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Method of random wave-vectors in the simulation of correlated 
random processes 

DMITRII KOUZNETSOV and VALERII VOITSEKHOVICH, Mexico 

Summary. We describe a novel method for simulation of corre­
lated homogeneous random processes with given second-order 
statistics of a general kind. These processes are specified by their 
correlation and cross-correlation functions. The simulated proc­
esses are constructed as sums of plane waves with random 
wave-vectors . For non-periodical processes with wide spectra, 
such a method requires much less memory, than the independent 
generation of the Fourier-components. 

Die Methode der zufälligen Wellen vektoren zur Simula­
tion von korrelierten Zufallsprozessen 

Zusammenfassung. Es wird eine neue Methode der Simulation 
von korrelierten Zufallsprozessen mit vorgegebenen allgemeinen 
statistischen Eigenschaften zweiter Ordnung beschrieben. Solche 
Prozesse werden durch ihre Korrelations- und Kreuzkorrela­
tionsfunktionen beschrieben. Der simulierte Prozeß wird durch 
eine Summe von ebenen Wellen mit zufälligen Wellenvektoren 
konstruiert. Für aperiodische Prozesse mit einem breiten Spek­
trum erfordert diese Methode wesentlich weniger Speicher als die 
unabhängige Generierung der Fourierkomponenten. 

1. Introduction 

Let us consider two correlated, homogeneous random 
processes f (x) and g (x), where x is N-dimensional vector. 
For example, to simulate the temporal behavior of two 
scalar parameters we set N = 1 ;  to simulate the phase-am­
plitude distortions of a plane wave (KOUZNETSOV et al. 
1 997), we set N = 2; to simulate the 3 -dimensional distribu­
tion of the real and imaginary parts of the refraction index 
in a random medium, we set N = 3, etc. Assurne that the 
correlation functions 

Bf(X) = (f(xI ) f(x2) ,  Bg(x) = (g(xI ) g(X2) , 
Bfg(X) = (f(xI ) g(X2) ( 1 )  

are given. While the processes are homogeneous, these are 
functions of the x = X2 - XI only; we may write, for ex., Bf(X) 
= (f(O) f (x) . 

The aim of this work is to develop an effective method 
to generate realizations of the correlated processes, repro­
ducing the second-order statistics defined by Eq. ( 1 ) .  Such 
realizations can be used for the simulation of systems of 

atmospheric re mo te probes (KALLISTRATOVA and KON 
1 99 1 ), adaptive optics (ROGGERMANN et al. 1 995), etc. 

Here we consider only two correlated processes. The 
generalization for the case of many processes is straightfor­
ward. 

A simple way to simulate the random process is to 
generate its Fourier-components, as it was done by COLES 
et al. ( 1 995) and KOUZNETSOV and ORTEGA-MARTfNEZ 
( 1 995). However, if the processes are not periodical, one has 
to use a grid of much larger size, than the size of the output 
sampling. 

An alternative approach was applied by CANNON ( 1 995) 
for regions of special (circular) form. This approach works 
quite weIl if one needs to simulate a single isotropic process; 
however, it is hard to apply for simulations of few correlated 
processes. 

In order to avoid the above difficulties, we suggest a 
method in wh ich, similar to the Fourier method, each 
realization is defined by its harmonics. But we will show 
that very few of them are enough to represent random or 
chaotic processes with spectra occupying many orders of 
magnitude. Such a reduction of the number of harmonics is 
possible due to their special choice. The wave-vectors of 
these harmonics are random. This is a reason to call such a 
way to generate random sampies "method of Random 
WaveVectors" (RWV). 

The validity of RWV for the simulation of correlated 
processes with given spectra was shown by KOUZNETSOV 
et al. ( 1 997) in an application to atmospheric optics. It was 
shown that the structure functions are reproduced asymp­
totically exact: the relative deviations of the mean structure 
functions from the given functions decreases as 1 /  ß, where 
] is number of sampies considered. But it was not demon­
strated, how few harmonics should be taken into account in 
the RWV to generate random or chaotic sampies. In section 
4 we present such a demonstration. 

It should be mentioned that Cellular Automata (CA) 
could perhaps also provide very fast generation of chaotic 
sampies (WALDROP 1 992, TOFFOLI and MARGOLUS 1 989). 
But it is not clear, how to make the CA generate random 
sampies with given second-order correlations of general 
kind. 
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We expect, the method of RWV is universal and can be 
efficiently used in many applications, from simulations of 
the temporal evolution of a scalar parameter (single-dimen­
sional process) till the evolution of 3-dimensional fields 
(4-dimensional process) . So, we keep the parameter N which 
specifies the dimension of simulated sampies. 

2. Generalized harmonics 

We construct the processes as the sums of M plane waves 
(harmonics) : 

M 
f(x) = L F(Pm ) cos(Pmx + <Pm ) ' (2) 

m=l 
M 

g(x) = L G(Pm ) cos(Pmx + <Pm + 'JI m ) 
m=l 

These sums are similar to the Fourier-series, but we don't 
assurne that pm belongs to some definite grid, as wave-vec­
tors used in the Fast-Fourier Transform (FFT) . 

We treat pm as random vectors, and <Pm, 'JIm as random 
numbers. All harmonics should be generated inde­
pendently. Phases <Pm are distributed uniformly and totally 
independent. This implies the homogeneity of the processes. 
As for the phases 'JIm, they may be entangled with wave-vec­
tors pm of the same harmonics. 

Functions F and G also may be random, but this makes 
the algorithm more complicated. During the simulations 
with N = 2 (KOUZNETSOV et al. 1 997), there was seen no 
visual difference between sampies generated with regular F, 
G and sampies generated with a Gaussian distribution of F, 
G. (As for the second-order statistics, it is reproduced 
exactly in both cases.) So, the randomness of wave-vectors 
is quite enough to produce chaotic sampies, without making 
the coefficients F and G random. Thus, we treat these 
coefficients as regular non-negative functions of an N-vec­
tor argument. 

We should express F, G in terms of given functions B 
defined by Eq. ( 1 ) . Substitution of (2) into ( 1 ) gives: 

M 
Bg (x) = L (G(Pm ) G(Pm ) cos(Pmxl + <Pm + 'JIm ) 

m=1 
(7) 

M 
Bfg (x) = L (F(Pm ) G(Pm ) cos(Pmxl + <Pm ) 

m=l 
(8 )  

We apply cos(u) cos(v) = (cos(u+v) + cos(u-v» 12 and use 
the uniform distribution of <Pm; i t  gives: 

M 
Bf (x) = � L(F(Pm )2 cos(Pmx») , 

m=l (9) 
M 

Bg (x) = � L(G(Pm f cos(Pmx») , 
m=l 

M 
Bfg (x) = � L (F(Pm ) G(Pm ) cos(Pmx + 'JI m ») = 

m=l ( 1 0) 
M 

= � L (F(Pm ) G(Pm ) cos(Pmx) cos('JIm ») · 

In the last equation, we applied cos(u+v) = cos(u) cos(v) ­
sin(u) sin(v) and supposed that (sin'JIm> = 0 for all pm. 

Let all wave-vectors pm be distributed with density Jl 
(Pm); so we have 

M 
Bf (x) = � LI Jl(Pm ) F(Pm )2 COS(PmX) dNpm = 

m=l ( 1 1 ) 

M 
Bg (x) = � LI Jl(Pm ) G(Pm )2 COS(PmX) dNpm = 

m=l ( 1 2) 

M 

B (- ) =  � � /F(- ) F(- ) (- - + ) (- - + ») Bfg (X) = �LIJl(Pm ) l1(km , 'JIm ) F(Pm ) G(p) f x � � \ Pm Pn cos Pmxl <Pm cos Pnx2 <Pn , m=l m=l n=l cos(Pmx) cos('JI m ) dNpmd'JI m = (3) ( 1 3) 
M M 

Bg (x) = LL (G(Pm ) G(Pn ) cos(Pmxl + <Pm + 'JIm ) 
m=l n=l 

M M 
Bfg (x) = LL (F(Pm ) G(pn > cos(PmxJ + <Pm ) 

m=1 n=l 

(4) 

(5) 

Because <Pm are distributed independently and uniformly 
between (-1t, 1t], we have the only single sums: 

M 
Bf (x) = L\F(Pm ) F(Pm ) cOS(PmXl + <Pm ) cos(Pmx2 + <Pm») ' 

m=l (6) 

= � I Jl(p) l1(p, 'JI) F(p) G(p) cos(px) dNpd'JI, 

where 11 (km, 'JIm) is the conditional density of the prob­
ability of the distribution of phase 'JIm. Thus, Jl(Pm) l1(Pm, 
'JIm) is the joint probability density of the wave-vector pm of 
the rn-th harmonic and relative phase 'JIm. 

Taking the Fourier-transforms 

b(i�:) = (21trN/2 I eikx B(x) dNx 

of ( 1 1 )-(1 3 ), we have: 

bf (i�) = (21t)N/2 � (�Jl(-k) F(-kf + �Jl(k) F(k)2 ) , 

( 14) 

( 1 5) 
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To get ( 1 5)-( 1 7), we apply cos(a) = (eia + e-ia)l2; then use 
the spectEal representation of 8-function: f exp(ibx)dNx = 
(21t)N8N(b) . Due to 8-functions, no integrals appear in 
( 1 5)-( 1 7); due to the coefficient (21t)N before the 8-function, 
we have coefficients (21t)NI2 instead of coefficient (21ttNI2 in 
Eq. ( 14). 

...,Assumingjhat /-L(-:k) = /-L(k), l1 (-k, '1') = l1 (k, '1'), F(-k) = 
F(k), and G(-k) = G(k), we have: 

bf d�) = (21t)NI2 Af /-Ld�) Fd�)2 , 
( 1 8) 

So, to reproduce the given second-order statistics, we 
choose any /-L, 11 , F, G such that 

- 2 - 2 -F(k) /-L(k) = NI2 bf (k) , 
M(21t) 

- 2 - 2 -G(k) /-L(k) = 
M(21t)NI2 bg (k) , 

F(k) G(k) /-Ld�)f11(k, '1') d\jf = 2 
NI2 bfg (k) . 

M(21t) 

(20) 

(2 1 ) 

The right parts of equationJ (202 should....be non-negative. 
Also, it is necessary that Ibf(k)bg(k) 1 � b fg(kl the cross-cor­
relation cannot be greater than the me an geometric value of 
the correlations. 

The distribution /-L and functions F and G may be chosen 
before taking into account the cross-correlation. Note that 
we have 2 equations (20) for 3 functions (F, G, and /-L); it 
allows some freedom. We may choose any positive /-L, then 
Eq. (20) determines F and G. It is natural to make /-L(k) be 
greater at wavenumbers Ikl which are more important for 
the problem to be simulated. For example, we may take 
/-L(k) = aJbf (k)2 + bg (kl , (a = const.), to make the simi­
lated samples looking more chaotic at relatively small 
number M of harmonics in the composition (2) of simulated 
processes. 

If we cannot predict what wavenumbers are of impor­
tance for the problem, and if wavenumbers occupy many 
orders of magnitude, the logarithmic scale is suitable. 
Consider the new variable y = log ( Ipm l/ Ko) . Let it be 
distributed uniformly from log (Kl/ Ko) till log (K2/ Ko); and 

let orientations of the wave-vectors be distributed uni­
formly (Ko, Kt ,  K2 are constants) . This leads to the density 

/-L(k) = (5Nlk1N log(K2/Kl »)-I ; (22) 
where 5N is the area of a N-dimensional sphere of radius 1 :  

51 = 2, 52 = 21t, 53 = 41t, . .  ; Sn+ l = 5n r sin (y)n-ldy. 
Of course, any other density /-L can also be used. It causes 

no problem, to generate pseudo-random numbers with 
given density. There are effective algorithms for pseudo­
random numbers distributed uniformly between [0, 1 ) 
(WALDROP 1 992) . 

To construct the random variable r distributed with 
density p(r), we consider some new variable t = T(r), where 
T is monotonous function. Then, for any function h = H(r), 
we may write 

(h) = (H(r») = f H(r) p(r) dr = 
(23) 

= f H(R(t» p(R(t» R'(t) dt = f H(R(t» 't(t) dt , 

where R = T-l is the inverse function; R' denotes its 
derivative. While H is arbitrary, the distribution density of 
variable t is 't(t) = p(R(t» R'(t) . If we want the new variable 
t be distributed uniformly from ° to 1, we take 't(t) = 1 .  Then 
the function R can be obtained from the equation R'(t) = 
l /p(R(t» . For simple densities p, such differential equation 
can be resolved in quadratures. (lt is important for efficient 
simulations to have a fast algorithm to calculate all random 
variables) .While t is distributed uniformly, R(t) is distrib­
uted with given density p .  

To reproduce the cross-correlation, we should choose 
any distribution 11 of \jfm at pm = k, such that 

(24) 

To satisfy Eq. (24), we may choose the Gaussian distribu­
tion, 

- _ 1 [ (\jf + 8(-bfg (k» 1t)2 j 
l1(k, '1') - � exp - - , 

2v 1tu(k) 4u(k) 

where 8(z) = . 
{O, z < ° 

1 ,  z � ° 

(25) 

If bfg(k) = 0, for \jfm we take the uniform distribution 
between (-1t, 1t] . Substituting Eq. (25) into Eq. (24) and 
taking the Gaussian integral, one can see that such choice 
reproduces the correct cross-correlation. 

Now we have defined all variables which appear in Eq. 
(2) . 
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3. Algorithm Df(X) = D(x) = Ix l4/3 , lx i < 1 .  (27) 

The formulas of the previous section permit us to construct 
the algorithm to simulate random correlated processes. 

In some application, only the structure functions Df(X) = 
«(f(XI )-f(xz))z), Dg(x) = «(g(xI )-g(xz)i), Dfg(X) = «(f(xI )-f(xz)) 
(g(xI )-g(xz))) are given. While the processes should be 
simulated in a finite region, the smooth truncation of the 
structure function at the relative separation equal to the 
maximal size of this region is appropriate. This permits us 
to construct the correlation functions B, with spectra b 
satisfying the conditions 

If any of (26) does not apply, such a process cannot be 
realized. For example, the structure function Df(X) = Ix I 7/3 is 
forbidden; no smooth truncation gives Bfwith non-negative 
Fourier-transform bf, and there exists no homogeneous 
process with such structure function. 

If conditions (26) are satisfied, we choose the density ).t 
of the wave-vectors. If there is no special indication what 
scale is essential in the simulated processes, the uniform 
distribution of the logarithm of the wavenumber and 
random orientation of wave-vectors leading to formula (22), 
seems to be most safe. Constants K1 and Kz should be 
chosen from physical reasons. For example, for waves in the 
atmosphere, there is no reason to take 1 /  Kz less than the size 
of the molecule, and there is no reason to take 1 /K1 greater 
than the size of the planet. Thus, effective spectra of aH 
homogeneous processes in ge�hysics are always limited. 

The conditional density TJ (k, \jf) must satisfy Eq. (24) . A 
simple choice is defined by formula (25). 

The number M of harmonics in Eq. (2) should be chosen 
too. Eq. (2) gives the correct second-order statistics even at 
M = 1, but we expect the realizations to be in some sense 
chaotic. The example below shows that we do not need to 
take a lot of harmonics to produce chaotic realizations. 
UsuaHy, it is enough to take SN harmonics for each decade 
of effective wavenumbers; then no visual regularities appear 
in the simulated random sampies. 

At given M, N and ).t, functions F and G are defined by 
Eq. (20). 

Now everything is ready for simylation. Für m = l . .M, 
we generate random wave-vectors km with density 11 and 
random <Pm; then, at given km, we generate \jfm with density 
TJ (k, \jf) . These three arrays (<p, k and \jf) define the random 
sampies. We have no special algorithm (like FFT) for sums 
in Eq. (2); so, to construct this sampie at any grid (it may be 
rectangular as weH as curvilinear), we apply direcdy the 
formulas (2) and (20). 

4. Example 

As a demonstration, let us simulate a 2-dimensional iso­
tropic process f(x) in a region lx i < 1 with the structure 
function 

The appropriate correlation function can be constructed as: 

B(x) = B( l xl ) = ' 
. x ,  - (28) 

{ 937 - 0 51 - 14/3 I xl < l 
.937 exp(-0.762xz ) ,  I xl � l 

The coefficients provide the coupling of the function B(r) as 
weH as of its derivative at the point r = 1 . ) 

The Fourier-transform b of the function (28) can be 
calculated as the Bessel-transform of the function B: 
bd�) = 2� f dN X eikx B(x) = r rdr Jo ( l kl r)B(r) , (29) 

where Ja is the Bessel function. 
The transform (29) is practically positive, as we require. 

(We substitute small negative values of the right part of (29) 
to zero; then, the deviation of the inverse transform from 
the function defined by (28) is very small, it couldn't be seen 
at graphics.) 

-> -> 

But the function b(k) decays slowly at large Ik l ,  due to 
the peculiarity at k=o. We need about 4 orders of magnitude 
of variation of Ik l to represent the structure function with at 
least 3 decimal digits. 

Taking the uniform distribution of the logarithm of 
wavenumbers between 10g(.0 1 )  and log(1 00), we apply the 
RWV. In each of Fig. 1, 2, 3 we show the sequence of 8 
independent realizations of the random sampies, each one 
corresponds to the square of size 1 .28 x 1 .28 ;  the grid 64 x 
64 with step t.x = 0.02 was used to plot them. Sampies in Fig. 
1 were calculated with M = 1 0; in Fig. 2 with M = 50 and 
with M = 200 in Fig. 3. Sampies are displayed in the sequence 
of the generation, no selection was applied. 

Sampies in each of Fig. 1, 2 ,  3 reproduce the same 
structure function (27), but sampies in Fig. 1 cannot be 
considered as random, we see quasi-regular structures. 
These structures don't appear in Fig. 2, 3. No difference in 
the structure is seen between Fig. 2 and Fig. 3. This shows, 
that even M = 50 harmonics in the sums in (2) are enough 
to simulate random sampies . The computation of all figures 
took few minutes at the PC with the 486 processor. As it 
was mentioned, the slowest operation is the summation in 
Eq. (2). With M = 50, it includes the calculation and 
summation of about 64 x 64 x 50 "" 200 000 terms/sample. 

To represent the spectra of random sampies in this 
example on a uniform grid, we would need about 1 0 000 x 
1 0 000 points, that would be too much for our computer. 
With some renormalization of the Fourier-components, for 
grids of a given step, the size of the grid may be reduced. At 
the rough grid in the configurational space, the highest 
harmonics act like a 8-correlated noise. To reproduce such 
a noise, we have no need to take more Fourier-harmonics 
than the amount of points in the final grid. But even in this 
case, for sampies of 64 x 64, we would need to take the grid 
at least till 256 x 256, to hide the periodicity. Then the 
calculation of the FFT would take about 256Zlogz(256z) "" 
1 000 000 operations, like in the RWV case above. 

From the point of view of the computational time, both 
methods are similar. 
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Fig. 1 .  8 random sampies with the correlation function (28) constructed on a 64 x 64 grid with steps &: = 0.02 by the RWV for M = 

1 0; some quasi-regular structures are seen. 

Abb. 1. 8 Zufallsmuster mit der Korrelationsfunktion (28) auf einem Gitter 64 x 64 mit einem Maschenabstand von &: = 0,02 
konstruiert durch RWV bei M = 1 0, einige quasi-regelmäßige Texturen sind sichtbar. 

- ---

= - =-
- - -- -

Fig. 2. 8 random sampies with the correlation function (28) constructed on a 64 x 64 grid with step &: = 0.02 by the RWV for M = 

50; no quasi-regular structures are seen. 

Abb. 2 .  8 Zufalls muster mit der Korrelationsfunktion (28) auf einem Gitter 64 x 64 mit einem Maschenabstand von &: = 0,02 
konstruiert durch RWV bei M = 50, es sind keine quasi-regelmäßigen Texturen sichtbar. 

Another situation occurs with the memory require­
ments. To define the sampie, in the method of RWV it is 
enough to store M x  (N + 1) = 1 50 numbers, while for the 
Fourier-method, 2 x (4L)2 "" 128 000 numbers are necessary, 
where L = 64 is the amount of steps of the grid. 

The difference is even more pronounced, if we would 
generate larger sampies. For sampies of 300 x 300, with M 
= 1 00, we need ab out 1 07 operations with RWV, or with the 
FFT-composition with a grid of 1 024 x 1 024. (As we 
mentioned, this excess hides the periodicity. ) But, for two 
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Fig. 3 .  8 random sampies with the correlation function (28) constructed on a 64 x 64 grid with steps & = 0 .02 by the RWV for M = 

200; no difference in the structure from Fig. 2 is seen. 

Abb. 3. 8 Zufalls muster mit der Korrelationsfunktion (28) auf einem Gitter 64 x 64 mit einem Maschenabstand von & = 0,02 
konstruiert durch RWV bei M = 200, in der Textur ist kein Unterschied zu Abb. 2 zu sehen. 

correlated processes, we need to keep about 400 numbers 
with the RWV ( 1 00 two-vectors pm, m = 1 . . 1 00 and 200 
scalars <Pm, m = 1 . . 1 00 and \!Im, m = 1 . . 1 00); and we need about 
2 X 1 06 numbers with the FFT-composition. In this case, the 
RWV needs 5000 times less memory than the FFT-compo­
sition. 

We expect, for multidimensional processes (N ) 2) with 
fine grids, the RWV will still work while the FFT-composi­
tion gets uncomputable. 

We have no proof that 50 harmonics in (2) "are enough" .  
This could depend on the specific application. So, we 
present only visual qualitative observations to support our 
choice. 

On the other hand, the finite number M of harmonics 
could be used to adjust some higher-correlation properties 
of simulated processes. Sometimes, the clouds in the sky 
form quasiperiodical structures like some of the sampies in 
Fig. 1. So, may be, the small number M < 50 could be better 
for reproducing some higher-order correlations . Authors 
would greatly appreciate any experimental data about any 
third- and fourth-order correlations in the atmosphere . 

Note, that if we have no need to reproduce the given 
second-order correlations, CA could generate chaotic sam­
pIes even more effective (see, for ex., WALDROP 1 992). We 
see no structure difference between sampies in Fig. 2, 3 and 
the sampies generated by the Genetic Drift, presented in 
Fig. 9.4(a) by TOFFOLI and MARGOLUS ( 1 989) .  

s. Conclusion 

A novel method, Rwv, for the simulation of correlated 
random processes with given second-order statistics is 
proposed. The simulated processes are constructed as sums 
of harmonics with random wave-vectors . The set of wave­
vectors is the same for both processes. The phases for 
different harmonics are independent, but are correlated for 
the same harmonics of different processes. This correlation 
is defined by the Fourier-transform of the cross-correlation 
function. 

With the RWV method, the random processes can be 
constructed on any grid, not only on a rectangular one. The 
spectra of the simulated processes may occupy many orders 
of magnitude without memorizing large grids . 

The comparison of the efficiency of RWV with the FFT 
composition shows the similar computational time, but the 
memory requirements with RWV are some decades less. 
This should be considered as advantage of our method. 
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