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Abstract—Quadrature components of a single-mode field are interpreted as coordinates of the phase space.
- It is assumed that a quantum amplifier transforms the state of a single mode and the initial state of the field in
this mode is a coherent squeezed one. The transfer function relating the average values of the field in the initial
and final states determines mapping of the phase state. In the case of amplification, the field uncertainty in the
final state is usually greater than in the initial state. This increase is interpreted as quantum noise of the ampli-
fier. The lower bounds of this noise are estimated in terms of the derivatives of the transfer function. A degen-
erate parametric amplifier with pumping depletion is considered to be an illustration. Transformation of an ini-
tially orthogonal rectangular net in the phase space and deformation of the body of uncertainty given by the

 Wigner function are constructed for such an amplifier.

INTRODUCTION

2 A classical field in a certain mode can be amplified
- without introducing additional noise, whereas a quan-
- tum field cannot, even if prepared in a coherent state,
Field amplification in a quantum mode produces quan-
lum noise, i.e., increases the total uncertainty of
quadrature field components. ' '

We call an amplifier linear, if operators of the ampli-
fied field may be represented in the form of a lincar
combination of operators of the initial field with C
numerical coéfficients. The minimum noise of linear
amplifiers is known [1-4]. But what is the minimum
noise of nonlinear amplifiers? This question has as yet
only been partially studied [3, 6].

For a phase-invariant amplifier, we have the lower
bound of quantum noise [6] (phase invariance means
that the amplification coefficient does not depend on
the phase of the initial field). These estimates are appli-
cable only for a field prepared initially in a coherent
state. In this case, the lower bounds of noise of linear
amplifiers [1-4] are applicable to any (not necessarily
phase-invariant} linear amplifier and any initial state of
the field. Needless to say, any partial estimate of the
‘ower bound of quantum noise may be useful for prop-
erties of nonlinear amplifiers. But at the same time, it is
- desirable to have a stronger and more general estimate,
where possible. :

We showed that a phase-invariant nonlinear ampli-
fier may produce a lower noise than an ideal linear
“amplifier with the same amplification coefficient [6].
In this paper, we generalize the lower bounds of noise
intwo ways. First, we consider an initial state with arbi-
‘trary squeezing. Second, we remove the requirement of
-phase invariance. Thus, our lower estimates are also
" applicable to parametric quantum amplifiers.

These two generalizations are related to each other.
Noise in our mode may be determined as D = D) +
D, - 1/2, where D, and D, are the dispersions of the
quadrature components. When a parametric. quantum
amplifier is used, any of the dispersions D, or.D, (but
not both of them) may be as small as desired. In this
case, the initial state of the field becomes squeezed.
Thus, we should consider squeezing in order to obtain

-useful lower estimates for the noise of an amplifier of

general type.

A parametric amplifier amplifies quadrature field
components with . different coefficients. Therefore,
transformation of the average values of these compo-
nents should be described by two functions or a single
complex-valued transfer function, We will determine it
in Section I. This function maps initial values of
quadrature components onto their output mean values.
The quadrature components of a single fixed mode cor-
respond to the coordinates (x, p) of the phase space.
Therefore, the transfer function determines mapping of
the phase space onto itself. This is a nonlinear mapping
in the general case. As already noted, our object is to
bind possible values of quantum noise from below.
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In Section II, we derive the lower estimates for the

noise D of an arbitrary amplifier and for the dispersions
D, and D, of the quadrature components.

In Section III, we illustrate our results for the case

of a parametric quantum amplifier with nonlinearity

resulting from the depletion of pumping. We represent
the transfer function as a distortion of the initially uni-
form rectangular net of values of initial quadrature
components. To represent the growth of the uncertainty
of the components in graphic form, we also construct
the distribution of the Wignef function as the quasi-
probability of the distribution of the quadrature compo-
nents and demonstrate how the body of uncertainty is
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distorted when the phase space is subjected to nonlin-
ear transformations.

I. AMPLIFICATION, COHERENT STATES,
AND SQUEEZING

Quantum mechanics of amplifiers suggests that an
amplifier converts an input field a into an output field A
through a unitary transformation: A = Utal; we are
. using lower-case letters for the input field and upper-

case letters for the output field. For simplicity, we -

- restrict ourselves to the case of a single-mode amplifier.
In terms of the operators of the input field a and its Her-
mite conjugation a*, the input quadrature components
may be represented as

1

These components are coordinates of the phase space
and do not commute. Let us denote the mathematical

@ Ei(a+a+),- azail—i(a—a+)._

gectatlons of the input and output fields as {g;) and.

respectively. Then, U determines phase space

mappmg from {a,), (az) to (A}, (A,). The transition .

- from {a;) + ia,) to {A;) + i{A,) determines the transfer
function of the amplifier. The gain factor G; is the ratio
of the output and the input mathematical expectatlons,

= (A)/{a;). In the general case, this factor is a func-
tlon of both {(a,) and {(a,).

" We determine the noise D of the ampliﬁed state as
D=(A*A)=(A")(4) = D, + Dy,

2 (2)

where_
D,=(AD—(A)’ (i=12). 3

~ The object of this work is to obtain the lower estimates

. for Dl’ Dz, and D,

" These estimates are known in certain particular cases.
For a linear quantum amplifier, G; is constant [1-4}.
In this case, the uncertainties of the amplified quadra-
ture components satisfy the inequality
4

DD, 7(26/G, - 1),

from which it follows that

D2 G,G,-1. 5)

For Gl G,, the amplifier is phase-invariant, and D =
G, — 1. Both of these lower bounds (4) and (3) are true

for any type of linear amplifier; regardless of the initial -

state of the field over which the mean values are taken.
In the general (nonlinear) case, lower estimates require
. some knowledge of the initial state, and the minimum
noise is no longer determined by the value of the gain
factor for a given initial state. In the previous work [6],
- lower estimates of the noise of a phase-invariant ampli-
fier are presented under the assumption that the field is
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mmally prepared in a coherent state. Here, we allow for

squeezing of the initial state [}

1) = I, 0),=T,5,0, 03, (6)
where T, is the translation operator
. T, = exp(aa’ - o*a), (7
and S, is the squeezing operator
S,= exple(a’)’ /2~ 2*a’/2]. ®)

Here, o and z are C numerical complex-valued param-
eters, o determines the amplitude and the phase of the
initial coherent state, and z determines the direction and
degree of squeezing; we are using Greek letters to

denote coherent states, and Latin letters to denote -

n-photon states. The state |m, 0) represents m photons = -
and a certain specially prepared state of the amplifier -
uncorrelated to them. Although this notation could sug-
gest that the amplifier is prepared in the ground state, we. -
do not make such an assumption. In what follows, an
‘expression (@) for any operator Q determines the mathe-
matical expectation of the operator Q over the state |a, 0),.

One should rewrite the state |o, 0, i na somewhat
different form. Using the identity

&)

we can change the order of the translation and the -
squeezing operators in formula (6). We have

lo, 0), = ToS,I0,0) = S,Tyl0, 0),

S,aS, = acoshiz] +a+msinhlzl,

(10)

where

B = qcoshIzI—a*IZ;lsinhEzl. (1

I1. LOWER BOUNDS OF NOISE
AND DISPERSIONS

For the lower bounds of the noise of nonlinear amplifi-
ers to be obtained, two basic formulas are required. First,
it follows from formulas (1) and (17) of [6] that

1
'\/— a Bm

for any Q independent of B (here, |3, 0) represents a.
coherent state of the field). '

Second, note that the operator

®mmﬁm-mownnwm>(u);

Iy = 2 S, Tglm, 0){m, 0TS,

m=0

(13)

is a projector Iy = I, and mequahty {anylany) =
(anyloany) is valid for any state, In particular,

(A*A) 2 (AT1,4). (14)
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From formulas (12)—(14), follows
Theorem 1. D 2 E(a., z) and D 2 F(q,, z), where

(0,2) = z’% (coshlzla—a& B smh]zl ) (AY
n=1 ) ' . (15)
and
F(o., z)
- . 2 16
= 2’% (coshlzlé% i smhlzl ) (A)| - ( )
n=1

The Proof. Let us substitute formulas (14) in defini-
tion (2) of the noise D to obtain

D= (A'LA) - <A"><A>

c o+ + 2 am
= Y [0, 017383 A*S, Tylm, 0)".
m=1
Let us use (12) for Q= S, A*S,. This gives
p>y L o
m =1
2 (18)

L (coshlzl 3a | | smh Izl )

= E(0, ).

"However, we may utilize the conjugation of for-
mula (14). In this case, A and A* change places. Let us
apply the relation AA* = A*A — 1 to definition (2). Then,

using (12) for Q@ = S:ASZ, we get the lower estimate for
F(o, 2).

Let us apply this theorem to special cases. By set-
ting the squeezing parameter z = 0 and assuming that
G = G| = G, depends only on a*o, we obtain condi-
- tions for a nonlinear phase-invariant amplifier. In this
case, the output mean value of the field is (A) = Go, and
Theorem 1 reproduces the lower estimate of the noise
of such an amplifier [6].

In a still more special case, we set G = const and
obtain the lower bound [1-4] for a linear phase-invari-
ant amplifier. -

Let us turn now to the dispersions D, and D, of the
quadrature components. For a linear parametric ampli-
~ fier, the noise in one component may be as small as
- desired. For a nonlinear parametric amplifier, we have

Theorem 2. D; = E(q., z), where
No. 6
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z l cosh|z|+| |smhlzl}a 1 A
(19)
+21 [coshlzl B smhlzl] ) (A)'

The Proof. Similar to the proof of Theorem 1, we
start with the definition D; = (A?) — (A,)? and have

D;2 (A A) - (AN

(20)
Z ko, oi73s? AS Tyl 0.
Taking (12) into account, we obtain
D> 1 (coshlzla | Ismhlzl (A)i
m= l
= coshlz + &= smh z] 21
z ]([ 4+ Fsinnld |5 @
+2] [coshlzl B smh,zl] ) = E(a,z).

Note that only the first term (m = 1) in expression
(19) for E(0,, z) survives for a linear parametrlc ampli-
fier. In a proper choice of the squeezing parameter z,
any of the dispersions D, or D, may be made as small
as desired. By choosing z, which makes D, small, we
make D, large at the same time, and vice versa. There-

" fore, we cannot make both D, and D, as small as

desired while retaining equation (4). To extend this
equation to the case of nonlinear parametric amplifiers,
we could multiply the estimates D, 2 E(c, z) and D, >
Ex(, 7) of Theorem 2 and obtain D\D, > E l(oc EN0, 2),
but this would not be the best possible estimate. It does
not reproduce formula (4) in the linear case [7].

III. EXAMPLE

All real amplifiers are saturable. Saturation mani-
fests itself in the fact that the gain factors G; become
functions of input amplitudes o, and o, and the map-
ping of the phase space becomes nonlinear. As an
example of such nonlinear mapping, we consider a
parametric amplifier with depleted pumping [8]

H= Zli[azb+—(a+)2b]; (22)
U = exp(-iHt) determines unitary transformation.
Here, b is the operator of field in the pumping mode
with the same commutation relations as in mode a; a
and a* commute with b and &*. Assume that the initial
state is coherent in each mode: o = (a), B = (b). The
transfer function maps o; and o, into (A,) and (A,).
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o, ' ' For numerical calculations illustrating mapping of the
(a) phase space, we diagonalized the Hamiltonian on the sub-
3 space of states with a number of photons no greater than
40. In doing so, we considered states [k — 2m, m) with 0 <
_ : k<40 and 0 £ m < k/2 (k and m are integers) in the Fock
2 : representation. Here, a*alk—2m, m) = (k— 2m)lk — 2m, m),
and b*blk — 2m, m) = mlk — 2m, m). Note that transfor-
mation U does not mix states with different values of k,
so that, in fact, we did not need to diagonalize matrices
wider than 21 x 21.

The MAPLE computer code was used for diagonal-
1 2 3 oy ization, and eigenvalues and eigenfunctions were cal-
2 : culated with 20 significant digits. :

We chose B = 2 to show how nonlinear parametric
amplification deforms the initial phase space. Let us
have a uniform orthogonal net for ¢ = 0 (Fig. 1a). The
quality of representation allows a deformation of this =
net to be seen in the right upper corner. It is associated
with finiteness of the subspace on which the Hamilto- -
nian is diagonalized. Figures 1b and 1c show the deforma- -
— ©) . tion of this net for t = 0.3 and 0.5. These mappings are
symmetric with respect to o; —» —ai; and o, — —0iy, S0
_ only the first quadrant of the coordinate plane is pre-
I 2\ %1 ' sented in the figures. For ¢ = 0.3, the mapping is almost
linear for |0t} < 2. Coordinate squares are converted into
prolate rectangles typical of linear squeezing. For larger
values of the initial field, these rectangles are deformed.
For t = 0.5, this mapping becomes ambiguous.

The uncertainty of the output field can be character-
ized in more detail by the Wigner function

- N W RO
~~
o
S
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—
[\®]
w
Q

O =W

Flg 1. Transformation of the initial rectangular net o =
const and o = const in a parametric amplifier for ¢ = (a) 0,
(b) 0.3, and (c) 0.5. :

%2 ) W(a'l., a'z) = z 2 ch*.mck,m
1 (a) m=0n=0k=0
/AR

k T ' ' u ' ‘ u\ if2o5u
0 w X J.q)n(aq '\/i - E)q)k(a] »\/5 + 5)8 vdu,
-1 1 I ! ' where c, ,, are coefficients of expansion of a trans-
' formed state in states with n photons of field and m pho-

tons of pumping, ¢,(x) = H,(x) e‘xz/Z/ N2'nl ., and
. /:__\\ | H (x) are .Hermitian polynorrlials [9]. o
Q___// The initial state for o= 1 is shown in Fig. 2a by con

centric circles centered at the point oy = o, oty = 0
-1 L i L (we construct the Wigner function in the coordinatq
1+ © o , o, which correspond to x//2 , p//2). For t=0.3
these circles are deformed. They look like ellipses, an

/’—\ ~ this deformation corresponds to linear compression o

0 \\J“ the net in Fig. 1b. '
For large ¢, the right part of the body of uncertainty

1 \ s . : becomes wider than the left one (Fig. 2c). ‘
0 1 2 3 o Note than A = G q, and A, = G,a,, and for a linear
' parametric amplifier, the Wigner function W of an
amplified state may be expressed in terms of the Wigne:

(23).

Fig. 2. Deformation of the Wigner fun:ction of the initial 45 e . ! ty \
coherent state with o. = 1 for £ = (a) 0, (b) 0.3, and (c) 0.5. function w of the initial state: W(ox1, @) = w((A;), (Ay)
* The level lines W= 0.3 and W = 0.8 are shown. for (A,) and (A,), which is determined by the transfe
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Fig, 3. The real part of the transfer function {A ) for 0, = 0
and't=10.3 and the dispersion D[ and its lower bound £, for
this transfer function. :

function for the input values o) and o, . One needs to

compare Figs. Ic and 2¢ to realize this. The net in
Fig. 1c is condensed to the right, whereas the body of
uncertainty becomes wider. Only the mean position of
the body of uncertainty follows the mapping of the
transfer function of the initial position. The nonlinear
- behavior of the body of uncertainty demonstrates how
. - the second and higher derivatives of the transfer func-
tion increase the noise of an amplifier. '

Let us consider an amplifier with the transfer func-
tion shown in Fig. 2b. Figure 3 presents (A,) as a func-
tion of ¢, for a;, = 0. Only the first quadrature compo-
nent of the field is amplified in such an amplifier. Let us
examine the dispersion of this component. This disper-
sion is plotted in the same diagram in comparison with
the lower estimate in accordance with Theorem 2. The
gain factor G, the dispersion D, and its lower bound
E| decrease as the amplitude grows, but D, remains
greater than its lower bound, as must happen.

Compression of the profile of uncertainty in the region
of net compression can be interpreted semiclassically, The
mapping corresponding to degenerate parametric amplifi-
cation does not change an element of the phase volume
dpdlx, so it can be carried out without additional degrees of
freedom [equation (23) with a C-number instead of b
describes a parametric amplifier with classical pumping].
But compressions or dilations of the coordinate and
momentum in which the phase volume is not conserved
{as on the right side of Fig. 1b) suggest the correlation of
field states with additional degrees of freedom. Such a cor-
relation appears as additional quantum noise.

CONCLUSIONS

We characterized a single-mode amplifier of general

type by its transfer function, which is defined in the
phase space. This function maps mathematical expecta-
tions of the quadrature components of the initial field
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onto mathematical expectations of the components of
the output field. Saturation of amplification makes this
function nonlinear. Such mapping generates quantum
noise, and we derived the lower bound of this noise for
the total noise and the dispersion of each quadrature
component in Theorems 1 and 2. Theorem 1 gives the
lower bound of the noise of a depleted parametric
amplifier with a squeezed coherent input signal. For
such an amplifier, Theorem 2 gives the lower bound of
the dispersion of a single quadrature component of the
amplified field. These are the first lower bounds of

quantum noise of a nonlinear amplifier of general type.

Particular examples show that the lower bounds given
by Theorems 1 and 2 are valid, although the body of
uncertainty and phase space are not always deformed in
the same manner.

For simplicity, we considered states of a single
mode of the field. Multimode states may also be impot-
tant in practice, The lower bounds given by Theorems 1
and 2 are not the best possible, because the projector /;
introduced in (13) is only one of a set of orthogonal
projectors in the multimode space. The consideration of
additional projectors may improve the lower bounds.
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