Quantum fluctuations do not destroy an optical soliton
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The behavior of an optical soliton in a dispersive nonlinear fiber is discussed. The
evolution of the fourth-order correlation function is analyzed. This function is
independent of the time. The result is formulated as a theorem regarding the
correlation function, which also applies to other quantum systems. The fact that
this correlation function does not change proves that a soliton is stable. Physical
consequences of this stability are discussed.

The quantum-mechanical problem of the propagation of quasimonochromatic
light pulses through dispersive nonlinear fibers can be reformulated in terms of a one-
dimensional gas with a local interaction of particles (see, for example, Refs. 1 and 2
and the bibliography there). In a sense, this problem can be solved exactly. Belinskii®
has constructed profiles of the expectation value of the photon density along the coor-
dinate at various times. It was concluded from the spreading of this function that
“quantum fluctuations” annihilate an optical soliton. In the present letter we analyze
that assertion and study the stability of a quantum soliton.

We must first eliminate some confusion in terminology. If the state of a free
particle is described by a wave packet, the width of this packet will sooner or later
begin to increase. In this case should we say that “the particle is annihilated?” Com-
mon sense suggests that we should not: Otherwise, no quantum-mechanical particle
could be regarded as stable. The “annihilation” of a system means that the parts of the
system move away from each other by distances which increase without bound as time
elapses. For example, a molecule is annihilated if dissociation occurs. To speak of the
annihilation of a soliton in exactly the same way would be legitimate only if the
photons of which the soliton consists could be detected far apart from each other.
Accordingly, in analyzing the question of whether a quantum soliton is destroyed we
need to examine the correlation functions which characterize the relative positions of
the photons in the soliton.

The light in a nonlinear fiber with a dispersion is described by the quantum
Hamiltonian

H =/$:(z)$3(az) d.z-+2m/$+(z)$+(z)$(z)¢?(z) dz, (1)

with the 5-function-commuting field operators ¢; here ¢ = const (Refs. 1 and 3) and
# = 1. Exact solutions of the Schrddinger equation in the form of eigenfunctions of the
Hamiltonian and the momentum are described in Ref. 2:
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A soliton solution with a definite phase and a definite amplitude is constructed in the
case ¢ <0 as a linear combination of solutions of this type:*?

hbu >= Zan/gn(p)]n;p)t > dp. (3)
n=1

The particular form of the coeflicients ¢ and g is unimportant. The only point utilized
below is the circumstance that quantum soliton (3) is constructed from bound states

|n, p, t).
The behavior of the matrix element

< ¢,I$+(Z)$(I)!1ﬁ, > 4)

was discussed in Ref. 3. A “spreading” of this matrix element means that the spatial
localization of the soliton becomes progressively worse. However, this matrix element
does not characterize the relative positions of the photons. To see whether a soliton is
stable, we need to examine the correlation function

Md=/<whmwu+44%>a. (5)

Here }(x) = ¢AS+ (x)qA}(x). It can be shown that K(0) and fK(x)dx do not depend on
the time.* This circumstance does not, however, mean that the other moments,

mm:/xuwwz (6)

cannot vary. In particular, it does not mean that these other moments cannot increase
with the time. We will now show that the moments in (6) are integrals of motion. To
do this, we substitute (5) into (6) and introduce a coordinate system moving with the
soliton. We set z=y — x. From (2) and (3) we then find

t) — Z’anlz-/ in{p’—q )t * (p)gn(q)Mz(p, q) dpdy, N

where

c|n~1

My (p.q) = |_27(11

/(z —y)" dzdydz;..dz, dy;...dy,
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x < 01¢(z1)...4(2) 67 (2)87 (v)$()(4) 67 (v1) - ¢+ ()0 > . (8)

The commutation relations make it possible to simplify (8):

m n! L .
M7 (pg) = 5l /(Il — 22)™ dzy...dzp exp(—i(p~q) Yz +c P |z;— zi).
F

i<k
¢
The introduction of new integration variables, including X, = 2,x;, shows that

(9) is proportional to §(p — ¢). This result rules out a ¢ dependence of (7). All the
moments in (6) are therefore constants. We draw the further conclusion that correla-
tion function (5) is itself independent of the time.

The proof does not depend on the particular functions E(n,p) and g, (p). We
thus have a theorem regarding the correlation function: An intensity correlation func-
tion does not change in the course of the evolution of a superposition of eigenfunctions
of the number of particles, of the Hamiltonian, and of the momentum if the eigenval-
ues of the Hamiltonian are determined unambiguously by the eigenvalues of the num-
ber of particles and of the momentum.

The quantum stability of an optical soliton indicates that the soliton is not annihi-
lated; all that happens is that the quantum uncertainty regarding the coordinate of the
soliton increases. The only thing that “spreads out” is the distribution along this
coordinate. It is thus clear what we could expect from measurements of the phase and
amplitude of a soliton which has “spread out™ in accordance with Ref. 3. A detection
of some of the photons making up the soliton would result in a reduction of the wave
packet. The remaining photons would form a light pulse or packet with a well-defined
field amplitude. The theorem regarding the correlation function thus forbids the detec-
tion of groups of photons which are far apart from each other and which could be
interpreted as the products of an annihilation of the soliton.

Conclusion. The intensity correlation function in (5) does not depend on the
time. Consequently, the distribution of distances between photons in a soliton, (3), is
conserved. A soliton is stable; “quantum fluctuations” do not annihilate it. The
spreading of the matrix element in (4) means no more than an increase in the quan-
tum uncertainty regarding the position of the center of mass of the soliton. The
theorem regarding the correlation function may be of independent importance.
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