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Scattering of atomic matter waves from ridged surfaces
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Motivated by recent experiments that demonstrated a strongly enhanced reflection efficiency of atoms on
microfabricated, gratinglike surface structures, we develop a detailed description of the scattering of atomic
matter waves on such structures. We start with a simple model that describes the ridged surface as an equiva-
lent absorbing medium. This model correctly predicts the experimentally observed scaling and magnitude of
the reflection efficiency. We then calculate the accurate solutions for the Fresnel diffraction of waves at grazing
incidence at a periodic set of idealized, parallel edges. Both numerical and analytical solutions are presented.
The specular reflectivity and its phase, as well as the efficiencies of higher diffraction orders are calculated. We
compare our results to experimental data in a wide range of parameters. We extend the model including the
finite size of the grating ridges and the van der Waals attraction and suggest a more general estimate of the
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I. INTRODUCTION

Atom optics is a very active field of physics. The perfor-
mance of atom optical devices improves from year to year.
Microfabricated surface structures to trap and channel atoms
(atom chips) were developed [1,2]. Nanoscale structures with
extremely narrow localization of light fields (photon dots and
holes) allow the manipulation of cold atoms on a submicron
scale [3]. Atomic mirrors are also important elements neces-
sary in atomic optics. Such mirrors may use an evanescent
optical wave [4-6] or magnetic fields [7-9]. These mirrors
reflect nearly all of the incident atoms with an artificially
created repulsive potential; however, it is quite difficult to
make these mirrors large without compromising their accu-
racy.

Attempts to make efficient solid-state atomic mirrors can
be traced back to the last century. Unfortunately, the effi-
ciency of the reflection of atoms at room temperature is not
high even at grazing incidence. The repulsion of atoms from
surfaces occurs at small distance of order of atomic size;
therefore, such a reflection is mainly incoherent (see Refs.
[10,11] and references therein). The coherence of the reflec-
tion improves as atoms become slower. The reflection of
atoms by surfaces can occur when the de Broglie wave-
lengths corresponding to the atomic motion perpendicular to
the interface is larger than the characteristic length associated
with the surface [12]. Serious improvement of the reflectivity
of solid-state atomic mirrors was achieved with cold atomic
matter waves [13]. The long-range attraction near a solid
surface is the van der Waals interaction; it can be approxi-
mated by the potential U(y)=-C,4/[(y+p,)y] as a function
of the coordinate y orthogonal to the plane of the mirror.
Classically, we would expect the atom to accelerate toward
the surface and ultimately scatter or be adsorbed. However,
when the atom is sufficiently slow, the wave nature of the
atoms leads to the reflection of the incident wave at a steep
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slope of the potential. Such reflections have been called
“quantum reflections” [12-21]. This phenomenon has previ-
ously been known to occur when cold atoms are incident on
liquid He surfaces [22-25]. Following the first experiment
that measured the reflectivity of laser-cooled metastable neon
atoms (Ne") on silicon and glass surfaces [26], the quantum
reflection on solid surfaces has been studied using different
atomic species and surface materials [27,28].

The main problem with coherent atom mirrors based on
solid surfaces is that the reflection coefficient decreases
quickly with increasing transversal wave number k,=Muv/#,
where M is the mass of the atom and v is the normal com-
ponent of its velocity. In most cases, the atom mirrors work
at small values of the grazing angle f=arcsin(v/V), where V
is velocity of the atom. This low reflectivity still strongly
limits the applicability of solid surfaces as atom reflectors. In
order to improve the efficiency of the specular reflection,
either the potential constant C, or the normal component v of
the velocity should be reduced. Recently, a significant im-
provement of the reflectivity was achieved by using micro-
fabricated surface structures, consisting of narrow parallel
ridges [26,29-31] such as shown in Fig. 1(a). The idea was
to reduce the effective van der Waals constant by reducing
the effective density of the material; the corresponding effec-
tive van der Waals constant [29] was expected to be of order
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FIG. 1. (a) Wave with wave vector k incident at the grazing
angle 6 onto the surface with a grating structure. (b) The idealiza-
tion of the structure as a periodical set of absorbers.
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of (€/L)C,, where L is the distance between ridges and ¢ is
their width [Fig. 1(a)]. However, this scaling of the constant
overestimates the reflectivity and shows only qualitative
agreement with experiments. The reduction of the distance L
at fixed values of € and k leads to an increase of the effective
potential; this could lead to the reduction of the reflectivity.
Actually, the reflectivity increases as we reduce L. For the
development of efficient atomic mirror, a quantitative de-
scription of the phenomenon is required. We suggest such a
description here.

Experiments performed in our institute have revealed that
the reflection coefficient on the ridged surface structures de-
pends mainly on the dimensionless parameter p=vkL6
[31,32], where k=MV/% is the wave number. This property
could be explained by assuming that the reflection is caused
by the Fresnel diffraction at an array of ridges. In the previ-
ous papers, only a qualitative derivation was presented, and
the accurate solution was mentioned without proof.

In this paper, we present various derivations of the reflec-
tion and diffraction efficiencies of atomic matter waves inci-
dent at small grazing angle on an array of idealized thin
ridges. Then we analyze the effect of finite width of the
ridges. We take into account the van der Waals potential and
compare the results with experimental data in wide range of
parameter values (Table I).

We do not need any particular assumption about the state
of the atoms. Therefore, our estimates can be applied to both
atoms in the ground state and to atoms in the excited states.
Ground state atoms are interesting from the point of view of
atom microscopy. The low energy of atoms makes the prob-
ing process nondestructive [10]. The use of excited atoms
allows their efficient detection with high resolution using
semiconductor detectors [13,26,31]. The ridged mirror de-
signed for the excited atoms will work as well for the
ground-state atoms. This is the justification for working with
excited atoms.

The paper is organized as follows: We start in Sec. II with
the derivation of a simple estimate that is obtained by assum-
ing that the ridged surface behaves like an equivalent me-
dium with effective absorption rate V/L. Such an approach
leads to the same equations and estimates, as the interpreta-
tion of ridged surface as detectors and the following inter-
pretation of the reflection in terms of the the Zeno effect
[32]. In Sec. III, we describe the numerical simulation of the
diffraction process using the beam propagation method
[33-36]. In Sec. IV, we apply the formalism of coupled
waves and cross-reflection coefficients [37-40]. Then, in
Sec. V, we suggest a correction to our estimate that takes into
account the finite width of the ridges and the van der Waals
potential near the ridges.
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FIG. 2. Function R (p) by Eq. (8) (dashed line) and the fit
exp(—y8p) (solid line).

II. SIMPLE ESTIMATE

In the experiments we want to describe with our model,
the surface consisted of a grating structure with period L
with parallel ridges that had a width at the top €, as shown in
Fig. 1(a). The atoms are incident at small grazing angle 6
onto the structure. While L> €, we idealize the surface struc-
ture as a periodic set of very thin edges that completely block
the incident wave in the lower half-plane (y<0) as is shown
in Fig. 1(b).

As a first step, we simplify the description even further by
assuming that the set of ridges behaves like an equivalent
continuous medium with absorption rate V/L, where V is the
velocity of atoms. This assumption leads to the estimate R,
of the reflection coefficient (Fig. 2) obtained in [32] from
speculations about the Zeno effect. Below we suggest an
alternative way.

A. Equations

Let W be the part of the scattering wave function which
represents the atom that has not yet interacted with the sur-
face. ¥ must satisfy the equation

[VZ+ K2+ iy 9(y)]¥ =0, (1)

where k=MV/#h is the wave number, M is the mass of the
atom, V is the velocity, U is the Heaviside step function, and
v is the parameter that describes the absorption by the
equivalent medium. Following our interpretation of the
ridged surfaces as continuously absorbing medium, we set
¥Y*=k/L. Considering the two-dimensional case, we con-
struct the solution in the form

eikxx+ikyy _ reikxx—ikyy’ y = 0’
= (1- V)Eik-‘x-'-(ia_ﬁ)y, y=<0, (2)
where k,=kcos 6, k,=—ksin 6. Outside the absorber the
wave consists of the incoming and reflected part; inside the

absorber the wave is exponentially decaying. Substitution of
(2) into (1) gives the equations for the parameters « and S,

o - B =k, (3)

TABLE 1. Physical parameters of experiments with cold atoms.

M Cy v Vv N=27/k ¢ L
Unit amu  107°J m* cm/s m/s nm nm um Reference
Ne* 20 12 From 2 to 37 3 7 From 40 to 11000  From 10 to 100 [29]
He" 4 8 From 3 to 154  From 35 to 128  From 0.8 to 4 100 5 [31]
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FIG. 3. Comparison of the estimate R, (dashed curve) by Eq. (8) to the experimental data. (a) Reflectivity of Ne* with velocity V
=3 m/s from various microfabricated ridged Si surface structures [29]. (b) Similar data for He" atoms reflected on a sample with L

=5 um and €=100 nm with various incident velocities [31].

2aB= 7. 4)

The appropriate solution is
a= %(\,k‘y‘+ y4+k§), (35)
B=V3(VK + ¥ - k). (6)

An equation for the complex reflection amplitude r is
readily obtained using the continuity of the derivative of
W(x,y) at y=0,

po oz by, ™)
ia— B —ik,

We interpret the ratio k,/k, as tan(6), see Fig. 1. For the
small values of grazing angle 6, we write k,/k,=6. Then,
after some algebra, we express the reflection coefficient rr"

in the following form:
Wi +1+1-12

rr' =R (p) = F———, (8)
) WP + 1+ 1+142
where
_kLo= | MEy (9)
PEYEET= Ny

has the meaning of a dimensionless transversal wave num-
ber, or dimensionless transversal momentum. This parameter
is proportional to parameter B=+/(7/2)p used in our previ-
ous paper [31].

The function R_(p) by (8) can be approximated by the
exponential fit exp(—\e"gp); the absolute difference between
these two functions does not exceed 2%. Both curves are
shown in Fig. 2. The reflectivity calculated in Eq. (8) de-
pends only on the parameter p, which demonstrates the scal-
ing law for the reflectivity of waves on a ridged surface.

B. Comparison with experimental data

In this section, we compare our estimate (8) and the ex-
ponential fit exp(—y8p) to various experimental data for the

reflection of cold atoms from ridged silicon surfaces. We
collect the data from Ref. [29] measured with metastable
neon (Ne") atoms in the 1s; state, and from Ref. [31] mea-
sured with metastable helium atoms (He") in the 2 >S | state.
In these experiments the atomic beams have been prepared
by releasing laser-cooled atoms from magneto-optical traps.
The metastable atoms have a high internal energy, 16.6 eV
for Ne” and 19.8 eV for He". They are quenched with high
probability upon collision with the short-range core poten-
tial. Only specularly reflected metastable atoms have been
detected in the experiment. This detection allowed to mea-
sure the reflectivity.

In Fig. 3 we compare the reflectivity measured on various
samples versus the dimensionless parameter p defined by Eq.
(9). The dashed curve represents the estimate (8), and the
solid line shows the fit R=exp(—\8p). (We use the logarith-
mic scale.) Our estimate explains the almost exponential de-
cay of the reflection coefficient as a function of the grazing
angle, as was observed in the experiments. In addition, it also
predicts the correct slope of this decay. Equation (8) shows
good agreement with the data for Ne” and He" atoms for a
wide range of parameter values; these parameters are sum-
marized in Table L.

Considering the strong simplifications of this model, the
good agreement with experimental data is quite surprising.
The assumption of a continuous absorbing medium ignores
the periodical character of the absorbers, so it cannot be used
for the analysis of higher orders of scattering. Similarly, it
cannot predict the effect of the finite width € of the ridges
and that of the van der Waals interaction near the ridges.

As we will see in the following sections, the diffraction at
an idealized set of edges leads to a reflectivity that is higher
than the measured values. On the other hand, the van der
Waals potential near a ridge of finite width is expected to
reduce the reflectivity. It happened that several effects par-
tially compensate each other so that our simple estimate
agrees quite well, at least in the experimentally investigated
parameter range (Table I). In order to reveal the role of each
of these effects, we should analyze more carefully the case
with discrete idealized ridges.
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III. NUMERICAL SIMULATIONS

The estimate (8) provides an unexpectedly good descrip-
tion of experiments that study the reflection of various cold
atoms from various ridged Si surfaces [29,31]. Such an ap-
proach does not take into account the periodicity of the struc-
ture and cannot predict the efficiency of various orders of
scattering. In this section, we apply the beam propagation
method [33-35] to obtain a numerical solution of the diffrac-
tion process; the ridges are treated as ideal, absorbing half-
planes [Fig. 1(b)].

A. Equations

The free-space equation
VZi+ kW =0 (10)

can be used for the propagation of monochromatic atomic
waves between the ridges. As the problem is two-
dimensional, we consider a function of only two coordinates.
According to Fig. 1, the initial wave vector has the compo-
nents k,=k cos() =~k—k&*/2, k,=—k sin(#) =~ —k6. The inci-
dent field W, can be written as follows:

Win(x,y) = explik,x + ik,y). (11)

In the typical case, the grazing angle # between the beam
and the ridged surface is small, i.e., only several milliradians.
Therefore, the paraxial approximation is suitable. We con-
struct the approximate solution of Eq. (1) in the following
form:

W = (x,y)e*. (12)

The substitution of Eq. (12) into Eq. (10) and neglecting the
term with second x-derivative leads to the well-known equa-
tion of Ginsburg-Landau,

2 ye Lo (13)
' ox ay? o
The incident field corresponds to
Wi = exp(— ikx 12 — ik By). (14)

The distance L between the ridges is used as the unit of
length along the x axis. We define the dimensionless coordi-
nates X=x/L and Y:yvm. Let (x,y)=E(X,Y). Then the
incident wave can be written as follows:

Ey(X.Y) = e PV 2X (15)
where p=1kL#6, and Eq. (13) takes the form

9 P
2i—E+-—E=0. (16)
X oY

In order to represent the ideally absorbing ridge, at integer
values of X, we replace E(X,Y) with O for all negative values
of Y. This replacement, together with Eq. (16) defines our
approximation.

B. Numerical algorithm

For the numerical implementation of the dimensionless
equation (16), we use the beam-propagation method [34-36].
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FIG. 4. (a) Field E at the initial stage of simulation, p=1, X
=10, N=1024, intensity (thick curve), real (thin curve), and imagi-
nary (dotted curve) parts; just before being cut by the absorbing
ridge. (b) The same representation for E—Ej,. (c),(d) The same at
the final stage of simulation, X=100.

Examples of the resulting complex field are shown in Fig. 4.
These fields were calculated in the following way. For the
propagation of the field, we use

1 o
E(X, Y) — /__f e—qu—t(qZ/Z)XF(q)dq‘ (17)
\”277 —©0

The Fourier representation of the incident wave can be ex-
pressed in terms of the S-function,

Fin(q) = \2m(p +q). (18)

For the grid representation, we numerate the grid point with
n, 0=n<N. We take a step of the grid d=V27/N,

E(X,(n - N2)d) — E,(X), (19)

F((n-N2)d) — F,. (20)

Then we replace the integral in Eq. (17) with the sum

1" 1S
— "'dq—>—2"' (21)
\/;Tf_oo \/X’rpo

and get the discrete representation for the integral (17).

We search for the solution of Eq. (16) as the sum of Ej,
and a field propagating to a direction somewhere between the
x and y axes, at least in the half-space y>0. In order to work
with relatively compact grids, the special source of the inci-
dent wave is placed at the top of the computational domain
shown with shadowed region on the right-hand side of Fig.
4. Such a source of the incident field is analogous to the
approximate image used in Refs. [34,35]; it allows to keep
the desirable properties of the field in the vicinity of the
boundary of the computational domain. The source of the
incident wave has smooth edges, so it absorbs the scattered
waves isolating the right-hand boundary of the domain from
the left-hand boundary. Therefore, the width of the grid has
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FIG. 5. Intensity of the Fourier transform of the central part of
the field evaluated by expression (22) for width W=10, Y(,=30, X
=800, N=4096 (thick curves); fit (29) scaled with coefficient W?
(thin curve).

no need to be an integer factor of 27/p. Such a scheme
allows the numerical integration of the Eq. (16) with step
equal to unity (i.e., distance between ridges).

In Fig. 4 we show calculation for p=1 at a grid of N
=1024 points. Distributions of field at X=10 and X=100 are
plotted. The left shadowed region indicates the part of the
grid which represents the absorbing ridges. The right shad-
owed region is used to generate the incident field. Initially
(X=0), all the computational domain is filled with the inci-
dent wave. This wave propagated toward the ridges and scat-
ters there. The scattered waves go right, back to the source of
incident wave; this source absorbs them. At X=10, the scat-
tered waves have not yet propagated far, but at X=100 they
fill the central part of the computational domain. The fringes
appear mainly due to the specular reflection. The region
around the center of the domain is used for the analysis of
the scattered waves.

C. Analysis of the scattering efficiency

For the spectral analysis of the scattered waves, the region
of width W around the center of the grid was used. The field
was multiplied by a Gaussian of width W, i.e., exp[—(Y
—Y,)?/2W?] and the Fourier transform

(Y- Y,)?

1 .
f(q)zE J e”qYE(X,Y)exp<— W)dY (22)

was calculated. An example of the resulting momentum dis-
tribution of the scattered wave for p=1 is shown in Fig. 5. As
expected for a grating structure, the momentum distribution
shows a discrete spectrum of diffraction orders. Each com-
ponent appears as a Gaussian of width 1/W. Their positions
q,, are determined by the phase-matching condition

G =\p*+4mm, (23)

where the integer m enumerates the orders of scattering.
However, the negative mth order will be a wave propagating
away from the surface, only if g, is positive. In this case, the
ratio

Ry =g, IW? (24)

evaluates the intensity of the mth diffraction order. In experi-
ments with cold atoms, we measure the total number of scat-
tered atoms, which is proportional to the scattering angle. In
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FIG. 6. Efficiency S,,(p) of scattering of particular orders by Eq.
(25) (digits) and 5g(p) by (29) (circles) calculated from the simula-
tions; R(p) by (8), dashed; fits (27) and (28), solid.

order to compare our calculation to experimental results, we
should therefore define the scattering efficiency as follows:

Sm(p) = qm_(p)R

n(P). (25)
We calculate and analyze the scattered field for various inci-
dent angles, and obtain the scattering efficiencies as a func-
tion of the normalized momentum p. This result is shown in
Fig. 6, for the specular reflection and the plus or minus first
and plus or minus second diffraction orders. The minus first
order appears at p=v4, the minus second order appears at
p=V2 X4, and so on. The intensities of positive orders of
scattering (m>0) are small compared to that of the specular
reflection (m=0). At the same time, the negative orders (m
<0) are much stronger. This gives hope to observe them in
experiments with cold atoms. The orders m of scattering are
indicated with digits; the characters A and B show the minus
first and minus second orders. The circles show the total
efficiency 5§y of scattering into orders m <9, i.e.,

5(p)= 2 Su(p). (26)

m<9

Practically, this total scattering efficiency is determined by
the efficiency of scattering into the two lowest orders; the
increase of the number of terms in the sum should not
change much the estimate of the total scattering efficiency,
5.(p)=55(p). At p<3, most of scattering goes to the specu-
lar reflection, which validates one of the assumptions used in
the analytical estimate of the reflectivity in Refs. [31,32];
there, we had neglected all the scattering waves with m # 0.
In the case of specular reflection, m=0, and we have
So(p)=Ry(p). For p<3.6, this function can be fitted as

So(p) = Ry(p) = exp[— 1.68(1 +0.018p*)p 2 % ].
(27)

In the same range, a similar expression also fits the total
scattering efficiency (25),

5..(p) = 53(p) = exp[— 1.547(1 + 0.01p*)p £2 % 1.
(28)

These fits are shown in Fig. 6 as thin solid lines; they prac-
tically coincide with the simulated data (circles) at p <3.6.
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FIG. 7. Reflectivity R,,(p) of various orders of scattering versus
scattering angle g,,(p), digits; estimate by (29), dotted.

The reflectivities R,, by Eq. (24) approximately follow a
smooth trend:

1 1

R ~ = .
" (L+g)t (1+\p?+dmm)*

(29)

Although we do not yet have an analytical derivation for this
approximation, it describes the scattering efficiencies quite
well for most values of p, not only for the specular reflection
but also for higher diffraction orders, except in the vicinity of
p=2+mm. To show the quality of the approximation (29), the
reflectivity R,,(p) versus g,,(p)=\p>+4mm is plotted in Fig.
7. The data from Fig. 6 were used, but data for 2<<m <9 are
added to show that the trend (29) holds for large orders of
scattering. In particular, for p=1, this estimate is shown also
in Fig. 5. This estimate will be easier to use in the planning
of experiments than the full calculation.

D. Comparison of estimates

The simple estimate (8) describes well the experimental
data [29,31] for the specular reflection. The fit (27) describes
well the results of numerical simulations. The difference be-
tween these two functions can be seen in Fig. 6, by compar-
ing the dashed line to the lower of the solid lines. The direct
simulation predicts a reflectivity slightly higher than that ob-
served in experiments. This difference was not expected; the
direct simulation was supposed to fit the experimental data
better than the rough estimate does. This motivated us to
check our simulations with the independent analysis below.

IV. ANALYTICAL SOLUTION

The beam propagation method used in the preceding sec-
tion automatically takes into account the discrete character of
the absorbers. The results in the case of a set of periodic
idealized absorbers were unexpected and require an indepen-
dent confirmation. In this section we confirm these results
with the analytical expansion that explicitly takes into ac-
count the periodicity of the ridges. Just as in the case of the
numerical simulation, we ignore the structure of the ridges
and assume them to be idealized thin edges.

A. Mathematical description

The periodicity of the mirror leads to the symmetry of the
scattered wave; the translation for one period in the x direc-
tion should rotate the phase of the field by some angle. This
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angle is determined by the incident wave. The symmetry of
the solution allows the simplification of the solution and con-
struction of the eigenfunction (see Refs. [37-40] and refer-
ences therein). Such a discrete translational symmetry is re-
ferred to as the Bloch theorem or the Floquet theorem.
However, for our scalar equation in the limit of small grazing
angles, the formulas look simpler than the general expres-
sions.

We again use the dimensionless variables as in the pre-
ceding section. The field should satisfy the same condition of
quasiperiodicity,

E(X+1,Y)=E(X,Y)exp(- ip*/2). (30)

We search for the solution in the following form:

. . 2
E(X,Y)=E(X,Y) = >, r, e’ ia,X (31)
m

where ¢,,=¢,,(p) are defined by Eq. (23). In order to get an
accurate estimate with only a few terms in the expansion, we
also consider negative values of m. For m <0, we may have
imaginary wave numbers which correspond to exponentially
decaying waves, similar to surface plasmons. The compo-
nents with positive values of ¢g,, are the various orders of
scattering, and the square of modulus of the coefficient r,,
has the sense of an intensity in the mth scattered wave. In
particular, |ro|>=R is the coefficient of specular reflection.

Using the Green function (Kirchhoff integral) for the
equation of Ginsburg-Landau, we get for the propagation
from ridge number O to ridge number 1,

, F(0,Y)e Y =247 (32)

1
F(1,Y)=—
\N2imd o

This gives the equation

. . 1 © ) 2
e—le _ E rmezqu — e—sze(z/Z)(Y -7) 4z
m

\N2imJo

- 1— 2 rme(i/z)(y‘ Z)de.

[ -
N2imJo m

Changing the order of summation and integration and col-
lecting terms with coefficients r on the left-hand side of the
equation, we obtain

2 (eiqu_ l_f e(uz)(y-z)zdz) -
m V2imJo

. L (7
= ele_ 1/2_f elpZe(l/Z)(Y—Z)de. (33)
NalmTJ g

In order to simplify the deduction, we use the comple-
mentary error function [43],

2 Z
erfc(z) =1 —erf(z) =1 - —= edr. (34)
NTJo

Then we rewrite Eq. (33) as follows:
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FIG. 8. (a) The zeroth order approximation, by Eq. (47), lower oscillating line; |ro(p)|?> by the numerical solution described in the
preceding section (circles) with its fit (solid line) by Eq. (27); the simple estimate by Eq. (8), dashed curve. The upper oscillating curve
shows the upper estimate |C(p)/By(p)|>. (b) Similar calculus with six waves taken into account; R, are plotted with solid lines for —3

<=m=2. Circles correspond to the simulation, -2<m=<2.

i

Y- . Y+
é,.m)rm:e_”’y erfc( p) (35)
1+ 1+

E e smY erfc(

where

gn=\-4mm-p*=—iq,,. (36)

Formally, the complex reflectivity amplitudes r,, are de-
termined as the solution of Eq. (35). For the estimates, we
take only a finite number of components. Then, the substitu-
tion of the expansion (31) into Eq. (35) gives some residual.
Its norm can be expressed as follows:

J= f”’ E e 8m¥ erfc( Y- ig_'")rm e erfc( Y+1_)> 2dY.
0 | 'm I+i I+i
(37)
We rewrite this residual in the following form:
J =1, Apntn—TpBy,— 1B+ C, (38)

where we assume summation by the repeating subscripts,

A =Ag180) (39)
B,,=A(g,.ip). (40)
B, =A(=ip.g.), (41)
C=A(-ip,ip), (42)
+ t—1i
A(u,v) = f ko)t erfc( 0 m)erfc( 1_:1_))dt. (43)
l l

The minimization of the residual J gives an equation for the
array r of reflectivities which can be written in matrix form,
i.e., Ar=B. Then, the solution can be written as follows:

r=A"'B. (44)

Let the subscripts m,n in Egs. (37) and (38) run from m, to
m,. The parameters m; and m, determine the choice of scat-
tered waves taken into account and specify the approxima-
tion for reflectivities R,,=|r,,|*.

B. Upper and lower estimates

The simplest estimate corresponds to the single scattered
component. Let m;=m,=0,

” t— -
A00=f erfc( p)erfc(—p,)dt,
’ 0 1—i 1+i
< t+ r-
By= f e~2ip erfc( p)erfc( )dt
0 1-i 1+

and we obtain the following estimates for the intensity of the
specular reflection:

(45)

(46)

B, |

(47)
Ao

Ro=1ro(p)]*=

This function is shown in Fig. 8(a) as the lower solid line.
This curve underestimates the reflectivity of the idealized
ridged mirrors. At p <1, it nearly coincides with the numeri-
cal solution of the preceding section. At large values of p, the
corresponding estimate of the reflectivity |ro|> oscillates
around the estimate R.(p) by Eq. (8), shown by the dashed
curve. (This dashed curve is the same as in Fig. 3 and Fig. 6.)
Similarly, we can estimate r, as

ro.up = C(p)/By(p)

which gives the upper estimate for R; the function [ry | is
shown in Fig. 8(a) with the upper solid curve.

At p <1, the upper and lower estimates bracket the reflec-
tivity obtained from the numerical solution in a narrow in-
terval. For larger values of the normalized momentum p, we
need to consider more harmonics in the expansion (31).

(48)

C. Orders of scattering

The agreement of the estimates based on the expansion
(31) with the numerical solution can be improved by enlarg-
ing the interval m;<m<m,. Here we consider the example
while six harmonics were taken into account.

Figure 8(b) shows the behavior of reflectivities R,
=|r,.(p)|* evaluated with m;=-2, m,=3 (solid lines). The
circles correspond to lowest orders of scattering simulated in
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FIG. 9. Imaginary part of the amplitude r( of the specular re-
flection versus its real part.

the preceding section, R, for —2<m =<2 are shown. We see
that it is sufficient to include only a few terms in the expan-
sion (31) in order to estimate the efficiency of low orders of
scattering.

The calculation of the specular reflectivity using six terms
in the expansion (m;=3,m,=2) shows a very good agree-
ment with the numerical simulations for values p <4; the
intensities of first and minus first orders are also reproduced
quite well. If more terms are included in the expansion (31),
a larger number of higher scattering orders can be accurately
described.

D. Phase of the reflected wave

In Fig. 9 we plot the dependence of the imaginary part of
the reflection amplitude r,, versus its real part. Typically, the
phase of the reflected wave is of the order of 1 radian. The
phase information will be important for the creation of low-
noise amplitude-phase holograms. A reflection-type ampli-
tude hologram for atomic waves has recently been realized
by Shimizu and Fujita [26]. A binary pattern was fabricated
on a silicon surface that consisted of high-reflecting ridged
surface areas and low-reflecting flat surface areas. We may
expect the recent advances in the nanotechnology (see, for
example, Refs. [41,42] and references therein) to lead to the
next generation of efficient atom mirrors and amplitude-
phase atomic holograms. In these holograms, the amplitude
of the reflected wave can be adjusted with the distance L
between ridges, and the phase can be adjusted with the
height of the ridges. This height causes a phase shift

¢ =2hk sin(6), (49)

where & is the relative displacement of the top of the ridges,
k=MV/#h is wave number, and 6 is the grazing angle. The
amplitude of the reflected wave can be adjusted with the
distance L between ridges. However, this distance affects not
only the amplitude of the scattered wave, but also its phase,
causing an additional phase shift according to Fig. 9.

E. Limits of the approximation

We have analyzed the Fresnel scattering of a wave com-
ing with a small grazing angle to the set of idealized ridges
[Fig. 1(b)]. The analytical expansion of the scattered wave
confirms the results of the beam propagation simulations de-
scribed in the preceding section.

However, the coefficient of specular reflection of waves
from idealized ridges still deviates from the simple estimate
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R. by Eq. (8) and therefore, from experimental data [29,31]
[which agree with the estimate (8)]. This deviation should be
attributed to some physical factors. We consider this devia-
tion in the next section.

V. THE FINITE WIDTH OF THE RIDGES AND THE VAN
DER WAALS POTENTIAL

If we compare the experimental data from Refs. [29,31] to
the reflectivity calculated for a set of idealized ridges, then
we see that the experimentally observed reflectivity is lower
than the calculated one. However, the experimental data still
obey a nearly exponential decay with parameter p, i.e.,
R(p) =exp(—ap), where a is almost constant. Comparing the
exponential fit exp(—y8p)=exp(-2.8p) and the fit (27) we
guess that some effect drops the reflectivity by an additional
factor of order exp(—1.1p). In this section we attribute this
drop to the van der Waals interaction. This interaction makes
the main differences between the typical experimental situa-
tion and our model [Fig. 1(b)].

For the scattering at the periodical surface, the resonant
contributions of various ridges are important. The van der
Waals interaction in the vicinity of the ridges provides some
effective refraction index which destroys the phase synchro-
nism in the scattered waves. We analyze in the following the
role of this effect and suggest the corresponding correction to
the reflection coefficient.

A. Reduction of reflectivity

We assume that the van der Waals interaction of atoms
with a surface can be approximated with the potential
U(x,y)=-C,/y", where y is the distance between the atom
and the surface; n=3 for the unretarded potential and n=4
for the retarded case. Approximate values for the constants
C, are given in Table I.

For the atomic matter waves, the potential appears as a
variation of the index of refraction. When the ridges are nar-
row, we can estimate the corresponding correction to the
phase in the Raman-Natch approximation. Consider the tra-
jectory y(x). We then estimate the additional phase shift ®(y)
caused by the van der Waals potential to be

Gdx G,
AR A A%

dx

D(y) f U(x,y(x))ﬁv—f D, (50)
where D is the effective length that the atom passes in vicin-
ity of the ridge. An exact calculation of this length D is
complicated. In order to obtain a simple estimate, we set D
~{+2s, where s is some typical distance between a marginal
trajectory (which still contributes to the specular reflection)
and the edge of the ridge. If the phase shift is getting large,
i.e., ®=1 radian, then we can assume that this part of the
wave does not contribute much to the Fresnel integral. The
marginal distance s where this condition is fulfilled can be
estimated from the equation

((e+25)cn>”"
S=\|\ """ .

hv 1)
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FIG. 10. Estimate (55) and data for Ne".

On the other hand, the main contribution to the Kirchhoff
integral comes from the vicinity of ridges. The size of this
region can be estimated to be

so=1/(k6). (52)

This region would generate a reflected wave of intensity
Ry(p); we can use the fit (27) for the idealized ridges. How-
ever, the (s/sy)th part of this wave is out of phase due to the
potential. Therefore, we may assume that the intensity of the
reflected wave will be reduced by the factor 1-s/s, i.e.,

R(p,0) = (1 )Ro(p). (53)

s

So
This expression can only be applied when s is much smaller
than s,. To get a self-consistent estimate we should replace
the first parentheses on the right-hand side of Eq. (53) with
some smooth function of s/s;, which has the same
asymptotic behavior at small values of s, but remains posi-
tive at large values. In order to get a simple estimate, we
replace the factor [1-(s/sg)] by the appropriate exponential
and suggest the following estimate:

R(p,{)= eXp<— ;—O)Ro(p)- (54)
This leads to
R(p,g) = eXP(‘ V %ZSP>RO(17)’ (55)

where s=s({) is defined by Eq. (51). The factor \(mV/AL)s
is of order of unity for the cases shown in Table I, and almost
proportional to (€C,)"". However, it is not a constant, but it
is a slow function of p and its values are close to the coef-
ficient 1.1 mentioned in the beginning of the section. Typi-
cally, € is larger than the resulting s [see Eq. (51)]; then a
variation of €, C5 or C, should not have a strong effect on the
reflectivity.

B. Comparison of estimate (55) with experiments

There are two sets of data available where € is the only
parameter to vary. We compare the experimental data to the

correction (55), assuming n=4, in Fig. 10. The crosses and
triangles represent the experimental data for €=1 um and
€=11 pm, and two thin curves show the estimates by Eq.
(55). The thick solid line represents the fit (27); the dashed
line represents the estimate R, by Eq. (8). The corrected es-
timate (55) is much closer to the experimental data than any
of the estimates (8) and (27).

Note that the van der Waals constant Cy is the only em-
pirical parameter in this description, and values of this pa-
rameter are taken from the literature. The s value is calcu-
lated from Eq. (51); the straightforward iterative procedure
converges quickly. In most cases, the estimate does not be-
come much worse if we make only two or even one iteration
and replace s by (€C,/AV)"* on the right-hand side of Eq.
(51). Therefore we may claim that our estimate is expressed
in terms of elementary functions.

For L=100 um, the estimate (55) not only shows the
limit of the approximation of the idealized ridges, but also
gives the correction which shows very good agreement with
experiments [Fig. 10(a)]. For the samples with €=40 nm, our
correction (55) slightly overestimates the reflectivity ob-
served in experiments [Fig. 10(b)]. However, our estimate
still shows the correct order of magnitude and still explains
why the estimate R, by Eq. (8) happens to be so close to the
experimental data.

In the case of He", we plot the expected reflectivities ac-
cording to the estimate Eq. (55) in Fig. 11. As we already
mentioned, the correction does not depend much on the ve-
locity V of atoms; in the logarithmic scale, these lines are
almost straight and almost coincide. Again, we see very good
agreement between the estimate Eq. (55) and the experimen-
tal data. The finite width of the ridges partially compensates
the periodic character of the absorbing ridges. This explains
the good agreement of the simple estimate R (p) by (8) with
experimental data.

VI. CONCLUSIONS

The reflection of cold atoms from ridged, gratinglike sur-
faces was analyzed using a formalism borrowed from wave
optics. The case of small grazing angle is considered.

(1) For the specular reflection of waves, the ridged surface
can be interpreted as an equivalent continuously absorbing
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FIG. 11. Estimate (55) and data for He".

medium. This approximation gives the estimate R.(p) by Eq.
(8) for the reflectivity. This estimate depends only on the
dimensionless momentum p=+kL#, and reveals the impor-
tant scaling law for the efficiency of the ridged mirrors. No
assumptions about the nature of the waves is used at this
step. Such simple estimate shows good agreement with ex-
perimental data [29,31] on the reflection of cold excited Ne
and He atoms from ridged Si surfaces in a wide range of
values of physical parameters (Table I).

(2) A more detailed description is obtained from the con-
sideration of the diffraction of the wave by a set of idealized
edges. The reflectivity and intensities of several diffraction
orders have been determined with numerical simulations and
confirmed with an independent analytical expansion. The re-
flectivity can be approximated with an empirical fit (27).
This fit describes well the simulations but slightly overesti-
mates the reflectivity of atomic mirrors. The correction (55)
of the reflection coefficient due to van der Waals interaction
shows the limits of the thin ridges approximation. In most
cases, such a correction shows very good quantitative agree-
ment with experiments. The deviation of the experimental
data from estimate (55) is of order of experimental errors
marked in Fig. 11.

(3) The phase of the reflected wave and the efficiency of
lower orders of scattering are estimated on the base of the
model of thin absorbing ridges. These estimates can be use-
ful for the construction of advanced phase-amplitude atom
holograms. The efficiency of scattering into the minus first

PHYSICAL REVIEW A 72, 013617 (2005)

order of diffraction is larger than that of the specular reflec-
tion (Fig. 5). This indicates the possibility of measurement of
this scattering order with cold atoms.

(4) The possible improvement of estimate (55) may in-
clude a more sophisticated fit (for example, two-parametric)
for the van der Waals interaction, as well as a more accurate
evaluation of integral (50). For the specular reflection, such
improvement may lead to an adjustment of a few percent of
transversal velocity v, at which the given reflectivity takes
place, rather than revealing a physical phenomenon. How-
ever, such an analysis may be useful for the accurate estimate
of amplitude and phase of various orders of scattering. Also,
such a sophisticated analysis can be useful for the prediction
of properties of ridged mirrors with nontrivial profile of the
edges of the ridges.

(5) The specular reflection of waves from ridged surfaces
is not sensitive to the nature of the waves; only the wave
vector is important. The ridged mirrors should reflect the
ground-state atoms as well as the excited atoms. It is inter-
esting to compare our estimates to the experimental data with
other kinds of waves, ground-state atoms, photons, phonons
and/or neutrons. The deviation of the coefficient of the
specular reflection from the estimate (55) can be used as a
short-distance probe of the van der Waals interaction, as well
as a criterion of perfection of ridged surfaces. We expect this
criterion to work for various kinds of waves. The estimates
(8), (27), and (55) should be useful in the design of ridged
mirrors for various applications including atom optics. For
atoms, these estimates show that the reduction of distance L
between ridges and their width € improves the reflectivity
and/or extends the range of working angle.
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