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1. Introduction

The terational and the superexponential refer to a holomorphic solution F of the equation

F (z+1) = expb

(
F (z)

)
. (1)

Such equation is considered since years 1950 [1�10]; in particular, for the natural base b = e.
Name ¾superexponential¿ indicates, that function F is superfunction [9,11] of the exponential.

In general, for some function H, which can be called also the transfer function [9, 11, 12],
a superfunction F is a holomorphic solution of the equation

F (z+1) = H(F (z)). (2)

Equation (1) is a special case of equation (2) for H = expb. Then, multiplication is a
superfunction of summation (addition of a constant), exponentiation is a superfunction of
multiplication, and solution F of equation (1) is a superfunction of the exponential, id est a
super-exponential.

The special case of a super-exponential, holomorphic at least in the right hand side of the
complex plane, is called ¾tetrational¿, F = tetb, if it satis�es the additional condition

F (0) = 1. (3)

Four examples of tetb are shown in �gure 1 for b =
√

2, b = exp(1/e), b = 2 and b = e.
The tetrational tetb(z) can be interpreted as result of exponentiation applied to unity z

times, at least for integer values of z:

tetb(z) = expb

(
expb

(
.. expb(1)..

))︸ ︷︷ ︸
z exponentiations.

(4)
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Fig. 1. Tetrational tetb(x) at base b = e (thick solid), b = 2 (dashed), b = exp(1/e) (thin solid) and
b =

√
2 (dotted) as holomorphic solutions of eqs. (1), (2), versus real x.

The name ¾tetrational¿ indicates, that this function is fourth in the sequence of functions
(increment, addition, multiplication, exponential, tetrational, pentational, . . .), where each
element (except the zeroth element) is a superfunction for the previous element, and also
the transfer function for the next element. The physical applications of the superfunctions,
that justify the term ¾transfer function¿ are suggested in [8, 11, 12]; the superfunction and
its inverse allow to evaluate the non-integer iteration of a function, in particular, such exotic
functions as

√
exp by [1] and

√
! by [11].

For complex values of the argument, the solution of equation (1) should be evaluated.
The way of evaluation depends on b. At 1 < b 6 exp(1/e), the regular iterations can be
applied, recovering the function through its Schr�oder function [2, 3, 5�7, 9]; for larger values,
the evaluation through the Cauchi integral [8,10] is e�cient. These representations were used
to plot �gure 1.

At base b > exp(1/e), the tetrational can be expressed through the contour integral [8],
assuming, that it is holomorphic on the domain

C = C \ {x ∈ R : x 6 −2}. (5)

Such representation allows to express the derivative tet′ and evaluate the inverse function,
id est, arctetrational ate = tet−1. Also, the name ¾superlogarithm¿, slog, is used for tet−1,
although arctetrational is not a superfunction of the logarithm.

The arctetrational ate satis�es the equation

ate
(
exp(z)

)
= ate(z) + 1. (6)

The uniqueness of the function ate, biholomorphic on the domain

G = {z ∈ C : Re(z) > Re(L); |z| < |L|} (7)

was shown [8, 10]. Here L ≈ 0.318 + 1.337 i is a �xed point of logarithm, id est a solution of
equation L = log(L). In the programming language Maple, this constant can be expressed
as conjugate(-LambertW(-1)); while in notations of Mathematica it can be written as
Conjugate[-ProductLog[-1]].
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The goal of this paper is to upgrade functions tet and ate to the status of special functions.
For such upgrade, the precise and fast approximations should be supplied, allowing the e�cient
evaluation. Here, I consider the only one speci�c value b = e; log = ln = loge and H = exp =
expe. However, tetrational for other values of base b > e1/e can be treated in a similar way.
Below, I suggest the approximation for the function tet = tete shown in �gure 1 with thick
solid line; but this approximation is not limited to real values of the argument.
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Fig. 2. Functions f = tet(z) and f = ate(z) in the complex z-plane. Lines show levels p = Re(f) = const
and q = Im(f) = const.
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2. Properties of tet and ate

Any e�cient approximation of any function should take into account its asymptotic
properties. This section summarizes the basic knowledge about functions f = tet(z) and
f = ate(z), that follow from the representation through the Cauchi integral [8]. Behavior of
functions f = tet(z) and f = ate(z) in the complex plane is shown in �gure 2 with lines
p = Re(f) = const and lines q = Im(f) = const. Levels of integer values p and q are shown
with thick dark lines. Thick light lines indicate the levels p=Re(L) and |q|=Im(L). The thin
lines indicate the intermediate levels. The shaded sickle indicates the set G by (7). The upper
tip of the sickle is L; the lower tip is L∗. The shaded strip shows the domain ate(G).

Function tet has the branch point −2. Position of the cut line, from −2 to −∞ on the real
axis, is determined by the condition tet(z∗) = tet(z)∗.

Function ate has two branch points, L and L∗, and for the implementation we need to
choose the cut lines. In the previous article [8], the cut lines run along the level Re(tet(z)) = −2
(see �gure 8 in [8]); these cuts wind around the branch points, and the calculation of the cut
line slows down the algorithm of the evaluation of function ate. Therefore, in this paper, the
cutlines are placed horizontally.

Function tet asymptotically approaches its limiting values L in the upper halfplane and L∗

in the lower halfplane. This approaching is seen in the �gure 2 in the region, where the lines
p = Re(L) look parallel to the lines q = Im(L). The approach to value L is exponential [8].
The approximation of tet(z) at large values of Im(z) should use this property. In the left hand
side of the complex plane and also in vicinity of the real axis function f = tet satis�es not
only equation (1), but also the ¾inverse¿ equation, id est

log
(
f(z + 1)

)
= f(z) ∀ z ∈ C : |Im(f(z))| < π. (8)

Equations (1) and (8) simplify the �tting of the function. For the implementation of
tetrational, it is su�cient to approximate it in some domain in the complex z-plane, that
extends from −i∞ to i∞ in such a way that its overlap with set Im(z) = const is not
shorter than unity. This domain may partially overlap with the image tet(G) of domain G.
In particular, such a domain can be ate(G), used in [10], or a strip |Re(z)| 6 1/2, used in [8];
this region can be also an ¾alternative strip¿ −1 6 Re(z) 6 0, suggested for the independent
veri�cation of that result. In a similar way, for the implementation of function ate, it is
su�cient to approximate it in some domain that extends from L∗ to L is such a way that the
exponential of the left margin belongs to the domain. The sickle G gives an example of such
a domain.

The approximations below are calculated using the discrete representation of the Cauchy
contour integral [8] and extended to the whole complex plane using the properties of functions
tet and ate.

3. Implementation of tetrational: �ma

In order to distinguish functions tet and ate from their approximations, I give a speci�c
name to each of them. The approximation of tet at large values of the imaginary part of its
argument can be build up using the asymptotic representation

tet(z) = L +
∑
n,m

Am,n exp (Lnz + αmz) . (9)

The substitution into equation (1) and treating exp(Lz) as small parameter gives α = 2πi,
and equations for the coe�cients A.
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Taking into account only few of terms in expansion (9) gives the asymptotic approximation,
I call it �ma (Fast approximation at large IMaginary part of the Argument):

fima(z) =
N∑

n=0

anεn + βε exp(2πiz), (10)

where β is constant; the small parameter is

ε = exp
(
Lz+R

)
, (11)

and the coe�cients

a0 = L ≈ 0.3181315052047641353 + 1.3372357014306894089 i, (12)

a1 = 1, (13)

a2 =
1/2

L− 1
≈ −0.1513148971556517359− 0.2967488367322413067 i, (14)

a3 =
a2 + 1/6
L2 − 1

=
2 + L

6(L− 1)(L2 − 1)
≈ −0.03697630940906762 + 0.09873054431149697 i,

(15)

a4 =
6 + 6L + 5L2 + L3

24(L− 1)3(L + 1)(L2 + L + 1)
≈ 0.0258115979731401398− 0.017386962126530755 i,

(16)

a5 =
24 + 36L + 46L2 + 40L3 + 24L4 + 9L5 + L6

120(L− 1)4(L + 1)2(1 + L + 2L2 + L3 + L4)
≈ −0.0079444196 + 0.00057925018 i.

(17)

Parameter R is introduced in order to set a1 = 1 and keep simple expressions of other
coe�cients a through the �xed point L of the logarithm. Parameter R can be de�ned as a
complex number such that, at �xed values of Re(z) and large values Im(z) � 1,

tet(z) = L + exp(Lz + R) +O
(
exp(2Lz)

)
. (18)

The increase of number of terms in the polynomial (10) and addition of polynomials with
factors exp(2πiz), exp(4πiz), etc. improves the approximation, but for the prototype of the
complex〈double〉 numerical implementation, constructed below, it is su�cient to take 6 terms
in the sum (10), setting N = 5, and only the single term proportional to exp(2πiz).

I approximate parameters R and β, �tting the numerical solution by [8]:

R ≈ 1.0779614375280− 0.94654096394782 i, (19)

β ≈ 0.12233176− 0.02366108 i. (20)

These values are expected to approximate the fundamental mathematical constants.
Approximation �ma by (10) is plotted in the top picture of the �g. 3 in the same notations
as in �g. 2. The bottom picture shows the agreement function

D0 = − lg
∣∣∣ exp

(
fima(z−1)

)
− fima(z)

∣∣∣. (21)
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Fig. 3. Approximation f = fima(z) by (10) and agreement D0 by (21) in the complex z-plane.

This function characterizes the residual at the substitution F → fima into equation (1).
The level D = 1 is shown with very thick light line at the bottom; the levels D = 2, 4, 6, 8
are shown with thin lines; The levels D = 10, 12, 14 are shown with thick lines. Roughly,
the agreement function indicates, how many correct decimal digits may one get with this
approximation. In particular, above the drawn lines, this approximation returns at least 14
signi�cant �gures, but for values below the lowest thickest line, even the �rst digit of this
approximation is doubtful.

With the conjugated approximation fima(z∗)∗, the �t by (10) covers a big part of the
complex z-plane, but it is not good for small values of the imaginary part of the argument.

4. Approximation of tet: expansion at zero

The Taylor series has radius of convergence, equal to the distance from the expansion point
to the nearest singularity. In the case of tetrational, the truncated sum of the MacLaurin series
gives the approximation

naiv(z) =
N−1∑
n=0

cnzn, tet(z) = naiv(z) +O(zN ) (22)

usable at |z| < 2. The approximation with N = 25 is shown in the �g. 4; it is generated using
the C++ source from CZ [13]. Approximations for the coe�cients cn are shown in the �rst
column of Table 1.
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Fig. 4. Approximation f = naiv(z) of tet with the truncated Taylor expansion (22) at zero, the left picture;
the agreements D1 and D2 by (23) and (24), the central and the right ones.

Table 1

Coe�cients of the series (22), (25) and (29)

n cn sn Re(tn) Im(tn)
0 1.00000000000000 0.30685281944005 0.37090658903229 1.33682167078891
1 1.09176735125832 0.59176735125832 0.01830048268799 0.06961107694975
2 0.27148321290170 0.39648321290170 −0.04222107960160 0.02429633404907
3 0.21245324817626 0.17078658150959 −0.01585164381085 −0.01478953595879
4 0.06954037613999 0.08516537613999 0.00264738081895 −0.00657558130520
5 0.04429195209047 0.03804195209047 0.00182759574799 −0.00025319516391
6 0.01473674209639 0.01734090876306 0.00036562994770 0.00028246515810
7 0.00866878181723 0.00755271038865 0.00002689538943 0.00014180498091
8 0.00279647939839 0.00328476064839 −0.00003139436775 0.00003583704949
9 0.00161063129058 0.00139361740170 −0.00001376358453 −0.00000183512708
10 0.00048992723148 0.00058758348148 −0.00000180290980 −0.00000314787679
11 0.00028818107115 0.00024379186661 0.00000026398870 −0.00000092613311
12 0.00008009461254 0.00010043966462 0.00000024961828 −0.00000013664223
14 0.00001218379034 0.00001654344436 0.00000000637479 0.00000002270476
15 0.00000866553367 0.00000663102846 −0.00000000341142 0.00000000512289
16 0.00000168778232 0.00000264145664 −0.00000000162203 0.00000000031619
17 0.00000149325325 0.00000104446533 −0.00000000038743 −0.00000000027282
18 0.00000019876076 0.00000041068839 −0.00000000001201 −0.00000000013440
19 0.00000026086736 0.00000016048059 0.00000000002570 −0.00000000002543
20 0.00000001470995 0.00000006239367 0.00000000000935 0.00000000000045
21 0.00000004683450 0.00000002412797 0.00000000000170 0.00000000000186
22 −0.00000000154924 0.00000000928797 −0.00000000000005 0.00000000000071
23 0.00000000874151 0.00000000355850 −0.00000000000016 0.00000000000012
24 −0.00000000112579 0.00000000135774 −0.00000000000005 −0.00000000000001
25 0.00000000170796 0.00000000051587 −0.00000000000001 −0.00000000000001

The 0th column of table 1 indicates the number n of the coe�cient; the �rst column
indicates the value of the coe�cient cn in equation (22).

The precision of the approximation (22) can be characterized with the agreement functions

D1 = − lg
∣∣ exp(naiv(z − 1))− naiv(z)

∣∣, (23)

D2 = − lg
∣∣ log(naiv(z + 1))− naiv(z)

∣∣. (24)
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These functions are plotted in the central and the right hand side pictures in �g. 4. The digits
¾15¿ indicate the region, where the agreement is larger than 14. The �gure indicates that at
|z| 6 1, the truncated Taylor series gives of order of 15 signi�cant �gures.

In order to extend the range of approximation, it worth to ¾switch out¿ the nearest
logarithmic singularity at −2, expanding the function tet(z)− log(z +2) instead of tet(z); let

maclo(z) = log(z + 2) +
N−1∑
n=0

snzn; (25)

tet(z) = maclo(z) +O(zN ). (26)

The name maclo (MAClaurin expansion with LOgarithm) indicates, that the tetrational
with substracted logarithm is approximated with the truncated MAClaurin series. The �rst
coe�cients s of this expansion are evaluated in the second column in the table 1.

Function maclo is shown in the �g. 5 for N = 101. The generator [14] is used to plot the
�gure.
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Fig. 5. Function f = maclo(z) by (25) at N = 101 in the complex z-plane, left; agreements D3 and D4

by (27) and (28), center and right.

The range of approximation of tet with function maclo is signi�cantly wider, than that
by the Taylor expansion of tet at zero. The right hand side of the same �g. 5, shows also the
agreements

D3 = − lg
∣∣∣ exp

(
maclo(z+1)

)
−maclo(z)

∣∣∣ , (27)

D4 = − lg
∣∣∣ log

(
maclo(z−1)

)
−maclo(z)

∣∣∣ . (28)

Within the central loops, the residuals at the substitution F → maclo, f → maclo into
equations (1), (8) are of order of 10−15.

5. Approximation of tet : Taylor expansion at 3i.

The plots of the agreement functions D in �g. 3 and 5 indicate, that in the intermediate
range z ≈ 3i, each of approximations fima(z) and maclo(z) return only few correct signi�cant
�gures, if at al. For this reason I suggest the straightforward Taylor expansion at the inter-
mediate point z = 3i. I call it ¾tai¿ (TAylor expansion centered at at the Imaginary axis):

tai(z) =
N−1∑
n=0

tn (z − 3i)n . (29)
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Fig. 6. Function f = tai(z) by (29) for N = 51 in the complex z-plane and agreement D5 by (30).
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Fig. 7. Comparison of approximations tai by (29) to fima by (10), left, and to maclo by (25), right:
agreements D = D6 and D = D7 by (31), (32) in the complex z-plane.

The coe�cients of this series are evaluated in the last columns in the Table 1. For N = 51,
function tai is shown in �g. 6.

The �gure is plotted with generator [15]. The precision of the approximation of the solution
of equations (1), (8) is characterized with agreement

D5 = − lg | log(tai(z+1))− tai(z)|. (30)

This function is plotted in the right hand side of �g. 6.

The mutual agreement of the approximations above can be characterized with functions

D6 = − lg |fima(z)− tai(z)|, (31)

D7 = − lg |maclo(z)− tai(z)|. (32)

These functions are shown in �g. 7. Within the inner loops in the pictures of the �g. 7, the
modulus of the di�erence between the approximations does not exceed 10−14. On the base of
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�g. 7, I suggest the following approximation:

fse(z) =



fima(z), 4.5 < Im(z),
tai(z), 1.5 < Im(z) 6 4.5,

maclo(z), −1.5 6 Im(z) 6 1.5,

tai(z∗)∗, −4.5 6 Im(z) < −1.5,

fima(z∗)∗, Im(z) < −4.5 .

(33)

This approximation can be compared to previous results. Below, I analyze the deviation
fse(z)−F4(z), where F4(z) is approximation, obtained by the straightforward implementation
of the contour integral [8]. The left hand picture of �g. 8 shows the agreement

D8 = − lg
∣∣fse(z)− F4(z)

∣∣ (34)

of approximation fse with the approximation F4 obtained through the direct implementation
of the contour integral [8].
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Fig. 8. Agreement D = D8 by (34), left; the similar agreement for the contour integral with base domain
shifted for −0.5 .

Fig. 8 reveals the defects of each approximation. The jumps at Im(z) = 1.5 and at Im(z) =
2.5 should be attributed to the transition from function maclo to function tai and from
function tai to function fima in the combination fse. Jumps at half-integer values of Re(z)
should be attributed to the discontinuities of function F4, which extends the approximation
with the contour integral, valid for |Re(z)| < 1, from the interval |Re(z)| 6 1/2. The rounding
errors appear as irregular dots. Within the strip |Re(z)| < 1.4, the irregularities of all three
approximations are of order of 10−14.

In the right hand side of �g. 8 the similar agreement is shown for function F5, which is
analogy of function F4, but the base strip is displaced for −1/2. Approximation F5 has jumps
at integer values of the real part of the argument These jumps are also small; the agreement
is at least not worse than that for function F4.

In such a way, the deviation of all the approximations we count for today is of order of
10−14. On the base of �g. 7, 8, I suggest the �nal approximation FSE (Fast Super Exponential)
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of tetrational tet:

FSE(z) =



FIMA(z), 4.5 < Im(z),
TAI(z), 1.5 < Im(z) 6 4.5 ,

MACLO(z), −1.5 6 Im(z) 6 1.5 ,

TAI(z∗)∗, −4.5 6 Im(z) < −1.5 ,

FIMA(z∗)∗, Im(z) < −4.5 ,

(35)

where

FIMA(z) =

{
fima(z), Im(z) > 4 + 0.2379 Re(z),
exp(FIMA(z − 1)), Im(z) 6 4 + 0.2379 Re(z) ,

(36)

TAI(z) =


tai(z), |Re(z)| 6 0.5,

log(TAI(z + 1)), Re(z) < −0.5,

exp(TAI(z − 1)), Re(z) > 0.5 ,

(37)

MACLO(z) =


tai(z), |Re(z)| 6 0.5 ,

log(MACLO(z + 1)), Re(z) < −0.5 ,

exp(MACLO(z − 1)), Re(z) > 0.5 .

(38)

This approximation provides of order of 14 correct signi�cant �gures of the holomorphic
tetrational tet and agrees with the previous results [8].

Up to my knowledge, the function FSE is the most precise and the fastest among ever
reported approximations of the tetrational. Many terms are kept in the approximations (29)
and (25) in order to provide the wide range of the overlapping in �g. 7 and 8. At the �nal step
of the implementation, the number of terms can be reduced, boosting the algorithm without
loss of the precision. Especially this applies to the evaluation of tetrational along the real axis:
it is su�cient to get a good approximation of tet(z) for |z| 6 1/2, which is only a quarter
of the radius of the precise approximation with function maclo. By requests of colleagues the
algorithm is translated from language C++ into language Mathematica [16]. As veri�cation
of this algorithm, the �rst, second, third and fourth derivatives of tetrational tet are plotted
in �g. 9 as functions of real argument; however, the algorithm evaluates also the tetrational
and its derivatives of complex argument.

The good overlapping of the ranges of approximation of tetrational tet by various
algorithms con�rm their validity. Perhaps, some increase of the relative error may take place
at the sequential application of exp required at large values of the real part of the argument.
At moderate values of the real part of the argument, all the 3 approximations FSL by (35),
and F4 by [8] and its modigication F5 (see �g. 8) seem to have comparable errors at the level
of 10−14.
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Fig. 9. First four derivatives of f = tet(x) as functions of real x.

6. Implementation of arctetrational: function FSL

The inverse function of tetrational, id est, arctetrational ate = tet−1, satis�es the equations

ate(z) = ate(exp(z))− 1, (39)

ate(z) = ate(log(z)) + 1 (40)

at least for z ∈ G; and ate(1) = 0. In principle, function ate can be implemented as numerical
solution of equation tet(ate(z)) = z; however, such implementation is much slower than the
approximation with the appropriate elementary functions.

The �rst (and naive) attempt to approximate function ate is, of course, the Taylor expan-
sion at unity. The coe�cients of such an expansion can be found, inverting the powerseries
naiv by (22). The radius of convergence of the resulting expansion is |L| ≈ 1.5; and the
approximation is especially poor in vicinity of the �xed points L and L∗ of logarithm.

The better approach is to expand the function

ate(z)− log(z−L)
L

− log(z−L∗)
L∗ (41)

at z = 1. Such an expansion leads to the approximation

fsl(z) =
log(z−L)

L
+

log(z−L∗)
L∗ +

N−1∑
n=0

un(z−1)n; (42)
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ate(z) = fsl(z) +O
(
(z−1)N

)
(43)

The approximations of �rst coe�cients of such an expansion are shown in table 2. The ap-
proximation fsl at N = 70 is shown in �g. 10.

Table 2

Coe�cients un in expansion (42)

n un n un n un

0 1.41922521550451 10 0.00000003111805 20 0.00000000002293
1 −0.02606629029752 11 0.00000002940887 21 −0.00000000002462
2 0.00173304781808 12 −0.00000001896929 22 0.00000000000666
3 −0.00001952130725 13 0.00000000351784 23 0.00000000000322
4 −0.00006307006450 14 0.00000000204270 24 −0.00000000000354
5 0.00002567895998 15 −0.00000000171995 25 0.00000000000096
6 −0.00000559010027 16 0.00000000039882 26 0.00000000000051
7 −0.00000007279712 17 0.00000000019328 27 −0.00000000000055
8 0.00000065148872 18 −0.00000000019113 28 0.00000000000014
9 −0.00000027698138 19 0.00000000004947 29 0.00000000000009
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Re(z)210−1

DB <1 15

Fig. 10. Approximation fsl(z) by (42), left, and the agreements by (44) and (45); the domain G by (7) is
shaded.

Formally, the Taylor series of function (41) developed at z = 1 has the same radius
of convergence as the direct Taylor expansion of function ate. However, practically, at the
numerical implementation, the convergence for representation (42) is much faster, than that
for the straightforward Taylor expansion. Function fsl approximates function ate even at the
edge of the range of convergence, and, in particular, in vicinity of the tips of the sickle G
by (7), id est, in vicinity of points L and L∗. Function fsl has the same branchpoints L and
L∗, as function ate, and also is in�nite in these points.

In order to characterize the residuals at the substitution ate → fsl into equations (39),
(40), the agreements

DA = − lg
∣∣∣fsl( exp(z)

)
− 1− fsl(z)

∣∣∣, (44)

DB = − lg
∣∣∣fsl( log(z)

)
+ 1− fsl(z)

∣∣∣ (45)

are plotted in the central and right hand side pictures of �g. 10. As before the symbol ¾15¿
indicates the region, where the agreement is better than 14. (Within the inner loops, the
residuals are smaller that 10−14.)
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The range of approximation can be extended with function

FSE(z) =


fsl(z), |Im(z)| < Im(L) &

|z−1| 6 | log(z)− 1| & |z−1| 6 | exp(z)− 1|,
FSL(exp(z))− 1, |Im(z)| < Im(L) & |z−1| > | exp(z)− 1|,
FSL(log(z)) + 1, |Im(z)| > Im(L) or |z−1| > | log(z)− 1|.

(46)

Through the extension (46), function fsl allows to cover the whole complex plane with
the single approximation with the elementary function by (42). In order to check the mutual
consistency or approximations FSE and FSL, consider the agreements

Dc = − lg
∣∣∣FSL

(
FSE(z)

)
− z

∣∣∣, (47)

Dd = − lg
∣∣∣FSE

(
FSL(z)

)
− z

∣∣∣. (48)

These agreements are shown in �g. 11.
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Fig. 11. Agreements of approximations FSE and FSL by (47), left and (48), right.

The �gure con�rms the good precision of the approximations. The error of these
approximations is comparable to the rounding errors at the complex〈double〉 variables. The
algorithms suggested are robust.

Conclusion

The numerical algorithm FSE by equation (35) approximates the holomorphic tetrational
(super-exponential) on base e. The algorithm FSL by (46) approximates the inverse function.
Up to date, these are the fastest and most precise algorithms. These algorithms can be
prototypes for the numerical implementations of tetrational and arctetrational in compilers
of next generation.
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ÒÅÒÐÀÖÈß ÊÀÊ ÑÏÅÖÈÀËÜÍÀß ÔÓÍÊÖÈß

Êóçíåöîâ Ä. Þ.

Ãîëîìîðôíàÿ òåòðàöèÿ (ñóïåðýêñïîíåíòà) ïî îñíîâàíèþ e è åå îáðàòíàÿ ôóíêöèÿ (àðêòåòðàöèÿ)
àïïðîêñèìèðîâàíû ýëåìåíòàðíûìè ôóíêöèÿìè.

Key words: òåòðàöèÿ, ñóïåðôóíêöèÿ, ôóíêöèÿ Àáåëÿ, ãîëîìîðôíàÿ ôóíêöèÿ, àíàëèòè÷íàÿ ôóíê-
öèÿ, ñóïåðýêñïîíåíòà, ñóïåðëîãàðèôì, àêêóðàòíàÿ àïïðîêñèìàöèÿ ôóíêöèé, ñïåöèàëüíûå ôóíêöèè,
èòåðèðîâàíèå ôóíêöèé, íåöåëûå èòåðàöèè.
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