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Abstrsct—The formal definition of the effective oscillator is suggested. The propagstion of an opticat pulse in
a Kerr medium is formulated in terms of the effective osciflators, Limits of the single-mode approximation are
discussed. It is shown that the aumber of photons escaped from the principal mode 10 the highest modes is much
greater than the square of the nonlinear phase shift of the principal mode. This prohibits the production of the
“Schrisdinger cat” states by nonlinear automodulation of the coberent rectangular optical pulses in 3 Kerr

medium, tut dlows the squeezing.

INTRODUCTION

- Any nonlinear interaction, in principle, can produce
a nonclassical state. The Ker nonlinearity seems to be
the simplest one. Since papers [1-7], it seemed that as
the squeezed states, as the Schrddinger car ones can be
produced by the self-modulation, it is enough to let the
coherent pulse propagate in a Kerr medium. The inter-
action Hamiltonian {4’ »a’ really converts the initial
cohersnt state info states with beautiful guasi-distribu-
tions, which show the deformation of the uncentainty
body (the squeezing), its diffusion and the fractional
revivals of quasi-classical wave packets,

At least the squeszing can be observed with the
homodine detsction scheme 'as it is shown in Fig. 1.
Such ezperiments are described in {8]. (See also refer-
ences therein.)

As for cats, the experimental realization by the self-

moduiation hasn't been reported yet. The large interac-

tion simes are necessary to produce cats, and the linear
absorption makes theobservation unlikely {9, 10].

Here, we consider another mechanism which also
prohibits the production of cat states by'the self-modu-
lation of optical pulses, but has nothing to do with the
tinear absorptiog. The cats could be.sbserved in a sin-
zle mode, if other modes have no need 1o be raken into
account. In this case, this mode can be treated as an
Effective Oseillator {(EQ). We shouid define correctly
this BEQ and estimate limits of the description of distrib-
ated systems in serms of one EQ or a few discrete EOs.

A similar analysis could be applied to the case of the
detection of the auwtomtdulated beam with ancther
automodulated beam. Such a scheme was analyzed {11,

" This arvicle was submitted by the authors ia English.
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12] in the two-modes approximation. Here we limit the .
consideration to the simplest scheine showa-in Fig. L
To simplify, we consider only the single-dimens
sional case. This case corresponds io a single-mode
waveguide {optical fiber). The large-distance propag
tion of quantum light in 2 nontinear dispersive fiber canl
be described in termos of quantum solitons [13]. & was
shown [14] that guantum solitons are stable, they have:
quite definite form {15}, and they show the correct clas-
sical limit. In the case of high nonlinearity and short
distance propagation, 2ffects of the chromatic disper
sion are small in comparison with noplinear effects
Then, the expansion with the “guanium solitoag
should require many terms, and the practical caloules
tions with them are difficult. Note that the same case
takes place even in classical nonlinear optics. FPog
example, the book [16] describes the exact solution -
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Here we are interested in the case of high nonlinear-
wy and low chromatic dispersion. We construct the
approximate description in terme of EOs. Note that
simnilar analysis can be applied to the B-éimesssonﬁ
case, ico,

QUANTUM NONLINEAR SCHRODBNGER -
EQUATION

The distributed nonlinear interaction of optical
gﬁ’s&s iz a sonlimear fiber can be described in terms of
- Scomumuting operators of creation and ansihilation of
photons in defimite point. In quasi-monochromatic
xiraagion, these operators are Fourier-transforms
of the operators of creation and aﬁﬁﬁi{im of photons
with a definite wavenumber,
To avoid difficulties with pulses of width less than
tae wavelengfh, we nesd to introduce & least 2 smalt
chromatic dispersion. This leads to the known Harmnilt-
mvzaa f1i-15%:

The m*res;mﬁémg He:seﬁberg equation has the form
- of NSE {10}

_(ﬂa‘&(z

Yo T2 a2
Values of the constants @" aftdxcaﬁbereiatedwzthﬂhe

+2x8'(@acz)’. @

sical chromatic dispersion of the fiber, ©" = Pa(k)/0&°,
- where ek} is the frequency of the normal classical
mode with wavenumber £. The nosalinear constant can
be expressed as follows:

2 foflow |
1 = BE [P0 e, 3

where ¥V is the classical cubic nonlinsarity, and L is
the classical nommatized trassversal mode of the fber,
(We suppose # depends on £ slowly and this depen-
dence bss no peed to be taken into account.) .

¥ we approximate the feld operator with 2 single
mnde . Hamibtonies (1) becomes

Porew = Ax(2 )8 &

The evolation of the initally coheremt staie due to
Hamiltondan (4) appesars as squeezing, & wavepacket
diffusion, and &s fractional revivals in dependence of the
poalinear constant and the tine of interaction {2-5].

It is impotiant to find the relationshis between the
constants ¥ which appesr in (1), () %é & which
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classical plysical parameters. The first one is the clas-

appears in (4). To do this, &zméaﬁﬁe tbe “tocal” oper-
ators of annthilation

ay = ;fm(Z}é{Z}di, (5

where {f} is some compicte orthonormal set of func-
tions, L&,
Jf.m(z}* :n(": L= ém,n%
' . (6}
D Fa(x)* fuly) = Bx- 8]
. L3
These relations lsad to
a(z) };‘,fﬁ (¥, X!

Substituting (7) into the H&m&h@mas {13, we have:

. at . I atatsy &
= ﬁzggmv”amﬁn‘i‘ﬁ Z w& j;mﬁajag &mﬂa, (8}

o . Abmwm
where
_e g, of{z) oS (e}
For = J‘d‘—-m—-az Tt )
Kiimn = xjdsz(z)*f!€Z>*fm(z)f3€Z>' (10

If we fimnit our consideration to 2 finite number X + 1
of modes, each operator 2, (n=0, ..., X) can be treated
as field operators of an mth EO. In such 2 way, if we take
XK =0, we have the approximation of a single EO. This
seems-to be a'vorrect way to define EC. Note that the
value of the interaction constant K= Ny ¢ 0. depends
on the form of the principal mode f.

‘This mode may describe the initial form of the

pulse; then%mm&w%ewwmoﬂ#ﬁeamha
wrsﬁsﬁasfcﬁﬁws

¥(0) = exp(0d] - C*a0). (an
We expect that the main effect is the change of the staie
in the principal mode; the correlation with other EOs
shoaid be treated as smsh, in some sense. To estisnate
the Hmits of such an approximation, we should evaluate
the number of photons which come- info the highest
EQs from the principal EG. (Note that the Handlionian
(8) preserves the total number of photons N =
Z‘&fcz ). As such, the most imporiant terms of the
Hamilionias (8) are those that contain 2 i hsghem
degsees Thas, we represent the Hemiltonian s ¥ =

Fo + Hy + ¥, . where ¥, includes a¥ terms
which don’t exﬁzsazzg& the photon pumber in differemt
EQs, ¥, inchades eeme which aliow such as exchange



-

with the principal mode, but are linear concerning h;gia

est modes, and ¥, includes bilinear and quadatic such

SIS, 210,

9 RSP
Ho = ﬁziig,a 8,4+ Nonasfod 8,2)
2=0
(12)
“’*Z“ Noinifnd; 8,805,
?2<I

= i Z (Proirdy + 2N ool dafighs +B.2.), (13)

a=1
. A
?‘C ﬁ g AfA N Afl\?h -~
2 = Z( ﬁjaaa,‘+ ﬁjﬂ"{axajaﬁaﬁ
azf -
+\N‘mnl;ﬂgaﬂa +4Naglg)anaca}ao) (14)
X
" Tata o s -
+ﬁ2(ﬂn,maﬁa,,agao+n.c.),
LER!

and K, %, include thisd and fourth é’egraes of oper-

~ ators higher modes. (Sometimes, we omit commas as

separators of subscripts.)

In the interaction representafion, we can represent
the wave function as the expansion with the photon
states:

\

P = Y Cnedom, (15)
i

where C are the coefficients, I = I, [}, ..., [ s the vector
of the mumbers of photons in EOs, -

&) = exp(-i%y), (16)
and % are A,.,e'a*smjaes of the Hammon;an %g
B, = AHoll) = Z{if,ﬁ,fh*f-;mi,-(fj— 1)
/=9 an

+ ZJ\N}”/”!‘J!. -
i<a

£

.gﬂsz - ;fu— z“ - "“'m(‘%“ - 4..—’(9;0!5— X 2 Di—"’l}'t/j

m the Schridi inger equation ;%%a =Xy gives the

- (2% - 22,

S

equation for the coefficients:
:" t
{18)
= zcias’;si(r}{?’a + §£2 ..
H

This eguation describes the imtermodal photon
exchange.

In the following, we neglect terins due to ), and
#,: Many of the photons in the highest modes are nec-
essary to make these terms important, while we assume
izfjibmst alt phamas are concentrated in the principal

PERTURBATIONAL THEORY
To investigate the validity of the single-EO approx-
imation, we may use perturbation theory. We should

estimate the amount of photons that abandon the prin-
cipal mode and escape o higher modes. The interaction

Hamiltonians ; + 9, create photons in the highest
modes, annihilating them in the principal one. 30,10
calculate, for example, the number of “escaped™ pho- -
tons in the second ordér, we only need the first-order -
sofution of the wave function: The projection of siste
a, @, P to the P gives zero at 1 = 0, where P¥is the
zero-order solution and ¥ is the second-order one.
Expanding the coefficients () = C%+ OV + ..
we get the first-order solution: _

) H(Eig - Ly + W) = X ) ;
Cf'.}.na . = 2 =1 e

vl T Log- B+ 2Nl 4N ol (19)
x(:8942+1+2ﬁ’,@1f+ DHCY s

(1
C, .

A.m(:.wn«sx’,mzdx@)_ y 20 -

7

e

R
% N oon/ 200+ 1) + *)f"*m

1

. means that one photon appears in the jth
means (¥o phetom in the jth mode, other

where ,‘.Ij.

mode, ...2;...

" modes {except the principal one and menticned ones)

PRIV .
N /T I+ DCLL,. @D

contpin no photons; § means the sequence of zeros,
K times. Al other coefficients CU (wikich are
not mentioned in (19)-(21)) a2 equal to zero.
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SELF-MODULATION OF OPTICAL PULSES IN A KERR MEDIUM
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Note that the last double sum is the most dangerous for
the single-EQ approxumation: It contains H? terms
while the first two are of only X ones only.

Seagleta [

22}

We have ro general proof that the amount expressed
by (22) is high for the most interesting cases like the
Schricinger cats gemeration, independently of the
choice of the functions f However, in the next section
we make some estimation for the almost- xecfém‘rfs}a:

initial pulse £

NUMERICAL SIMULATIONS

, In this section we present an exampie of the con-
struction of a svstem of modes for the initial pulse f; of
the form of trapece.

To s;mghf\’ the calcutus, we consider the incom-
plete szt of modes as an intermediate step between the
single-mode approximation and the whole continuum.

Define the principal mode as follows:

Jolx)
(1/&12_; + gM,

dsL,
3 23)
2

Tl Moy LM, LsisLaM

Lo, 2L+ M.

At L < M, such a palse can be treated as a rectangular
one. The advantage of a pulse of this kind is that the
changs of its form appears mainly at is edges; so, the
nonlisear interaction in the Kerr medinm causes the
rosstion in the complex plane rather thaw the deforms-
tion of its profile. But we need M > 0 to keep the coef-
ficient £ finite. Choose sormwe additional modes, let

(1 (’fcnx‘}
filx) = Tf- K L ;
L0, xf2 L.
Note that this set is not compiete, even gt the Bmit
K —> oo, At least, the analogous function with cos()

woald be sdded; this would Gsubée the amount of “lost™
photons which abandon the principsl mode.

IxsL .
(24)
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Substitution of (23) and (24) into (9) gives:
' “ - __mg:o.-.——— o LY
Loo M{M/3+ LY 2%
- g = @:{ﬁi\f 3653
£, = 2L ) 26}
Substitating (23}, (24) o (103, we find:
" 2L+IMS g .
Mo = e 3 2 (L‘
(2L+2Mm:3)" 2L
Kooy = Nojos = Noge = Nje; = Njoge
=Wy = Ko s X 28)
'» ‘3 <
J..L + “'5{“
"3
. 3 ’ N
N = ;g%’ 4 2%
N = (>0m>0j#m). (0

2L

Gz\ecaﬁsee&sai all m%megtenmmof*he Same
order of magnitude; we have no small paramacr in the
Hamiltonian.

To illustrate the role of the highest modes, first con-
sider thenteraction of only two of them, the principal
one and the first one. Taking K = 1, and substituting
(271 into the Hamiltomians (12), (14), we get the result-
ing Hamiltonian in the following formu

% = é"‘{g‘( 2 &;&9 + 4; 3y 3}) + ‘z(aoﬂgagaa

ML
. \ . (K33}
Bat,ta 0 atata a o oatats ata ata
+ ia;a,a,a, + Gploliydly + 0,8, 850, + 46480218, L.

This Hamiltonias is very similar to the Hamdltonian of
the interaction of twe orthogonaly polarized modes
described in [{7], Each of these two modes can be
treated as ag EO. Of course, only two modes cannot
adequately represent the coatinuum of modes which
effectively interact in the nonlinear medium; but we can
compare the results for the cases of single modes to the
case of fwo modes.

The efficiency of the lincar dephbasing between
modes car be characterized with the parameter

_ ar’ 2 e
r= (}7’ “HML/T 62

First, we are imterested with the squeezing. K can be
characterized with the minimal dispersion
("), (33)

k4 -~
Bt} = min{{bs) -
=2

£ At m . s
where be = 4y €7 + Gpe™®.
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Fig. 2. {3y Evolution of the minimal dispersion (33} in the
principal mode for the single-mode approximation (selid
curve} and the two-mades approximation with 7 = 0 (dashed
curveiand r=2 ’asuﬁnsks) 1oy Evolotion of the mean valne
of the number of photons in the principal mode for the two-
modes, casss r = § {dushed cutve) and 7 = 2 {asterisks). -
Hamiltowian {31), /2L = 1. The initial coherent state with
x=3 .

To simplify fomalas in the following, we use the
special system of units where ¢/(2L) = 1, To compare
the case of the single mode 1o the case of two modes,
we made the "’Di‘ﬁgﬁli&f simnlation with the initial
coherent state [} = Ja,0) with'a = 3. As usual, the Laiine
index or number at the wave function inidicates the pho-
tonic siate whue the Creek ;etiﬂr means the coherent
state. ~

Figure 22 shows the minimal dispersion 133) versus
time ¢ of interaction in the single-mode case in compar-
ison with the case of two modes at r=0 and r = 2. At
these conditions, the minimal dispersion becormnes sig-

nificantly greaier due 1o even one ‘additional mode.

This mode steals photons, and the mean value of the
aumber of photons in the pnn&pai mode (ﬁg} {Bgty)
“hecomes §ower (Fig. 2b).

SYSOV GOMEZ

At the iong-time evolution, we se¢ some k.;ﬁé of .

revivals, (Fig. 3a), but they are not so perfect as in the
single-mode case. As for the mean photon number

(W), we see the fast decay at small values of £ < 0.1

and then the chaotic oscillations. (As for the slow decay .

which follows these oscillations, it depends on the step
of integration and reduces at its decimation.)

Due o the escape of photons from the ;‘zmzpal
mode, we see the rem.,ctmn of the minimal dispersion
(33 atihe ;piaxaz.s {Fig. 3a). To characierize the quan-

wmstate D= e ;a, 0} beiter, we plot the guasidistri-
bution function C defired as

= Y@ ml’.

L]

The evolution of function O by (34) is shown in Fig. 4
for cases of a single mode (a), two modes at ri =0 (b)
and at r = 2 (¢); for values ¢ = 0 (this distribution is the
same Forai} 3cases), +=0035,+=0. 16 1=03,r=72
and ¢

o (34

At ihe smail values af time, we see almost no differ- '

ence in the structure of the uncertainty bodies; in all
three cases it looks like a deformed circle. But men, the
presence of an additional mode makes the ancertainty
body irregular, and deforms the Schridinger cat siates
which a;‘%amd at ¢ = #/2. The deformation i3 more
irregular in the last case, {r = 2), due io the dephasing
of the additional mode.

In contrast with the smgie-mede case.'we sae almost
no revivals for the rvo-mode cases. So, we conclude
that the aggregation of even few additional modes
destroys the “cat” states. .

REALISTIC £STIMATES

Now, consider a more realistic example with many
modes, but Himit cur consideration of the case when the
greatest part of the photons is concentrated in the prin-
cipal mode; then, we may use the perturbaiion zheory

“considerad above,

If we neglect the linear dispersion, as in the simula-
tion above, the amount of photons ‘*em@ed” from the
principal mode to the highest modes would be large at
any finite value of time ¢ f of interaction, due o the wmfi-
nite number of these modes. ?raama:}y, the amount of
these modes is limited by the chromatic dispersion; dif-
ferent coefficients L canse dephasing of very high
modes. Thus, at the finite time of interaction, the num-
ber of effectively interacied modes is limited.

The time of interaction cannot be very iong he::ai.se
of the spreadiﬁg of the initial pulse. S&ch spreading
occurs at 07 = LY so, we should satisfy L? > @7 This
agudtion can also be considered the lower limit of the
longitude L of the pulse, -
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Fig. 3. Lasting evolution of (g} the rinimum dispersion (33) and (b) of the mean photon wmember ;&’Q 8 e fandamental mods for
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The number of modes which are in the resonance  This gives
during tirme ¢ is determined by their linear defacing due
to exponsntial factors in (19)~21). For the rough esti- 2 24° L
mation, let K be such that : Ho= )

R’
e ‘\: . . o . N . . .
ks SIS (25) To estirnate the sum in (21], substitute the double
23\ ) sam with K7, Suppose that the initislly coberent state
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has the meas photon m@@ﬁﬁ,{ use this valve to
estimate the sga}ase oot i {21 Sﬁ%ﬁ%ﬁ%ﬁ@ﬁg the first
fraction in (22) with ir, and taking intc account that
modes Mt%‘ “cos” discussed above would give the
simitar amount of “lost” photons, we have the estima-
tion ‘

32 1°

2,22 -

N, = K 7

Y e prgrCy é\h‘ lhf (3 ;

Note, that INt = ¢ is the classical nonlinear phase

caused by the seif-interaction. This gives the estima-
o

, 321% e

Nie = =@ - (38}

R ®"¢

¥ we take LY0"t = 107, I = 107 and insist that the rela-
tive m of lost photons is less that 1%, then this
gives the estimatiorn of the maxims! nonlinear phase
shift whick can be achieved without strong decoher-
‘ence of M.Mw state: :

@ = SR/ X060 X 10 00 = 16, (39
We know that, in the singlé-mode approximation, the
maximal squeezing occurs & ¢ = 1, whils for the cats
we nesd @ = ®i/j

Formasts (31) could allow us to achieve high values
of the phase § at high values of §;. But such valess can
be realized only a1 the negative values of chromatic dis-
persion, @ < 0. At positive @, the instability of the
guasi-monochromatic wave (see, for ex., [18] and ref-
erences therein) causes the exgosaea{xai grawth of per-
turbations with the appropriate wavenumber and phase.

The incresse of the phase for 2% causes the increase of

their intensity for exp{4x) times. So, such distortions
should cause the destruction of the initial pulse even if
these distortions begin with the quantum noise esti-
mated gbove. The quesntitative investigation of the
quantum aspect of such instability reqahes the follow-
ing imvestigation.

Note, th&zpafaarﬁ&meﬁbepuisaa?ps&mév final
forrauls (30) only in the dimensioniess combinations
L@’ (which chavacterizes the linear sproading of the
pulse) end @ = N (which characterizes the ponlinear
phase shifi}. This indicates that the formula (30) should
have a general sense and be valid for many forms of the
initia! pulse and any system of basis fanctions {f].

Values in (31) permit one to achieve squeezing, as it
was indicated 1n {13, 191 and observed in [§], bt no
Schriddinger cats can be realized in the travelling wave
by self-modulstion, even without absorption, indepen-
dently on the signs of y and @,

" Such s limit is more fundamenta! than the disagpre-
gation of “cats” due to the absorption (or erplification)
discussed in {10} and considered in more detail in [20].
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CONCLUSIONS

We formalated the correct defmition of the EO.
Suck 2z definition allows ome to comsider poulinear
interactions of travei}iﬁg waves ot of the single-EO
approximation and estimage the region of validity of the
single-EO approximation in each special case.

Such formalism is applied to the problem of the
quanters state of the sel-modulated optical pulse. It is
shown that the single-EG ximation becomes
mvalid at large values of the nonlinear phase due to the
escape of photons from the principal mode t© highest
modes. Mazimal valess of the nonlincar p%*’“ are
giver by forraule (30). For example, at 107 pho
tons/pulse 2 nonlinear phase about 10 can be achieved
at & relatively small mmount of escaped photons. (At
@" >0, the maximat phase s alse-limited with the insta:

bility of monochromstic wave.) At high (greater thes —

unity) values of the nonhmear ghase the exponential
growth of the rerber of escaped photons can maka this
hmitation even sironger.

Such an estimation liseéts the mgﬁé vatue of
squeezinig whick cas be obtained by the self-roodude-
tion: of optical pulses of & given frequency and energy.
Also, this estimation prohibits the creation of the

- Schridinger cat states from the coberent states i such

a way.
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