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Abstract 

Iterates of function sin are considered. The superfunction SuSin            
is constructed as holomorphic solution of the transfer equation 

( )( ) ( ).1SuSinSuSinsin += zz  The Abel function AuSin is constructed 

as solution of the Abel equation ( )( ) ( ) ;1AuSinsinAuSin += zz  in 

wide range of values z, the relation ( )( ) zz =AuSinSuSin  holds. 

Iteration of sin is expressed with ( ) ( )( ),AuSinSuSinsin znzn +=  

where the number n of iteration has no need to be integer. The 
efficient algorithms for evaluation of functions SuSin and AuSin are 
suggested and implemented as complex double routines in C++. 
Complex maps of these functions are supplied. 

1. Introduction 

Needs and interest to consider the non-integer iterates of holomorphic 
functions may be related to description of the chaotic dynamics of systems, 
that are characterized with a transfer function. In the simplest case, the 
transfer function is just a single-value holomorphic function of a single 
variable. Then the iterates of the transfer function may correspond to the 
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observation of the system at the discrete moments of time. In this case, the 
system may show stochastic behaviour. This behaviour becomes regular as 
soon as we interpret time, which has sense of the number of iterations, as 
continuous parameter. This motivation had been mentioned many times          
[5, 16, 7, 12, 11]; attempts to evaluate the non-integer iterates are traced 
through centuries, since works by Abel [1] and Kneser [3]. 

In century 20, many algorithms for evaluation of non-integer iterates had 
been suggested. Some references are collected recently by Trappmann and 
Kouznetsov [15], and earlier, even more references had been suggested by 
Bergweiler [6]. The common feature of early algorithms for the non-integer 
iterates is, that they are almost unusable: at the numerical implementation, 
the CPU time is large, and the precision of evaluation is poor. No complex 
map to any non-trivial iterated function had been presented until years 2009, 
2010; when the efficient algorithms for the evaluation of superfunctions and 
the Abel functions had been implemented and the half iterates of the 
exponential and factorial were calculated, plotted and published [8-11, 15]. 
However, from the point of view of application in Physics (see, for example, 
[19]), the robust and efficient (fast and precise) algorithms are quire 
desirable, in order to deal with the superfunctions, the Abel functions and the 
non-integer iterate in a way similar to that one treats other special functions. 
In such a way, the mathematical formalism should be developed and 
adjusted. 

Superfunctions and Abel functions are declared as tools of the scientific 
research in the 2009 at the Moscow University Physics Bulletin [11]. It is 
expected, that for any physically-meaningful transfer function, the 
reasonable, physically-meaningful superfunction can be constructed. In many 
cases, the non-integer iterates can be constructed also through the Schröder 
functions [13, 18, 17], and iterates of sin can be treated with the Schröder 
equation too. However, the formalism of superfunctions is more robust, 
precise (only the rough approximations are suggested at sites [18, 17]) and 
more universal. In particular, with superfunctions, we can construct iterates 
for the transfer functions without real fixed points [8, 9, 14], and even for the 
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transfer function without any fixed point [21]. For this reason, in this article, 
the iterates are constructed with superfunction and the Abel function, and the 
Schröder functions are not considered. 

The superfunctions are expected to have many applications; they may 
become so important, as the exponentiation became one of the most 
important tools for the scientific analysis since century 19. The simple 
application for the laser science is already suggested [19], many others are 
discussed [11]. 

For the applications, first, the behaviour of functions for the real values 
of the argument is important. Nevertheless, the functions should be 
constructed also for the complex values. Behaviour at the complex plane is 
essential to discriminate the solution and choose the simplest one. Some 
algorithms explicitly use this behaviour for the evaluation [8]. In addition, 
the algorithms can be boosted with the Taylor series [9], and the Cauchi 
integral formula allows the efficient evaluation of the coefficients in the 
expansions; again, evaluation of function in the complex plane is important. 
For these reasons, as in previous publications [8-12, 14, 21], here the 
functions are considered for the complex arguments. 

2. Basic Formulas 

For some holomorphic function T, referred here as the transfer function, 
define the superfunction F as holomorphic solution of the transfer equation 

 ( )( ) ( )1+= zFzFT  (1) 

and let the Abel function G be inverse of the superfunction, .1−= FG  Here, 
the number in superscript after the name of function indicates the number of 
iteration, and never indicates the power function. In these notations, 

( ) ( )( ),2 ψ=ψ PPP  but never ( ) ;2ψP  and ( ) ( )( ),sinsinsin2 xx =  but never 

( ) .sin 2x  This notation is used since century 20 [6]. One can easily check that 

the Abel function satisfies the Abel equation, 

 ( )( ) ( ) .1+= zGzTG  (2) 
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Once the superfunction F and the Abel function G are established, the 
nth iteration of the transfer function T can be defined with 

 ( ) ( )( )zGnFzT n +=  (3) 

in such a way, that for certain range of values of z, the relation 

( ( )) ( )zTzTT nmnm +=  holds. As the iterate is defined with equation (3), 

number n of iteration has no need to be integer. 

For a given transfer function, the superfunction is not unique. The 
different superfunctions may give different iterates. Consideration of the 
iterates in the complex plane is important to choose the superfunction, 
different from the constant, that has simplest behaviour at infinity. In this 
article, the superfunction of sin, or super sin, is constructed and denoted with 
name SuSin; it is assumed, that for large values of z, 

 ( ) ( ) .ln13SuSin ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛+= z

zOzz  (4) 

After to force the search engine, I found that the leading factor z
3  had been 

already suggested; Hemsidor [17] uses name “Niclas Carlsson formula” for 

expression ( ) .3SuSin zz ≈  

In this article, the superfunction SuSin, satisfying relation (4), is 
constructed, and the algorithm for the evaluation is suggested, and many 
terms are added instead of O in (4). In such a way, this article can be 
considered as verification (in the sense of the TORI axioms [20]) of the 
Niclas Carlsson formula [17]. 

3. Super Sin 

Construction of superfunction for the transfer function sin=T  is similar 

to that for the transfer functions ( ) ⎟
⎠
⎞⎜

⎝
⎛= zzT e

1exp  and ( ) ( ) == zzT tra  

( ),exp zz +  described recently [15, 21]. Search for the solution f of the 
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transfer equation 

 ( )( ) ( )1sin += zFzF  (5) 

in the following form: 

 ( ) ( ) ( ) ,ln
23

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= +

+

M

M
M

z
zOzFzf  (6) 

where 

( ) ( ) ( )( ) ,ln10
ln313

2
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= ∑

=

−
M

m

m
mM zzPz

z
zzF  (7) 

( ) ∑
=

=
m

n

m
nmm zazP

0
,  (8) 

and coefficients a are constants. 

One can guess the factor z3  above even without to read the references 

mentioned: expand the transfer function at zero, replace ( )1+zF  to ( ) +zF  

( )zF ′  and solve the resulting differential equation; the solution indicates the 

leading term of the expansion of the superfunction. In the similar way, one 
can guess value of the coefficient 103−  at the first term. In order to calculate 

other coefficients a, the asymptotic expansion should be substituted into the 
transfer equation. This can be done automatically with the Mathematica code 
below: 

 
P[m_ , L_] := Sum[a[m , n] L^n , {n , 0 , m}] 

F[z_] = Sqrt[3/z] ( 1 + Sum[P[m , Log[z]]/z^m , {m , 1 , M}]) 

M = 9; a[1, 0] = 0 ; 

F1x = F[1 + 1/x]; 

Ftx = Sin[F[1/x]]; 

s[1] = Series[(F1x - Ftx)/Sqrt[x], {x, 0, 2}] 

t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1 , 1]}], 1] 

A[1, 1] = ReplaceAll[a[1, 1], t[1]] 

su[1] = t[1] 
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m=2; s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3x], {x, 0, m+1}], su[m-1]]] 

t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]] 

u[m] = Simplify[Collect[t[m], L]] 

v[m] = Table[Coefficient[u[m] L , L^(n+1)] == 0 , {n, 0, m}] 

w[m] = Table[a[m , n], {n , 0 , m}] 

ad[m] = Extract[Solve[v[m], w[m]], 1] 

su[m] = Join[su[m-1], ad[m]] 

m=3; s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3x],{x, 0, m+1}], su[m-1]]] 

t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]] 

u[m] = Simplify[Collect[t[m], L]] 

v[m] = Table[Coefficient[u[m] L , L^(n+1)] == 0, {n , 0 , m}] 

w[m] = Table[a[m , n], {n, 0, m}] 

ad[m] = Extract[Solve[v[m], w[m]], 1] 

su[m] = Join[su[m-1], ad[m]] 

Table 1. Coefficients a in equation (8) 

 

and so on. In order to simplify the tracing of the algorithm above, no         
loop with respect to m is arranged. The resulting coefficients are shown in 
Table 1. 

For some fixed integer ,1>M  define function F as the limit 

 ( ) ( )( ).arcsinlim kzFzF M
k

k
+=

∞→
 (9) 

While function F by equation (6) is asymptotic solution of the transfer 
equation, function F does not depend on the number M of terms taken into 
account. However, for larger M, the limit converges faster, and this is 
important for the efficient numerical implementation. Then, through function 
F, the super sin can be defined as follows: 

 ( ) ( ),SuSin 1xzFz +=  (10) 



Super Sin 225 

where 2884304553465.11 ≈x  is solution of equation ( ) .11 1 =+ xF  This 

condition determines that 

 ( ) 11SuSin =  (11) 

and 

 ( ) ( ) .21arcsin0SuSin π==  (12) 

Then ( ) ( )2sinSuSin π= nn  can be interpreted as the result of n applications 

of function sin to initial argument ,2π  giving sense to this expression for 

non-integer and even non-real (complex) number n of iteration. 

The numerical algorithm for evaluation of super sin by equation (10) is 
implemented in C++ with complex double variables. Chosen value 8=M  
corresponds to 9 terms (counting the zeroth leading term), taken into account 
in equation for .MF  Of order of 40 iterations of arcsin are used for 

evaluation of SuSin of argument of order of unity. This algorithm is used to 
plot figures. The accuracy of the resulting algorithm is estimated to be of 
order of 14 decimal digits, and it is close to maximal precision, achievable 
for the implementation with the complex double variables. This precision 
should be compared to 7 decimal figures, achievable with several thousand 
iterations, reported by [17] for only one leading term taken into account. 

Graphic ( )xy SuSin=  is shown in the top part of Figure 1 with thick 

line. For comparison, the asymptotic ,3 xy =  valid for large values of x, 

is shown with upper thin line. The leading term of the expansion at zero, 
discussed below, is shown with lower thin line. 

Complex map of function SuSin is shown in the bottom part of Figure 1 
with lines ( )( )yxu iSuSin += R  and lines ( )( )yxv iSuSin += R  in the x, y 

plane. The cut of range of holomorphism along the negative part of the real 
axis is marked with dashed line. 
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Figure 1. Top: ( )xy SuSin=  by (10), thick intermediate curve; ,3 xy =  

upper curve; ,2 0 xdy −π=  lower curve; Bottom: complex map of SuSin 

by (10): ( )yxvu iSuSini +=+  in the x, y plane. 

Function SuSin has the root singularity at zero. Expansion at the 
singularity can be written as follows: 

 ( ) ( ).2SuSin
0

23∑
=

++−π=
M

m

Mm
m zOzdzz  (13) 
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The coefficients d of expansion (13) can be evaluated with the                         
Cauchi integral, calculating the Taylor expansion of function 

( )( ).2SuTra π−− zzz  The approximations for coefficients d are: 

000676,0.660582380 ≈d  

399822,0.123298601 −≈d  

111508,0.050945822 ≈d  

576497,0.028288923 −≈d  

673418,0.018395214 ≈d  

268331.0.013161315 −≈d  

The truncated expansion by (13) with 0=M  is also shown in Figure 1 
with the lowest thin curve. 

Function SuSin can be approximated also with simple function 

 ( ) (( ) ( )).2ln1expSuSin π−≈ zz  (14) 

The approximation by (14) is valid for moderate values of z; while ,5.1<z  

it returns two correct decimal digits. This approximation had been suggested 
by Curtright and Zachos [13] at 

http://server.physics.miami.edu/~curtright/Schroeder.html. 

That approximation allows to draw the explicit plot of function SuSin of real 
argument and iterates of function sin. 

Function SuSin, constructed in this section, is super sin, declared in the 
title of the article. Up to my knowledge, formulas (7)-(10) provide the most 
efficient (fast and precise) algorithm for evaluation of SuSin, among ever 
reported in the literature. For evaluation of non-integer iterates, the inverse 
function is also required, i.e., the Abel sin. In the next section, it is denoted 

with =AuSin  .SuSin 1−  
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4. Abel Sin 

This section describes function ,SuSinAuSin 1−=  which is Abel 

function for sin. The explicit plot of this function is shown in Figure 2. 
Evaluation of this function is described below. 

AuSin satisfies the Abel equation 

( )( ) ( ) 1sin += zGzG  (15) 

which is just equation (2) at .sin=T  Construction of the asymptotic 

expansion for AuSin is similar to that of SuSin. First, some solution G is 
constructed with leading term of the asymptotic expansion 

( ) ( )( )zO
z

zG ln3
2 +=  (16) 

which corresponds to function .SuSin 1−  Then the constant is added to satisfy 
the additional condition ( ) .11AuSin =  While the asymptotic of G corresponds 

to asymptotic of function F, the conjecture is that 1−= GF  and =SuSin  

.AuSin 1−  

 
Figure 2. ( )xy AuSin=  by (20). 
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Let 

 ( ) ( ) .ln6
53

1

2
2 ∑

=

++=
M

m

m
mM zcz

z
zG  (17) 

Substitution of ( ) ( ) ( )22 ++= M
M zOzGzg  into the Abel equation (15) 

gives the coefficients c. The automatic calculation of the coefficients c is 
straightforward and even simpler, than calculation of coefficients a in 
expansion (7), (8); so, I do not copy paste the Mathematica code here. The 
first 8 resulting coefficients are 

005730243750
88627739

02837835000
18222899

36382500
91543

2625
29

1050
79

54321 ccccc
 

.
2500000001554729734

7894104258052
098818750001167213347

86893254455332
343751424681852

3899439883
876 ccc

(18) 

Then function G can be evaluated with 

 ( ) ( ( )) .sinlim kzGzG k
M

k
−=

∞→
 (19) 

While MG  is asymptotic solution of the Abel equation with sin as the 

transfer function, the limit does not depend on M. However, the rate of 
convergence improves with the increase of M. 

Through function G, by (19), the Abel sin appears as 

 ( ) ( ) ( )2AuSin π−= GzGz  (20) 

in such a way that .02AuSin =⎟
⎠
⎞⎜

⎝
⎛ π  Constant ( ) .295240896227197.22 ≈πG  

The numerical implementation of AuSin is loaded as http://mizugadro. 
mydns.jp/t/index.php/ausin.cin. This algorithm is used to plot figures. The 
explicit plot of AuSin is shown in Figure 2. The complex map of AuSin is 
shown in Figure 3 in the same way, as map of SuSin is shown in Figure 1; 
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( ).iAuSini yxvu +=+  The limit in (19) converges quickly (within a 

hundred iterations) at least within the range ;22 π<π−z  outside, some 

fractal behaviour is seen in the figure. 

 
Figure 3. ( )yxvu iAuSini +=+  by (20). 

The range of validity of relation 

 ( )( ) zz =AuSinSuSin  (21) 



Super Sin 231 

is shown in Figure 4 with dense grid. The dense grid is formed with the 
complex map of the left hand side of equation (21). 

The inverse relation 

 ( )( ) zz =SuSinAuSin  (22) 

is valid in the whole complex plane except the halfline .0<z  

The boundary of the domain of validity of equation (21) follows the lines 
( )( ) .0AuTra =ℑ z  These lines are also shown in Figure 4, they are borrowed 

from Figure 3. 

 

Figure 4. Range of (21) in yxz i+=  plane. 

Within the range shaded with dense rectangular grid in Figure 4, the 
group relation 

 ( ( )) ( )zz nmnm += sinsinsin  (23) 
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holds at least for real m and n. The numerical implementation mentioned 
reproduces it with at least 14 decimal figures. In particular, relation 23 holds 
in vicinity of the real axis. 

The precise implementation of AuSin for complex argument allows to 
calculate the Taylor expansion at ,2π  

 ( ) ( ) .2AuSin
1

2∑
∞

=

π−=
n

n
n zbz  (24) 

The series converges while .22 π<π−z  The coefficients b of this 

expansion can be evaluated through the Cauchi integral. Approximations for 
first 6 coefficients in (24) are 

440958,2.291638071 ≈b  (25) 

 439688,1.960438522 ≈b  (26) 

 256147,1.078628513 ≈b  (27) 

 993395,0.596229974 ≈b  (28) 

 139829,0.283339975 ≈b  (29) 

 194548.0.141932616 ≈b  (30) 

Function AuSin has sense of number of iterates of sin, beginning with 
,2π  required in order to get value of argument. However, the number of 

these iterates has no need to be integer. With the expansion (17) at zero and 
the Taylor expansion (24), and the Abel equation (15), function AuSin can be 
evaluated within few tens operations with 14 decimal figures. Then, with 
functions SuSin and AuSin, the non-integer iterates of function sin can be 
expressed also for other initial values of the argument (it has no need to be 

2π  and may have complex value). This is considered in the next section. 

5. Iterates of Sin 

While functions SuSin and AuSin are defined and described, the nth 
iterate of sin can be defined as 
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 ( ) ( )( ).AuSinSuSinsin xnzn +=  (31) 

For real values of argument, the iterates of sin are shown in Figure 5; 

( )xy nsin=  is plotted versus x for various values n. Curves, that correspond 

to integer values of n, are thick; the thin curves correspond to non-integer 
values of number n of iterates. Similar curves can be plotted with the 
approximation of SuSin suggested by [13]. 

In Figure 5, curve for 1=n  is just ( ),sin xy =  and that for 1−=n  is 

just ( ).arcsin xy =  In such a way, the non-integer iterates allow the smooth 

(holomorphic) transition from a function to its inverse function. With the 
efficient algorithms for SuSin and AuSin, described above, all the figures can 
be generated in real time; these functions can be used as other special 
functions. 

 

Figure 5. ( )xy nsin=  versus x for various values of number n of iterate. 

6. Discussion 

Iterations of sin may have various applications. The high iterate of sin, 
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say, ,sin100  may describe the shape of sledge runners. Figure 6 shows the 
approximation of the sled runner from photo 

http://en.wikipedia.org/wiki/File:Boy_on_snow_sled,_1945.jpg 

by [2]. The approximating curve is 

 ( ) ( )xy nn sin2sin −π=  (32) 

at .100=n  This number is only adjusting parameter in the fitting. The curve 
in Figure 6 corresponds to the lowest curve in Figure 5, flipped upside-down. 

 

Figure 6. Approximation of shape of the sledge runner by [2] with iterate of 

sin, ( ) ( )xy nn sin2sin −π=  with single adjusting parameter .100=n  

Fitting by (32) is the best single-parametric approximation I could 
suggest for this case. In this application, there is no serious reason for n to be 
integer; it could be some real number instead. This is one of the reasons, why 
the evaluation of non-integer iterates has sense. 

The skeptics may say, that at large ,1>>n  iteration nsin  can be 
approximated with its asymptotic 

 ( ) .
3
3sin 2xn

xn

+
≈  (33) 
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Then one can replace the constants in expression (33) to parameters and even 
improve the fitting. However, the result will not be a single-parametric fit. 

In formalism of superfunctions, sin is simple example of a transcendent 
function that has unity derivative and zero second derivative at the fixed 
point. For this case, the superfunction cannot be constructed as the expansion 
with exponentials, as it can be done for the exponential to base b between 1 
and ( )e1exp  [10], for factorial [11], and for many other transfer functions. 

Sin is widely used function, so, its non-integer iterates should be considered 
as special functions too. 

7. Conclusion 

The super sin function named SuSin is defined with equation (10) as 
solution of the transfer equation (5) with sin as the transfer function. 
Expansions of this function at zero and at infinity are suggested. The 
complex double implementation in C++ is loaded at 

http://mizugadro.mydns.jp/t/index.php/susin.cin; 

the complex map of SuSin is shown in Figure 1. The algorithm suggested           
is significantly more efficient than the approximations reported recently        
[17, 18]. 

The Abel sin function named 1SuSinAuSin −=  is constructed with 
equation (20). This function is solution of the Abel equation (15). The 
complex double implementation in C++ is loaded at 

http://mizugadro.mydns.jp/t/index.php/ausin.cin; 

the complex map of AuSin is shown in Figure 3. 

With SuSin and AuSin, iterates of function sin can be expressed with 

equation (31); the iterate has the group property ( ( )) ( ).sinsinsin zz nmnm +=  

The range of validity of this representation is shown in Figure 4. For real 
values of the argument, the iterates of sin are shown in Figure 5. Up to my 
knowledge, this figure represents the most precise evaluation of non-integer 
iterates of sin, ever reported. 
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In general, superfunctions, Abel functions and the resulting non-integer 
iterates of special functions greatly extend the arsenal of holomorphic 
functions, available for the description of physical processes. For this reason, 
superfunctions for the elementary functions should be described and 
implemented in the programming language. The algorithms described here, 
as well as those presented recently [8-12, 15, 21], can be used as prototypes 
for the implementation of superfunctions, Abel functions and iterates of 
special functions in both the commercial and the free software. In particular, 
super sin and iterates of sin should get status of special functions. 
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