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Efficiency of pump absorption in double-clad
fiber amplifiers.

II. Broken circular symmetry
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Absorption of an incoherent pump in a double-clad fiber amplifier is analyzed in the paraxial wave approxi-
mation. Different inner cladding shapes are considered. A small spiral distortion of an otherwise circular
inner cladding shape is shown to enhance the coupling efficiency significantly relative to other geometries.
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1. INTRODUCTION
Double-clad fibers offer an efficient means of coupling the
partially coherent light of diode lasers into single-
transverse-mode radiation.1–4 The absorption of the
pump light in the core is almost linear.5,6 The efficiency
of absorption of the pump light in the core of the double-
clad fiber is important for power scaling of double-clad fi-
ber amplifiers. This efficiency is low in the case of an in-
ner cladding with circular symmetry.7,8 However, small
fluctuations of the index of refraction can significantly in-
crease this coupling.9 Effective pump inner-cladding
mode mixing takes place in so-called chaotic fibers.10,11

For example, the double-truncated circular fiber10 pro-
vides good mixing, approaching the analytical estimation
for the effective absorption rate Keff 5 K0s/(S 1 s),
where K0 is the local absorption rate in the core and s and
S are areas of the cross section of core and cladding, re-
spectively. However, the cuts in the fiber necessary to
make the inner-cladding ray trajectories chaotic also
make coupling of the incoherent diode-bar pump into the
modified cladding more difficult [See Fig. 2 of Ref. (10)].

In this paper, we show that a relatively small asymmet-
ric deformation of the circular cladding achieves a similar
effect. To our knowledge, all cladding shapes considered
in the literature have at least one symmetry (mirror re-
flection). Any symmetry of the inner cladding favors pe-
riodic trajectories that can exhibit poor overlap with the
core. One of the simplest asymmetric deformations is a
spiral cladding, which is the main subject of this paper.

The spiral inner-cladding shape is not convex figured,
and all modes must have significant amplitude in the vi-
cinity of the deformation. The core placed in this region
should have good overlap with all of these modes. One
can therefore expect that the spiral shape will provide a
high efficiency of absorption of the pump light in the core.

2. GENERALIZED AND APPROXIMATE
IMAGES
The conventional beam propagation method12 is severely
limited as a wave optical propagation scheme over physi-
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cally realistic distances for fibers with large inner clad-
ding, cross section, and generally shaped inner cladding
boundaries. The technique of approximate images (AI)
was introduced in our earlier work as a computational
method to simulate the propagation of complex spatially
incoherent diode pump modes in an inner cladding of
rather large cross sectional area over relatively long dis-
tances. The generalized image (GI) method is somewhat
analogous to the method of images in electrostatics13

where an image of a point charge is placed at the other
side of a conducting surface to ensure that the field on the
surface is identically zero. Here, however, we do not
treat point charges, but rather extended fields. As an il-
lustration consider a cylindrically symmetric inner clad-
ding and ignore the central core for the moment. The
natural basis functions with which to describe an arbi-
trary optical field propagating in such a structure are
Bessel modes. Other shapes of cladding yield different
basis functions. We now assume that the inner-
cladding–to–outer-cladding index step is so large that the
field is essentially zero on the boundary. Alternatively,
one can assume that the outer cladding is highly absorb-
ing and hence acts as a reflecting surface. This is an ap-
proximation in any event. The requirement that the field
be zero on the boundary enforces the selection of a finite
set of Bessel modes that satisfy that criterion on the
boundary at r 5 R, where R is the radius of the boundary
and r is the radial coordinate. Figure 1 shows a graph of
two such Bessel functions that are identically zero at the
boundary r 5 R. We consider the part of the Bessel
function defined on 0 < r < R as the physical field and
its extension outside the boundary on R < r < ` as its
GI. The GI field is denoted by the dotted curve in the fig-
ure. Formally we can propagate an arbitrary initial field
distribution along this waveguide by simply propagating
the appropriate combination of extended Bessel modes
(such as shown in Fig. 1) in free space. This approach re-
moves the outer-cladding boundary from explicit consid-
eration. Practically, these Bessel modes extend far out-
side the inner-cladding boundary, and it becomes im-
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practical to propagate these on a computer. The method
of AI is designed to bypass this difficulty by constructing
compactly supported functions as approximations to the
GI in the vicinity of the cladding boundary. The dashed
curve outside the inner-cladding boundary at r 5 R for
both the low- and high-order Bessel mode depicts such AI
fields. One should note from the figure that the AI depic-
tion is a better representation of the GI field for highly os-
cillatory Bessel modes. The explicit mathematical con-
struction of these AI fields is shown below for the spiral
and other inner cladding shapes.

The more general problem of a noncircular inner clad-
ding is now considered, and a central doped core is now
introduced explicitly in what would otherwise be an effec-
tive free-space-propagation problem. The core is treated
as a small perturbation for the multimode pump, which is
a physically realistic assumption. In particular, the
refractive-index step in the core will be larger than the
corresponding absorption per wavelength. In the
paraxial approximation, the propagation of the pump can
now be described by the equation

Ė 5
i

2k
D'E 2 iknE 2 KE, (1)

where E 5 E(x, y, z) is the complex field, dot denotes
differentiation with respect to the last argument (longitu-
dinal coordinate), D' is the Laplacian with respect to the
first two arguments (transverse coordinates), k
5 2pnref /l is the wave number of the pump in the clad-
ding with refractive index nref , n 5 (n22nref

2 )/nref is the
effective variation of the refractive index, and K is the lo-
cal absorption rate. As discussed above, the strong
variation of the refractive index from inner to outer clad-
ding can be taken into account with the boundary condi-
tion

E~R~f !, f ! 5 0, (2)

Fig. 1. Radial modes of a circular fiber in the absence of the
core; (a) J1(3.831706r/R) and (b) J1(22.76008r/R). The solid
curves depict the physically relevant inner cladding modes.
Their extension (GI) outside of the cladding is depicted by the
dotted curves and their AI [Eq. (5)] by the dashed curves.
where E(r, f ) 5 E(r cos f, r sin f ), and the function R
parameterizes the surface of the cladding in polar coordi-
nates.

We now outline the procedure for obtaining an AI field
for this general problem. Consider Fig. 2. For any point
(X, Y) of the crossection of the fiber located outside of the
inner cladding, the square of the distance to the point
@R(f )cos f, R(f )sin f # can be expressed with the func-
tion F(f, X, Y) such that F(f, X, Y) 5 (RC 2 X)2

1 (RS 2 Y)2, where C 5 cos f, S 5 sin f, R 5 R(f ).
The closest point of the surface of the fiber (RC, RS) cor-
responds to the angular coordinate f such that
F8(f, X, Y) 5 0, where the prime denotes differentiation
with respect to the first argument. Then, the minimum
of F(f, X, Y) with respect to the first argument defines
the function f 5 f(X, Y) such that

RR8 2 ~CX 1 SY !R8 1 ~SX 2 CY !R 5 0. (3)

We suppose that the function R is smooth. The approxi-
mate solution f1 of Eq. (3) can be expressed as a first it-
eration of Newton’s method: f1 5 f0 2 F8(f0)/F9(f0).
The choice of an AI field is not unique. First, calculations
were done with an AI field represented by

EAI 5 2E~X1 , Y1!@1 2 ~R 2 r!2/r0
2#u~R 1 r0 2 r!,

(4)

for r > R(f ), where X1 5 X1(X, Y) 5 R(f1)cos f1 , Y1
5 Y1(X, Y) 5 R(f1)sin f1 , and u(x) 5 (x 1 uxu)/2.
The parameter r0 should be small enough to prevent in-
stabilities of the numerical implementation. This AI is
essentially a scaled inverted replica of the inner field.
Calculations were then repeated with an improved AI
field given by

EAI 5 2E~X, Y !Wu~W !, (5)

Fig. 2. Scheme of construction of the approximate image field
EAI(X, Y) for a smooth boundary of a nonsymmetrical inner
cladding.
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where W 5 W(X, Y) 5 (1 2 D)@r 2 R(f )# scales of the
AI, D 5 D(f ) 5 (R2 1 2(R8)2 2 RR9)/@R2 1 (R8)2#3/2

is the curvature of the inner-cladding boundary, and f is
the solution of Eq. (3). Formula (5) shows faster conver-
gence of the numerical solution in comparison with Eq. (4)
if we approximate R(f ) with an analytical function. The
step of integration dz can be increased by at least an or-
der of magnitude while retaining the same error of the
numerical method. Formula (16) of Ref. 9 is a special
case of formula (5) above for R(f ) 5 const. [Unfortu-
nately, there is a mistake in Eq. (16) of Ref. 9; the last fac-
tor in the expression for the case R , r < 2R appears as
(2R 2 r/R) instead of (2R 2 r)/R.]

3. SIMULATIONS
In this section, we describe numerical simulations for
varying shapes of inner-cladding boundary. We employ
an operator-splitting method somewhat akin to the split-
step fast Fourier transform in the usual beam propaga-
tion method.12 The operator f of the elementary step of
propagation from z to z 1 dz can be constructed in anal-
ogy with Ref. 9 as the product f 5 FNF †PF, where F is
the Fourier operator, P is the propagation operator (diag-
onal in the Fourier representation), N E(x, y, z)
5 exp@ikn (x, y)dz# E(x, y, z) is the operator of refraction
(diagonal in the coordinate representation), and the pro-
jector F substitutes the field outside of the cladding by
the AI of the field inside.

We have made simulations with the following configu-
rations of the cladding and the core:

circular, R(f ) 5 R0 5 constant;

smooth spiral,

starlike structure R~f ! 5 R0 1 a0 cos 6f; (7)

squarelike structure R~f ! 5 R0 2 a0 cos 4f. (8)

Figure 3(a) shows the dependence of the efficiency of
absorption of the pump versus dimensionless parameter
Z 5 K0z for various cases of the geometry of the cladding
and core placements. Some of these inner cladding
shapes are shown in Fig. 4. The simulations use a wave
number for the pump k 5 2pn1 /l 5 10 mm21, the index
of refraction of the core n1 5 1.56, index of refraction of
the cladding n2 5 n1 2 0.0033, absorption rate in the
core K0 5 0.01 mm21. The radius of the cladding R0
5 20 mm and the radius of the core r 5 4 mm. A grid of
512 3 512 points was used, and the step dx was chosen in
such a way that this grid adequately resolves the internal
field and its approximate image. In the case of the offset
core, its coordinates were (x0 , 0).

The upper dashed curve represents the analytic esti-
mate for the case of ideal mixing of the pump, i.e.,

h ideal 5 1 2 expF22K0S r0

R0
D 2

zG , (9)

discussed in Refs. 9–11. This estimate is based on the
assumption of a uniform distribution of the pump light in-
tensity on the cross section of the inner cladding.

The initial condition for the numerical simulations was
prepared in the same manner as in Ref. 9. We employed
a maximal transversal wave number pmax 5 2 mm21.

The projector F is applied in the sequence shown above.
A filter is applied in Fourier space to eliminate spatial fre-
quencies with transversal wave numbers greater than
pmax . The whole process is repeated to advance the so-
lution in z.

The lower solid curve represents the case of numerical
simulations for a circular cladding with centered core
(dx 5 0.22 mm, dz 5 0.04 mm, r0 5 6 mm, x0 5 0). As
expected the coupling efficiency is low. We previously
noted in Ref. 9 that random index perturbations in the in-
ner cladding glass could significantly improve the cou-
pling efficiency for this case. We expect that the defor-
mation of the inner cladding should achieve an even
stronger effect. The curve with open circles represents
the numerical simulation for the spiral cladding with cen-
tral core and with R(f ) given by Eq. (6). This relatively
weak distortion from a circular cladding shape [see Fig.
4(d)] significantly enhances the coupling efficiency rela-
tive to the circular cladding with centered core. We used
a 512 3 512 grid with step dx 5 0.22 mm, dz
5 0.04 mm, r0 5 6 mm, x0 5 212 mm, a0 5 1 mm, b0

Fig. 3. (a) Efficiency h of absorption of the pump light in the
core versus Z 5 K0z. Upper dashed curve, case of ideal mixing
[estimate by Eq. (9)]; dotted curve, simulation of spiral cladding
with displaced core; intermediate dashed curve, the analytical
estimate by formula (10); upper solid curve, numerical simula-
tion for the same case; vertical bars, simulation for the starlike
cross section; circles, simulation for spiral cladding with centered
core; lowest solid curve, simulation for circular-symmetric case;
lowest dashed curve, analytical estimation for the same case ac-
cording to Eq. (11). (b) Efficiency of absorption of the pump light
in the core of the offset-spiral double-clad fiber at K0
5 0.005 m21, bars; 0.01 m21, dots; 0.02 m21 small circles; 0.04
m21, large circles; versus dimensionless Z.

R~f ! 5 H R0 1 a0f, uf u < b0 ,

R0 1 a0 sgn ~f!Fp 1 b0

p 2 b0
~p 2 uf u! 2

p

~p 2 b0!2 ~p 2 uf u!2G , uf u > b0 ;
(6)
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5 2.7 rad in these simulations. First, the simulations
were carried out with the AI described by Eq. (4). Then,
the simulations were repeated using the AI formula given
by Eq. (5), and the same precision was achieved using a
space step dz 5 0.5 mm. As the accuracy is the same the
curves are indistinguishable and only one set is plotted.

The intermediate dashed curve (which crosses the dot-
ted curve at K0z ' 20) represents the analytical estimate

h 5
2

p
H r0 1 ux0u

R F1 2 S r0 1 ux0u

R D 2G1/2

1 arcsinS r0 1 ux0u

R D J H 1 2 expF22K0S r0

R0
D 2

zG J
(10)

for the case of a circular cladding and an offset core [see
Figure 4(b)], based on geometrical optics.8,9 The upper
solid curve represents the numerical simulation for this
same case (dx 5 0.22 mm, dz 5 0.04 mm, r0 5 6 mm, x0
5 212 mm).

The curve formed of vertical bars represents the nu-
merical solution for the case of a fiber with starlike cross
section with centered core given by Eq. (7) [see Fig. 4(c)]
with R0 5 20 mm, dr 5 1 mm, dx 5 0.20 mm, dz
5 0.04 mm, r0 5 4 mm, x0 5 0. (Due to the relatively
fast oscillations of the function R, a value r0 5 6 mm
caused an instability of the solution.) The upper extre-
mum of each bar represents the calculation based on the
total power of the field at a fixed plane, whereas the lower
extremum corresponds to the calculation based on the in-
tegration of intensity of the field in the cross section of the
cladding. The vertical height of the bars estimates the
error of the approximation. In both Fig. 3(a) and Fig.
3(b), vertical bars are used for the curve with maximal er-
ror, which is ;2%. The dots represent the numerical so-
lution for the offset core in the spiral cladding (dx
5 0.22 mm, dz 5 0.04 mm, r0 5 6 mm, x0 5 212 mm,
a0 5 1 mm, b0 5 2.7 rad). This configuration shows
coupling efficiencies comparable to or stronger than those
of the double-truncated circular fiber discussed in Ref. 10.

The lowest dashed curve in Fig. 3(a) represents the
analytic estimate

h 5
4r0

pR0
F1 2 expS 2K0

pr0

2R0
z D G , (11)

which is the limit case of Eq. (10) at r0 /(ux0u 1 r0) ! 1.
For this case, it practically coincides with the estimate
given by Eq. (10).

The offset-spiral double-clad fiber shows the best cou-
pling efficiency of all cases considered. Figure 3(b) shows
how the coupling efficiency varies with core absorption for
this offset-spiral double-clad fiber. Coupling efficiencies
are shown for absorption rates K0 5 0.005 mm21 (bars),
K0 5 0.01 mm21 (dots), K0 5 0.02 mm21 (small circles),
and K0 5 0.04 mm21 (large circles). We use the param-
eter values r0 5 4 mm, R0 5 20 mm, dn 5 0.0033, k
5 10 mm21, r0 5 6 mm; R(f ) is given by Eq. (6) at a0
5 1 mm, b 5 2.7 rad. Again, we used a 512 3 512 grid
with step dx 5 0.20 mm. For the first curve (bars) dz
Fig. 4. Final distributions of amplitude of the field E after propagation of distance such that K0z 5 40. (a) Spiral cladding, offset core;
(b) Circular cladding with offset core; (c) Cladding with the starlike cross section according to Eq. (7); (d) Spiral cladding, centered core;
(e) Circular cladding, centered core; (f) Smoothed square cladding according to Eq. (8), centered core.
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5 0.02 mm; dz 5 0.04 mm for other cases. The upper
(dashed) curve and the dotted curve are the same as in
Fig. 3(a).

Figure 4 represents the final distribution of the ampli-
tude of the field and its AI in the cases of fibers of dis-
placed spiral (a), displaced circular (b), smooth star (c),
centered spiral (d), centered circular (e), and smooth
square (f) shapes. The density of shading is proportional
to the square root of the amplitude of the field. On such
a scale, details of the spots of low intensity are seen better
than in a plot of the intensity of the field. Small dashed
circles indicate the core. For a proper perspective, the
circle of radius R0 is drawn as a large dashed circle in
each case. For the circular cladding, this circle coincides
with the cross section of the surface of the cladding.

We see, in the case with circular cladding and offset
core [(b)], that the pump light is partially depleted not
only in the area of the core, but also in the symmetric
point at the right side. This does not happen in the case
of the smooth spiral cladding.

Analytical estimations of Eqs. (9), (10), and (11) depend
only on Z 5 K0z but do not depend on K0 and z sepa-
rately. The good fit (within a few percent) of the bars and
the dashed curve in Fig. 3(b) shows good coupling of the
pump into the core in the case of a small spiral distortion.
However, the good fit also indicates that results of the
simulations above can be extrapolated to the case of
smaller and more realistic values of K0 . The proportion-
ality of the local absorption rate and the effective absorp-
tion rate indicate that the efficiency of coupling of the
power of the pump light into the core can be precisely es-
timated in the first order of perturbation theory borrowed
from nonrelativistic quantum mechanics. This possibil-
ity is exploited in Ref. 14.

4. CONCLUSIONS
Small spiral deformations of a circular cladding signifi-
cantly improve the coupling of the pump power into the
core, providing the same effect as a strong double-cut in-
ner cladding.10,11 At moderate values of the local absorp-
tion rate K0 , 100 cm21 in the offset core, the effective
absorption rate is almost proportional to the local absorp-
tion rate and approaches the fundamental limit of the
ideal mixing of the pump.

ACKNOWLEDGMENTS
The authors thank Ewan M. Wright, Robert M. Indik,
Miroslav Kolesik, and other colleagues of Arizona Center
for Mathematical Sciences for useful discussions and help
given. This work was supported by Air Force Office of
Scientific Research grants F49620-00-1-0002 and F49620-
00-1-0190 and, in part, by a National Science Foundation
Grant opportunities for Academic Liaison with Industry
Division of Mathematical Sciences 9811466.

D. Kouznetsov’s e-mail address is dima
@acms.arizona.edu.

REFERENCES
1. K. Ueda and A. Liu, ‘‘Future of high-power fiber lasers,’’ La-

ser Phys. 8, 774–781 (1998).
2. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S.

Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zuker,
‘‘110W fiber laser,’’ Electron. Lett. 35, 1158–1160 (1999).

3. V. Karpov, W. R. L. Clements, E. M. Dianov, and S. B. Pa-
pernyi, ‘‘High-power 1.48 mm phosphoro-silicate-fiber-based
laser pumped by laser diodes,’’ Can. J. Phys. 78, 407–413
(2000).

4. N. S. Kim, T. Hamada, M. Prabhu, C. Li, J. Song, K. Ueda,
A. P. Liu, and H. J. Kong, ‘‘Numerical analysis and experi-
mental results of output performance for Nd-doped double-
clad fiber lasers,’’ Opt. Commun. 180, 329–337 (2000).

5. C. K. Liu, F. S. Lai, and J. J. Jou, ‘‘Analysis of nonlinear re-
sponse in erbium-doped fiber amplifiers,’’ Opt. Eng. 39,
1548–1555 (2000).

6. M. A. Mahdi, S. Thirumeni, P. Poopalan, S. Selvakennedy,
F. R. M. Adikan, W. Y. Chan, and H. Ahmad, ‘‘Effects of self-
saturation in an erbium-doped fiber amplifier,’’ Opt. Fiber
Technol. Mater., Devices Syst. 6, 265–274 (2000).
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