical processes.
For this reason, superfunctions for the elementary functions should be described and implemented in the
programming language. The algorithms described here, as well as those presented recently [8, 9, 10, 11, 12,
15, 21], can be used as prototypes for the implementation of superfunctions, Abel functions and iterates
of special functions in both the commercial and the free software. In particular, super sin and iterates of
sin should get status of special functions.
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