File:ExpIte4T.jpg

From TORI
Jump to: navigation, search
Full resolution(1,673 × 1,673 pixels, file size: 901 KB, MIME type: image/jpeg)

iterations of exp: $y\!=\!\exp^n(x)$ for various values of $n$.

For non-integer values of $n$, the evaluation is performed using tetration and ArcTetration funcitons,

$y\!=\!\exp^n(x)=\mathrm{tet}\Big(n+\mathrm{ate}(x)\Big)$

C++ generator of curves

// Files ado.cin, fsexp.cin, fslog.cin //should be loaded to the working directory in order to compile the code below.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "Tania.cin" // need for LambertW
//#include "LambertW.cin" // need for AuZex
//#include "SuZex.cin"
//#include "AuZex.cin"
#include "fsexp.cin"
#include "fslog.cin"
// z_type tra(z_type z){ return exp(z)+z;}
// z_type F(z_type z){ return log(suzex(z));}
// z_type G(z_type z){ return auzex(exp(z));}
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;  FILE *o;o=fopen("ExpIte4.eps","w");  ado(o,804,804);
fprintf(o,"402 402 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(n=-4;n<5;n++) {M(-4,n)L(4,n)}
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
// M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E)  
fprintf(o,".004 W S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 0 RGB S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 .5 0 RGB S\n");
// M(0,0) L(12.03,12.03) fprintf(o,".04 W 0 1 0 RGB S\n");
DO(m,700){x=-4.02+.02*m; y=exp(x);          if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n");
DO(m,700){x=-4.02+.02*m; y=exp(exp(x));     if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n");
DO(m,700){x=-4.02+.02*m; y=exp(exp(exp(x)));if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n");
DO(m,700){y=-4.02+.02*m; x=exp(y);          if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n");
DO(m,700){y=-4.02+.02*m; x=exp(exp(y));     if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n");
DO(m,700){y=-4.02+.02*m; x=exp(exp(exp(y)));if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n");
for(n=0;n<34;n+=1) {DO(m,700){x=-4.01 +.02*m; y=Re(FSLOG(x)); y=Re(FSEXP(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;}}
for(n=-33;n<0;n+=1){t=Re(FSEXP( FSLOG(-4.)-.1*n));
                    DO(m,700){x=t +.02*m; y=Re(FSLOG(x)); y=Re(FSEXP(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;}}
  fprintf(o,".01 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');  fclose(o);
      system("epstopdf ExpIte4.eps"); 
      system(    "open ExpIte4.pdf"); //for macintosh
      getchar(); system("killall Preview"); // For macintosh
}


Latex Generator of labels

%

%<br>
% file *.pdf should be generated with the code above in order to compile the Latex document below. %<br>
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
\documentclass[12pt]{article} % <br>
\usepackage{geometry} % <br>
\usepackage{graphicx} % <br>
\usepackage{rotating} % <br>
\paperwidth 806pt % <br>
\paperheight 806pt % <br>
\topmargin -105pt % <br>
\oddsidemargin -73pt % <br>
\textwidth 1100pt % <br>
\textheight 1100pt % <br>
\pagestyle {empty} % <br>
\newcommand \sx {\scalebox} % <br>
\newcommand \rot {\begin{rotate}} % <br>
\newcommand \ero {\end{rotate}} % <br>
\newcommand \ing {\includegraphics} % <br>
\parindent 0pt% <br>
\pagestyle{empty} % <br>
\begin{document} % <br>
\begin{picture}(802,802) % <br>
%\put(10,10){\ing{PowPlo}} % <br>
%\put(0,0){\ing{TraItu3}} % <br>
\put(0,0){\ing{ExpIte4}} % <br>
\put(411,788){\sx{3}{$y$}} % <br>
\put(411,693.6){\sx{2.9}{$3$}} % <br>
\put(411,593.4){\sx{2.9}{$2$}} % <br>
\put(411,493.2){\sx{2.9}{$1$}} % <br>
\put(411,393){\sx{2.9}{$0$}} % <br>
\put(407,292.8){\sx{2.9}{$-1$}} % <br>
\put(407,192.6){\sx{2.9}{$-2$}} % <br>
\put(407,092.4){\sx{2.9}{$-3$}} % <br>
 % <br>
\put(081,408){\sx{2.9}{$-3$}} % <br>
\put(181,408){\sx{2.9}{$-2$}} % <br>
\put(281,408){\sx{2.9}{$-1$}} % <br>
\put(396,408){\sx{2.9}{$0$}} % <br>
\put(497,408){\sx{2.9}{$1$}} % <br>
\put(597,408){\sx{2.9}{$2$}} % <br>
\put(697,408){\sx{2.9}{$3$}} % <br>
\put(787,408){\sx{3}{$x$}} % <br>
 % <br>
\put(6,748){\sx{3}{\rot{4}$n\!=\!3.2$\ero}} % <br>
\put(6,708){\sx{3}{\rot{3}$n\!=\!3.1$\ero}} % <br>
\put(6,675){\sx{3}{\rot{3}$n\!=\!3$\ero}} % <br>
\put(5,643){\sx{3}{\rot{3}$n\!=\!2.9$\ero}} % <br>
\put(6,345){\sx{3}{\rot{1}$n\!=\!0.6$\ero}} % <br>
%
\put(7,308){\sx{3}{\rot{4}$n\!=\!0.4$\ero}} % <br>
\put(7,280){\sx{3}{\rot{5}$n\!=\!0.3$\ero}} % <br>
\put(8,242){\sx{3}{\rot{9}$n\!=\!0.2$\ero}} % <br>
\put(9,185){\sx{3}{\rot{11}$n\!=\!0.1$\ero}} % <br>
 % <br>
\put(50,36){\sx{3}{\rot{45}$n\!=\!0$\ero}} % <br>
% <br>
\put(202,5){\sx{3}{\rot{76}$n\!=\!-0.1$\ero}} % <br>
\put(263,5){\sx{3}{\rot{82}$n\!=\!-0.2$\ero}} % <br>
\put(299,5){\sx{3}{\rot{84}$n\!=\!-0.3$\ero}} % <br>
\put(691,5){\sx{3}{\rot{84}$n\!=\!-3$\ero}} % <br>
\put(724,5){\sx{3}{\rot{83}$n\!=\!-3.1$\ero}} % <br>
\put(764,5){\sx{3}{\rot{82}$n\!=\!-3.2$\ero}} % <br>
 % <br>
\put(480,600){\sx{3.6}{\rot{69}$y\!=\!\exp(x)$\ero}} % <br>
\put(641,630){\sx{3.4}{\rot{44}$y\!=\!x$\ero}} % <br>
\put(650,484){\sx{3.6}{\rot{19}$y\!=\!\ln(x)$\ero}} % <br>

\end{picture} % <br>
\end{document} % <br>
%

References

http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.

http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670

http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version)
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.

http://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20131,673 × 1,673 (901 KB)Maintenance script (Talk | contribs)Importing image file

The following 3 pages link to this file:

Metadata