Difference between revisions of "File:KellerDoyaT.png"
Jump to navigation
Jump to search
($ -> \( ; refs) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|KellerDoyaT.png|Original file (661 × 881 pixels, file size: 70 KB, MIME type: image/png) }} |
||
| + | |||
Comparison of the [[transfer function]]s for realistic laser amplifiers at the continuous–wave operation (the [[Doya function]]) and for the short pulses (the [[Keller function]]). |
Comparison of the [[transfer function]]s for realistic laser amplifiers at the continuous–wave operation (the [[Doya function]]) and for the short pulses (the [[Keller function]]). |
||
| + | This picture is used as Fig.5.10 at page 55 of book «[[Superfunctions]]» |
||
| ⚫ | |||
| + | <ref> |
||
| ⚫ | |||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28 |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref>. |
||
| ⚫ | |||
| ⚫ | |||
| + | <pre> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 38: | Line 46: | ||
getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify |
getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify |
||
} |
} |
||
| + | //</pre> |
||
| − | |||
==Latex generator of labels== |
==Latex generator of labels== |
||
| − | |||
% File [[KellerDoya.pdf]] should be generated with the code above in order to compile the [[Latex]] document below. |
% File [[KellerDoya.pdf]] should be generated with the code above in order to compile the [[Latex]] document below. |
||
| + | %<pre> |
||
| − | %<poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} %<br> |
\documentclass[12pt]{article} %<br> |
||
\usepackage{geometry} %<br> |
\usepackage{geometry} %<br> |
||
| Line 79: | Line 86: | ||
\end{document}$<br> |
\end{document}$<br> |
||
% Copyleft 2011 by Dmitrii Kouznetsov %<br> |
% Copyleft 2011 by Dmitrii Kouznetsov %<br> |
||
| + | %</pre> |
||
| − | %</nowiki></nomathjax></poem> |
||
| − | |||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | |||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | «[[]]», |
||
| + | «[[Doya function]]», |
||
| + | «[[Keller function]]», |
||
| + | «[[Superfunctions]]», |
||
| ⚫ | |||
| + | «[[Transferfunction]]», |
||
| + | «[[]]», |
||
[[Category:Book]] |
[[Category:Book]] |
||
[[Category:BookPlot]] |
[[Category:BookPlot]] |
||
| − | [[Category: |
+ | [[Category:C++]] |
[[Category:Doya function]] |
[[Category:Doya function]] |
||
| ⚫ | |||
[[Category:Elementary function]] |
[[Category:Elementary function]] |
||
| ⚫ | |||
[[Category:Explicit plot]] |
[[Category:Explicit plot]] |
||
| ⚫ | |||
| ⚫ | |||
[[Category:Latex]] |
[[Category:Latex]] |
||
| ⚫ | |||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Transfer function]] |
||
| + | [[Category:Transferfunction]] |
||
Latest revision as of 09:55, 19 August 2025
Comparison of the transfer functions for realistic laser amplifiers at the continuous–wave operation (the Doya function) and for the short pulses (the Keller function).
This picture is used as Fig.5.10 at page 55 of book «Superfunctions» [1][2].
C++ Generator of cureves
// Files doya.cin and ado.cin should be loaded in order to compile the C++ code below:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include"ado.cin"
#include"doya.cin"
z_type Shoka(z_type z) { return z + log(exp(-z)+(M_E-1.)); }
z_type ArcShoka(z_type z){ return z + log((1.-exp(-z))/(M_E-1.)) ;}
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, a;
FILE *o;o=fopen("KellerDoya.eps","w");ado(o,308,410);
fprintf(o,"4 4 translate\n 100 100 scale 2 setlinecap 1 setlinejoin\n");
for(m=0;m<4;m++){ M(m,0)L(m,4)}
for(n=0;n<5;n++){ M(0,n)L(3,n)}
// M(0,0)L(3,3)
fprintf(o,".004 W 0 0 0 RGB S\n");
DO(n,154){x=.005+.02*n;y=Re(Shoka(1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .6 RGB S\n");
DO(n,154){x=.005+.02*n;y=Re(Tania(1.+ArcTania(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .6 0 0 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf KellerDoya.eps");
system( "open KellerDoya.pdf"); //these 2 commands may be specific for macintosh
getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify
}
//
Latex generator of labels
% File KellerDoya.pdf should be generated with the code above in order to compile the Latex document below.
%\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphicx} %<br>
\usepackage{rotating} %<br>
\paperwidth 318pt %<br>
\paperheight 424pt %<br>
\topmargin -104pt %<br>
\oddsidemargin -83pt %<br>
\textwidth 1200pt %<br>
\textheight 600pt %<br>
\pagestyle {empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\newcommand \ing {\includegraphics} %<br>
\begin{document} %<br>
\sx{1}{ \begin{picture}(310,410) %<br>
\put(1,9){\ing{KellerDoya}} % <br>
\put(-12,400){\sx{2.8}{$y$}} % <br>
\put(-12,303){\sx{2.8}{$3$}} % <br>
\put(-12,203){\sx{2.8}{$2$}} % <br>
\put(-12,103){\sx{2.8}{$1$}} % <br>
\put(0,-8){\sx{2.5}{$0$}} % <br>
\put(100,-8){\sx{2.5}{$1$}} % <br>
\put(200,-8){\sx{2.5}{$2$}} % <br>
%\put(300,-9){\sx{2.5}{$3$}} % <br>
\put(292,-7){\sx{2.6}{$x$}} % <br>
%\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero} % <br>
%\put( 88,354){\rot{53}\sx{2.8}{$t\!=\!3$}\ero} %<br>
%\put(160,354){\rot{50}\sx{2.8}{$t\!=\!2$}\ero} %<br>
\put(158,264){\rot{48}\sx{2.8}{$y\!=\!\mathrm{Keller}(x)$}\ero} %<br>
\put(190,231){\rot{47}\sx{2.8}{$y\!=\!\mathrm{Doya}(x)$}\ero} %<br>
\end{picture} %<br>
} %<br>
\end{document}$<br>
% Copyleft 2011 by Dmitrii Kouznetsov %<br>
%
References
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics ペーパーバック – 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«[[]]», «Doya function», «Keller function», «Superfunctions», «Transfer function», «Transferfunction», «[[]]»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 661 × 881 (70 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 3 pages use this file: