Difference between revisions of "File:Logi2d5t1500.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of the inverse of [[logistic sequence]] with parameter $s\!=\!5$, |
||
− | Importing image file |
||
+ | |||
+ | $y\!=\! \mathrm{ArcLogisticSequence}(x\!+\!\mathrm i y)$ |
||
+ | |||
+ | ==[[C++]] generator of map== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | //using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "efjh.cin" |
||
+ | /* |
||
+ | z_type arccos(z_type z){ return -I*log(z+I*sqrt(1.-z*z)); } |
||
+ | z_type coe(z_type z){ return .5*(1.-cos(exp((z+1.)/LQ))); } |
||
+ | z_type boe(z_type z){ return LQ*log(arccos(1.-2.*z))-1.; } |
||
+ | z_type doe(z_type z){ return coe(1.+boe(z));; } |
||
+ | */ |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=201,M1=M+1; |
||
+ | int N=201,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("logi2d5.eps","w");ado(o,124,124); |
||
+ | fprintf(o,"62 62 translate\n 20 20 scale\n"); |
||
+ | DO(m,M1) X[m]=-3.+.03*(m-.5); |
||
+ | DO(n,N1) Y[n]=-3.+.03*(n-.5); |
||
+ | |||
+ | for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}} |
||
+ | for(n=-3;n<4;n++){ M( -3 ,n)L(3,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | maq(5.); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | // c=E(H(z))-1.; |
||
+ | // c=F(1.+E(0.1*z)); |
||
+ | c=E(z); |
||
+ | // c=F(.5+E(z)); |
||
+ | // c=boe(z); |
||
+ | // c=.5*(1.-cos(exp((z+1.)/LQ))); |
||
+ | // d=H(F(z-1.)); |
||
+ | // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; |
||
+ | // if(p>-4.9 && p<20) g[m*N1+n]=p; |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-4.9 && p<4.9) {g[m*N1+n]=p;} |
||
+ | // if(q>-4.9 && q<4.9) {f[m*N1+n]=q;} |
||
+ | if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 ) {f[m*N1+n]=q;} |
||
+ | }} |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | //p=.8;q=.4; |
||
+ | p=2.;q=.5; |
||
+ | //#include"plof.cin" |
||
+ | for(m=-3;m<3;m++) |
||
+ | for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".005 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<2;m++) |
||
+ | for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".005 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<2;m++) |
||
+ | for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".005 W 0 0 .9 RGB S\n"); |
||
+ | |||
+ | for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
+ | for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
+ | for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .6 0 .6 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
+ | |||
+ | M(-3.02,0)L(0,0) |
||
+ | //M(1.-1./Q,0)L(3,0) |
||
+ | M(1.25,0)L(3,0) |
||
+ | fprintf(o,"0.03 W 1 1 1 RGB S\n"); |
||
+ | for(n=0;n<16;n++) {M(-.2*n,0)L(-.2*(n+.4),0)} |
||
+ | for(n=0;n<12;n++) { M(1.25+.2* n,0) |
||
+ | L(1.25+.2*(n+.4),0)} |
||
+ | fprintf(o,"0.04 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf logi2d5.eps"); // for linux |
||
+ | system( "open logi2d5.pdf"); // for mac |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 130pt |
||
+ | \paperheight 128pt |
||
+ | \topmargin -102pt |
||
+ | \oddsidemargin -91pt |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \ing \includegraphics |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \begin{document} |
||
+ | |||
+ | \newcommand \axes { |
||
+ | \normalsize |
||
+ | \put( 5,126){\sx{.6}{$y$}} |
||
+ | \put( 5,106.4){\sx{.6}{$2$}} |
||
+ | \put( 5, 86.4){\sx{.6}{$1$}} |
||
+ | \put( 5, 66.4){\sx{.6}{$0$}} |
||
+ | \put( 0, 46.4){\sx{.6}{$-1$}} |
||
+ | \put( 0, 26.4){\sx{.6}{$-2$}} |
||
+ | \put( 24, 2){\sx{.6}{$-2$}} |
||
+ | \put( 44, 2){\sx{.6}{$-1$}} |
||
+ | \put( 68.4, 2){\sx{.6}{$0$}} |
||
+ | \put( 89.2, 2){\sx{.6}{$1$}} |
||
+ | \put(109.2, 2){\sx{.6}{$2$}} |
||
+ | \put(126, 2){\sx{.6}{$x$}} |
||
+ | } |
||
+ | %\begin{picture}(122,122) \put( 4, 4){\ing{logi2c4a}} |
||
+ | \begin{picture}(122,122) \put( 8, 6){\ing{logi2d5}} |
||
+ | |||
+ | \put(47, 78){\rot{30}\sx{.99}{$u\!=\!0$}\ero} |
||
+ | \put( 85,100){\rot{37}\sx{.99}{$v\!=\!1$}\ero} |
||
+ | \put( 76, 38){\rot{-40}\sx{.99}{$v\!=\!-1$}\ero} |
||
+ | %\EN{\put(14,66){\bf cut} }% |
||
+ | %\EN{\put(111,66){\bf cut} }% |
||
+ | %\RU{\put(13,66){\sx{.8}{\bf разрез}} }% |
||
+ | %\RU{\put(98,66){\sx{.8}{\bf разрез}} }% |
||
+ | \put(13,66){\sx{.8}{\bf cut}} |
||
+ | \put(114,66){\sx{.8}{\bf cut}} |
||
+ | \axes |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | http://www.springerlink.com/content/u712vtp4122544x4/ |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010logistir.pdf (Russian) |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf (English) D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:ArcLogisticSequence]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Logistic Sequence]] |
Latest revision as of 08:41, 1 December 2018
Complex map of the inverse of logistic sequence with parameter $s\!=\!5$,
$y\!=\! \mathrm{ArcLogisticSequence}(x\!+\!\mathrm i y)$
C++ generator of map
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "efjh.cin"
/*
z_type arccos(z_type z){ return -I*log(z+I*sqrt(1.-z*z)); }
z_type coe(z_type z){ return .5*(1.-cos(exp((z+1.)/LQ))); }
z_type boe(z_type z){ return LQ*log(arccos(1.-2.*z))-1.; }
z_type doe(z_type z){ return coe(1.+boe(z));; }
*/
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=201,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("logi2d5.eps","w");ado(o,124,124);
fprintf(o,"62 62 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-3.+.03*(m-.5);
DO(n,N1) Y[n]=-3.+.03*(n-.5);
for(m=-3;m<4;m++){if(m==0){M(m,-3.04)L(m,3.04)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){ M( -3 ,n)L(3,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(5.);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=E(H(z))-1.;
// c=F(1.+E(0.1*z));
c=E(z);
// c=F(.5+E(z));
// c=boe(z);
// c=.5*(1.-cos(exp((z+1.)/LQ)));
// d=H(F(z-1.));
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
// if(p>-4.9 && p<20) g[m*N1+n]=p;
p=Re(c);q=Im(c);
if(p>-4.9 && p<4.9) {g[m*N1+n]=p;}
// if(q>-4.9 && q<4.9) {f[m*N1+n]=q;}
if(q>-4.9 && q<4.9 && fabs(q)>1.e-11 ) {f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
//p=.8;q=.4;
p=2.;q=.5;
//#include"plof.cin"
for(m=-3;m<3;m++)
for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".005 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".005 W .9 0 0 RGB S\n");
for(m=0;m<2;m++)
for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".005 W 0 0 .9 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m= 1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .6 0 .6 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(-3.02,0)L(0,0)
//M(1.-1./Q,0)L(3,0)
M(1.25,0)L(3,0)
fprintf(o,"0.03 W 1 1 1 RGB S\n");
for(n=0;n<16;n++) {M(-.2*n,0)L(-.2*(n+.4),0)}
for(n=0;n<12;n++) { M(1.25+.2* n,0)
L(1.25+.2*(n+.4),0)}
fprintf(o,"0.04 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi2d5.eps"); // for linux
system( "open logi2d5.pdf"); // for mac
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 130pt
\paperheight 128pt
\topmargin -102pt
\oddsidemargin -91pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\newcommand \axes {
\normalsize
\put( 5,126){\sx{.6}{$y$}}
\put( 5,106.4){\sx{.6}{$2$}}
\put( 5, 86.4){\sx{.6}{$1$}}
\put( 5, 66.4){\sx{.6}{$0$}}
\put( 0, 46.4){\sx{.6}{$-1$}}
\put( 0, 26.4){\sx{.6}{$-2$}}
\put( 24, 2){\sx{.6}{$-2$}}
\put( 44, 2){\sx{.6}{$-1$}}
\put( 68.4, 2){\sx{.6}{$0$}}
\put( 89.2, 2){\sx{.6}{$1$}}
\put(109.2, 2){\sx{.6}{$2$}}
\put(126, 2){\sx{.6}{$x$}}
}
%\begin{picture}(122,122) \put( 4, 4){\ing{logi2c4a}}
\begin{picture}(122,122) \put( 8, 6){\ing{logi2d5}}
\put(47, 78){\rot{30}\sx{.99}{$u\!=\!0$}\ero}
\put( 85,100){\rot{37}\sx{.99}{$v\!=\!1$}\ero}
\put( 76, 38){\rot{-40}\sx{.99}{$v\!=\!-1$}\ero}
%\EN{\put(14,66){\bf cut} }%
%\EN{\put(111,66){\bf cut} }%
%\RU{\put(13,66){\sx{.8}{\bf разрез}} }%
%\RU{\put(98,66){\sx{.8}{\bf разрез}} }%
\put(13,66){\sx{.8}{\bf cut}}
\put(114,66){\sx{.8}{\bf cut}}
\axes
\end{picture}
\end{document}
References
http://www.springerlink.com/content/u712vtp4122544x4/
http://mizugadro.mydns.jp/PAPERS/2010logistir.pdf (Russian)
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf (English) D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 2,698 × 2,656 (740 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.