Difference between revisions of "McCumber relation"

From TORI
Jump to: navigation, search
 
(Deduction of the McCumber relation)
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The '''McCumber relation''' (or McCumber theory) refers to the effective cross-sections of absorption and emission of light in the physics of [[solid-state laser]]s
+
The [[McCumber relation]] (or McCumber theory) refers to the effective cross-sections of absorption and emission of light in the physics of [[solid-state laser]]s
 
<ref name="mc"> http://prola.aps.org/abstract/PR/v136/i4A/pA954_1
 
<ref name="mc"> http://prola.aps.org/abstract/PR/v136/i4A/pA954_1
 
D.E.McCumber. Einstein relations connecting broadband emission and absorption spectra. [[w:Physical Review B|PRB]] ''' 136''' (4A), 954&ndash;957 (1964)
 
D.E.McCumber. Einstein relations connecting broadband emission and absorption spectra. [[w:Physical Review B|PRB]] ''' 136''' (4A), 954&ndash;957 (1964)
Line 14: Line 14:
 
where <math> \left(\frac{N_1}{N_2}\right)_T</math>
 
where <math> \left(\frac{N_1}{N_2}\right)_T</math>
 
is thermal steady-state ratio of populations; frequency <math>\omega_{\rm z}</math> is called "zero-line" frequency <ref name="comment">
 
is thermal steady-state ratio of populations; frequency <math>\omega_{\rm z}</math> is called "zero-line" frequency <ref name="comment">
http://tori.ils.uec.ac.jp/PAPERS/ApplPhysLett_90_066101.pdf
+
http://www.ils.uec.ac.jp/~dima/PAPERS/ApplPhysLett_90_066101.pdf <br>
  +
http://mizugadro.mydns.jp/PAPERS/ApplPhysLett_90_066101.pdf
 
D. Kouznetsov. Comment on Efficient diode-pumped Yb:Gd<sub>2</sub>SiO<sub>5</sub> laser (Appl.Phys.Lett.88,221117(2006)).
 
D. Kouznetsov. Comment on Efficient diode-pumped Yb:Gd<sub>2</sub>SiO<sub>5</sub> laser (Appl.Phys.Lett.88,221117(2006)).
 
[[Applied Physics Letters|APL]], v.90, p.066101 (2007)
 
[[Applied Physics Letters|APL]], v.90, p.066101 (2007)
 
</ref><ref name="chi">
 
</ref><ref name="chi">
http://tori.ils.uec.ac.jp/PAPERS/2007mc.pdf
+
http://www.ils.uec.ac.jp/~dima/PAPERS/2007mc.pdf <br>
  +
http://mizugadro.mydns.jp/PAPERS/2007mc.pdf
 
D.Kouznetsov. Broadband laser materials and the McCumber relation. [[Chinese Optics Letters]]
 
D.Kouznetsov. Broadband laser materials and the McCumber relation. [[Chinese Optics Letters]]
 
v.5, p.S240–S242 (2007)</ref>
 
v.5, p.S240–S242 (2007)</ref>
Line 30: Line 32:
 
<math>\sigma_{\rm e}(\omega)</math>
 
<math>\sigma_{\rm e}(\omega)</math>
 
at frequency <math>~\omega~</math> can be related to the lasers [[gain(lasers)|gain]] in such a way, that the [[gain(lasers)|gain]] at this frequency can be determined as follows:
 
at frequency <math>~\omega~</math> can be related to the lasers [[gain(lasers)|gain]] in such a way, that the [[gain(lasers)|gain]] at this frequency can be determined as follows:
:(2) <math>14:24, 20 June 2013 (JST)14:24, 20 June 2013 (JST)14:24, 20 June 2013 (JST)G(\omega)=N_2 \sigma_{\rm e}(\omega)-N_1 \sigma_{\rm a}(\omega)</math>
+
:(2) <math>~ ~ ~ G(\omega)=N_2 \sigma_{\rm e}(\omega)-N_1 \sigma_{\rm a}(\omega)</math>
   
 
D.E.McCumber had postulated these properties and found that the emisison and absorption cross-sections are not independent
 
D.E.McCumber had postulated these properties and found that the emisison and absorption cross-sections are not independent
<ref name="mc">
+
<ref name="mc"> http://prola.aps.org/abstract/PR/v136/i4A/pA954_1
  +
D.E.McCumber. Einstein relations connecting broadband emission and absorption spectra. [[w:Physical Review B|PRB]] ''' 136''' (4A), 954&ndash;957 (1964)
http://prola.aps.org/abstract/PR/v136/i4A/pA954_1
 
  +
</ref><ref name="B">http://www.sciencedirect.com/science/book/9780120845903
D.E.McCumber.
 
  +
P.C.Becker, N.A.Olson, J.R.Simpson. ''Erbium-doped fiber amplifiers: fundamentals and theory'' (Academic, 1999).
Einstein relations connecting broadband emission and absorption spectra. [[w:Physical Review B|PRB]] ''' 136''' (4A), 954&ndash;957 (1964)
 
</ref><ref name="B"> P.C.Becker, N.A.Olson, J.R.Simpson. ''Erbium-doped fiber amplifiers: fundamentals and theory'' (Academic, 1999).
 
 
</ref>; they are related with Equation (1).
 
</ref>; they are related with Equation (1).
   
Line 45: Line 46:
   
 
==Deduction of the McCumber relation==
 
==Deduction of the McCumber relation==
  +
<div class="thumb tright" style="float:right;width:380px">
[[Image:McCumberRelationActiveCemters.png|right|500px|thumb|Fig.1. Sketch of sublevels]]
 
  +
<div style="width:400px">
Consider the set of active centers (fig.1.). Assume fast transition between sublevels within each level, and slow transition between levels.
 
  +
[[File:McCumberRelationActiveCemters.png||400px]]Fig.1. Sketch of sublevels
  +
</div></div>
  +
Consider the set of active centers (fig.1.).
  +
  +
Assume fast transition between sublevels within each level, and slow transition between levels.
 
According to the McCumber hypothesis, the cross-sections <math>\sigma_{\rm a}</math> and <math>\sigma_{\rm e}</math> do not depend on the populations <math>N_1</math> and <math>N_2</math>.
 
According to the McCumber hypothesis, the cross-sections <math>\sigma_{\rm a}</math> and <math>\sigma_{\rm e}</math> do not depend on the populations <math>N_1</math> and <math>N_2</math>.
Therefore, we can deduce the relation, assuming the thermal state.
 
   
  +
We can deduce the relation, assuming the thermal state within each of bunch 1 and bunch 2 of levels, shown in the sketch at right.
Let <math>~v(\omega)~</math> be group velocity of light in the medium, the product <math>~n_2\sigma_{\rm e}(\omega) v(\omega)D(\omega)~</math> is spectral rate of
 
  +
[[stimulated emission]], and <math>~n_1\sigma_{\rm a}(\omega) v(\omega)D(\omega)~</math> is that of absorption; <math>a(\omega)n_2</math> is spectral rate of [[spontaneous emission]]. (Note that in this approximation, there is no such thing as a spontaneous absorption)
 
  +
Let \( D(\omega)\) be spectral density of photons at frequency \( \omega \) in a medium.<br>
  +
Let <math>~v(\omega)~</math> be group velocity of light in the medium.<br>
  +
Then product <math>~n_2\sigma_{\rm e}(\omega) v(\omega)D(\omega)~</math> is spectral rate of
  +
[[stimulated emission]], and <math>~n_1\sigma_{\rm a}(\omega) v(\omega)D(\omega)~</math> is that of absorption; <math>a(\omega)n_2</math> is spectral rate of [[spontaneous emission]]. <br>
  +
(Note that in this approximation, there is no such thing as a spontaneous absorption.)
  +
 
The balance of photons gives:
 
The balance of photons gives:
 
:(3) <math>~ ~ ~
 
:(3) <math>~ ~ ~
Line 60: Line 71:
 
Which can be rewritten as
 
Which can be rewritten as
   
:(4) <math>~ ~ ~
+
:(4) <math>\displaystyle ~ ~ ~
 
D(\omega)=
 
D(\omega)=
\frac{\frac{a(\omega)}{\sigma_{\rm e}(\omega) v(\omega)}}
+
\frac{\frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega) v(\omega)}}
 
{\frac{n_1}{n_2} \frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega)}-1}
 
{\frac{n_1}{n_2} \frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega)}-1}
 
</math>
 
</math>
Line 69: Line 80:
 
[[blackbody radiation]] <!-- <ref name="e2"> e2 </ref> !-->
 
[[blackbody radiation]] <!-- <ref name="e2"> e2 </ref> !-->
   
:(5) <math>~ ~ ~
+
:(5) <math>\displaystyle ~~ ~ ~
 
D(\omega)~=~
 
D(\omega)~=~
 
\frac{\frac{1}{\pi^2} \frac{\omega^2}{c^3}}
 
\frac{\frac{1}{\pi^2} \frac{\omega^2}{c^3}}
Line 81: Line 92:
 
<math>a(\omega)</math> and the emission cross-section <math>~\sigma_{\rm e}(\omega)~</math>
 
<math>a(\omega)</math> and the emission cross-section <math>~\sigma_{\rm e}(\omega)~</math>
 
<!-- <ref name="e2">e2</ref> !-->.
 
<!-- <ref name="e2">e2</ref> !-->.
(We keep the term [[probability of emission]] for the quantity <math>~a(\omega){\rm d}\omega{\rm d}t~</math>,
+
(We keep the term [[probability of emission]] for the quantity <math>~\sigma_{\rm a}(\omega){\rm d}\omega{\rm d}t~</math>,
 
which is probability of emission of a photon within small spectral interval
 
which is probability of emission of a photon within small spectral interval
 
<math>~(\omega,\omega+{\rm d}\omega)~</math>
 
<math>~(\omega,\omega+{\rm d}\omega)~</math>
 
during a short time interval <math>~(t,t+{\rm d}t)~</math>, assuming that at time <math>~t~</math> the atom is excited.)
 
during a short time interval <math>~(t,t+{\rm d}t)~</math>, assuming that at time <math>~t~</math> the atom is excited.)
The relation (D2) is a fundamental property of spontaneous and stimulated emission, and perhaps the only way to prohibit a spontaneous break of the thermal equilibrium in the thermal state of excitations and photons.
+
The relation (1) is fundamental property of spontaneous and stimulated emission, and perhaps the only way to prohibit a spontaneous break of the thermal equilibrium in the thermal state of excitations and photons.
   
 
For each site number <math>~s~</math>, for each sublevel number <math>j</math>, the partial spectral emission
 
For each site number <math>~s~</math>, for each sublevel number <math>j</math>, the partial spectral emission
Line 97: Line 108:
 
Neglecting the cooperative coherent effects, the emission is additive:
 
Neglecting the cooperative coherent effects, the emission is additive:
 
for any concentration <math>~q_{s}~</math> of sites and for any partial population <math>~n_{s,j}~</math>
 
for any concentration <math>~q_{s}~</math> of sites and for any partial population <math>~n_{s,j}~</math>
of sublevels, the same proportionality between <math>~a~</math> and <math>~\sigma_{\rm e}~</math>
+
of sublevels, the same proportionality between <math>~\sigma{\rm a}~</math> and <math>~\sigma_{\rm e}~</math>
 
holds for the effective cross-sections:
 
holds for the effective cross-sections:
 
:(7) <math> ~ ~ ~
 
:(7) <math> ~ ~ ~
\frac{a(\omega)}{\sigma_{\rm e}(\omega)}=
+
\frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega)}=
 
\frac{\omega^2 v(\omega)}{\pi^2c^3}
 
\frac{\omega^2 v(\omega)}{\pi^2c^3}
 
</math>
 
</math>
Line 120: Line 131:
 
:(10) <math> ~ ~ ~ \omega_{\rm Z}=\frac{k_{\rm B}T}{\hbar}
 
:(10) <math> ~ ~ ~ \omega_{\rm Z}=\frac{k_{\rm B}T}{\hbar}
 
\ln \left(\frac{n_1}{n_2}\right)_{T} </math>
 
\ln \left(\frac{n_1}{n_2}\right)_{T} </math>
Then (n1n2) becomes equivalent of the McCumber
+
Then (10) becomes an equivalent of the McCumber
 
relation (mc).
 
relation (mc).
   
Line 160: Line 171:
   
 
==Violation of McCumber leads to perpetual motion==
 
==Violation of McCumber leads to perpetual motion==
  +
<div class="thumb tright" style="float:right;width:360px">
[[File:MacCumberViFig1.jpg|right|400px|thumb|Fig.2. Cross-sections for Yb:Gd<sub>2</sub>SiO<sub>5</sub>
 
  +
<div style="width:380px">
versus <math> \lambda</math> reported by <ref name="apl">
 
  +
[[File:MacCumberViFig1.jpg|380px]]<small>
  +
Fig.2. Cross-sections for Yb:Gd<sub>2</sub>SiO<sub>5</sub>
  +
versus <math> \lambda</math> reported <ref name="apl">
 
http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1
 
http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1
 
Wenxue Li, Haifeng Pan, Liang’en Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu.
 
Wenxue Li, Haifeng Pan, Liang’en Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu.
Line 172: Line 186:
 
<br> http://210.72.9.5:8080/thesis/2006/2/17/142414.pdf C.Yan, G.Zhao, L.Zhang, J.Xu, X.Liang, D.Juan, W.Li, H.Pan, L.Ding, H.Zeng.
 
<br> http://210.72.9.5:8080/thesis/2006/2/17/142414.pdf C.Yan, G.Zhao, L.Zhang, J.Xu, X.Liang, D.Juan, W.Li, H.Pan, L.Ding, H.Zeng.
 
A new Yb-doped oxyorthosilicate laser crystal: Yb: Gd_2 Si O_5. Solid State Comm. v.137, 451-455 (2006) </ref>
 
A new Yb-doped oxyorthosilicate laser crystal: Yb: Gd_2 Si O_5. Solid State Comm. v.137, 451-455 (2006) </ref>
(thick lines) and correction of $\sigma_{\mathrm{emission}}$ by
+
(thick lines) and correction of \(\sigma_{\mathrm{emission}}\) by
 
<ref name="comment">
 
<ref name="comment">
  +
http://www.ils.uec.ac.jp/~dima/PAPERS/ApplPhysLett_90_066101.pdf <br>
D. Kouznetsov. Comment on Efficient diode-pumped
 
  +
http://mizugadro.mydns.jp/PAPERS/ApplPhysLett_90_066101.pdf
Yb:Gd<sub>2</sub>SiO<sub>5</sub> laser. [[Applied Physics Letters|APL]] '''90''', 066101 (2007),
 
  +
D. Kouznetsov. Comment on Efficient diode-pumped Yb:Gd<sub>2</sub>SiO<sub>5</sub> laser (Appl.Phys.Lett.88,221117(2006)).
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000090000006066101000001&idtype=cvips&gifs=yes
 
  +
[[Applied Physics Letters|APL]], v.90, p.066101 (2007)
</ref>
 
(thin black line).]]
+
</ref> (thin black line).
  +
</small>
  +
</div></div>
   
In [[2006]] the strong violation of McCumber relation was "observed" for Yb:Gd<sub>2</sub>SiO<sub>5</sub> and reported in 3 independent journals<ref name="apl">
+
In [[2006]] the strong violation of McCumber relation was "observed" for Yb:Gd<sub>2</sub>SiO<sub>5</sub> and reported in 3 independent journals
  +
<ref name="apl">
 
http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1
 
http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1
Wenxue Li, Haifeng Pan, Liangen Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu.
+
Wenxue Li, Haifeng Pan, Liang’en Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu.
 
Efficient diode-pumped Yb:Gd_2 Si O_5 laser. Appl.Phys.Lett. v.88, 221117 (2006)
 
Efficient diode-pumped Yb:Gd_2 Si O_5 laser. Appl.Phys.Lett. v.88, 221117 (2006)
</ref><ref name="oe">http://dx.doi.org/10.1364/OE.14.006681
+
</ref><ref name="oe">
  +
http://dx.doi.org/10.1364/OE.14.006681
 
Wenxue Li, Shixiang Xu, Haifeng Pan, Liangen Ding, Heping Zeng, Wei Lu, Chunlei Guo, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu. Efficient tunable diode-pumped Yb:LYSO laser.
 
Wenxue Li, Shixiang Xu, Haifeng Pan, Liangen Ding, Heping Zeng, Wei Lu, Chunlei Guo, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu. Efficient tunable diode-pumped Yb:LYSO laser.
Optics Express, Vol. 14, Issue 15, pp. 6681-6686 (2006)
+
Optics Express, Vol. 14, Issue 15, pp. 6681-6686 (2006), doi 10.1364/OPEX.14.000686
 
</ref><ref name="ss">http://www.sciencedirect.com/science/article/pii/S0038109805010094
 
</ref><ref name="ss">http://www.sciencedirect.com/science/article/pii/S0038109805010094
 
<br> http://210.72.9.5:8080/thesis/2006/2/17/142414.pdf C.Yan, G.Zhao, L.Zhang, J.Xu, X.Liang, D.Juan, W.Li, H.Pan, L.Ding, H.Zeng.
 
<br> http://210.72.9.5:8080/thesis/2006/2/17/142414.pdf C.Yan, G.Zhao, L.Zhang, J.Xu, X.Liang, D.Juan, W.Li, H.Pan, L.Ding, H.Zeng.
A new Yb-doped oxyorthosilicate laser crystal: Yb: Gd_2 Si O_5. Solid State Comm. v.137, 451-455 (2006)
+
A new Yb-doped oxyorthosilicate laser crystal: Yb: Gd_2 Si O_5. Solid State Comm. v.137, 451-455 (2006) </ref>. Typical dependence of the effective cross-sections on <math> \lambda=\frac{2\pi c}{\omega}</math> reported is shown in FIg.2 with thick curves. The emission cross-section is practically zero at wavelength
</ref>. Typical dependence of the effective cross-sections on <math> \lambda=\frac{2\pi c}{\omega}</math> reported is shown in FIg.2 with thick curves. The emission cross-section is practically zero at wavelength
 
 
975nm; this property makes Yb:Gd<sub>2</sub>SiO<sub>5</sub> an excellent material for efficient [[solid-state laser]]s.
 
975nm; this property makes Yb:Gd<sub>2</sub>SiO<sub>5</sub> an excellent material for efficient [[solid-state laser]]s.
   
Line 196: Line 213:
   
 
On the base of the [[McCumber relation]], the experimental results
 
On the base of the [[McCumber relation]], the experimental results
<ref name="apl"> http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1
+
<ref name="apl">
  +
http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1
 
Wenxue Li, Haifeng Pan, Liang’en Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu.
 
Wenxue Li, Haifeng Pan, Liang’en Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu.
 
Efficient diode-pumped Yb:Gd_2 Si O_5 laser. Appl.Phys.Lett. v.88, 221117 (2006)
 
Efficient diode-pumped Yb:Gd_2 Si O_5 laser. Appl.Phys.Lett. v.88, 221117 (2006)
</ref><ref name="oe">http://dx.doi.org/10.1364/OE.14.006681
+
</ref><ref name="oe">
  +
http://dx.doi.org/10.1364/OE.14.006681
 
Wenxue Li, Shixiang Xu, Haifeng Pan, Liangen Ding, Heping Zeng, Wei Lu, Chunlei Guo, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu. Efficient tunable diode-pumped Yb:LYSO laser.
 
Wenxue Li, Shixiang Xu, Haifeng Pan, Liangen Ding, Heping Zeng, Wei Lu, Chunlei Guo, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu. Efficient tunable diode-pumped Yb:LYSO laser.
Optics Express, Vol. 14, Issue 15, pp. 6681-6686 (2006)
+
Optics Express, Vol. 14, Issue 15, pp. 6681-6686 (2006), doi 10.1364/OPEX.14.000686
</ref> were corrected
+
</ref>
  +
were corrected
 
<ref name="comment">
 
<ref name="comment">
  +
http://www.ils.uec.ac.jp/~dima/PAPERS/ApplPhysLett_90_066101.pdf <br>
D. Kouznetsov. Comment on Efficient diode-pumped
 
  +
http://mizugadro.mydns.jp/PAPERS/ApplPhysLett_90_066101.pdf
Yb:Gd<sub>2</sub>SiO<sub>5</sub> laser. [[Applied Physics Letters|APL]] '''90''', 066101 (2007),
 
  +
D. Kouznetsov. Comment on Efficient diode-pumped Yb:Gd<sub>2</sub>SiO<sub>5</sub> laser (Appl.Phys.Lett.88,221117(2006)).
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000090000006066101000001&idtype=cvips&gifs=yes
 
  +
[[Applied Physics Letters|APL]], v.90, p.066101 (2007)
 
</ref>, see figure at right; then this correction had been confirmed experimentally<ref name="respo"> {{cite journal
 
</ref>, see figure at right; then this correction had been confirmed experimentally<ref name="respo"> {{cite journal
 
|author=G.Zhao
 
|author=G.Zhao
Line 223: Line 244:
   
 
==References==
 
==References==
  +
<references/>
{{reflist}}
 
   
[[Category:Physics]]
+
[[Category:English]]
  +
[[Category:McCumber relation]]
 
[[Category:Optics]]
 
[[Category:Optics]]
[[Category:Articles in English]]
+
[[Category:Physics]]

Latest revision as of 15:13, 17 June 2020

The McCumber relation (or McCumber theory) refers to the effective cross-sections of absorption and emission of light in the physics of solid-state lasers [1][2].

Definition

Let \(\sigma_{\rm a}(\omega)\) be the effective absorption cross-section \(\sigma_{\rm e}(\omega)\) be effective emission cross-sections at frequency \(\omega\), and let \(~T~\) be the effective temperature of the medium. The McCumbner relation is

(1) \(~ ~ ~\frac{\sigma_{\rm e}(\omega)}{\sigma_{\rm a}(\omega)}\exp\!\left( \frac{\hbar \omega}{k_{\rm B} T}\right) =\left(\frac{N_1}{N_2}\right)_T =\exp\!\left( \frac{\hbar \omega_{\rm z}}{k_{\rm B} T}\right)\)

where \( \left(\frac{N_1}{N_2}\right)_T\) is thermal steady-state ratio of populations; frequency \(\omega_{\rm z}\) is called "zero-line" frequency [3][4] \(\hbar \) is the Planck constant and \(k_{\rm B} \) is the Boltzmann constant. Note that the right-hand side of Equation (1) does not depend on \(~\omega~\).

Gain

It is typical that the lasing properties of a medium are determined by the temperature and the population at the excited laser level, and are not sensitive to the method of excitation used to achieve it. In this case, the absorption cross-section \(\sigma_{\rm a}(\omega)\) and the emission cross-section \(\sigma_{\rm e}(\omega)\) at frequency \(~\omega~\) can be related to the lasers gain in such a way, that the gain at this frequency can be determined as follows:

(2) \(~ ~ ~ G(\omega)=N_2 \sigma_{\rm e}(\omega)-N_1 \sigma_{\rm a}(\omega)\)

D.E.McCumber had postulated these properties and found that the emisison and absorption cross-sections are not independent [1][2]; they are related with Equation (1).

Idealized atoms

In the case of an idealized two-level atom the detailed balance for the emission and absorption which preserves the Max Planck formula for the black body radiation leads to equality of cross-section of absorption and emission. In the solid-state lasers the splitting of each of laser levels leads to the broadening which greatly exceeds the natural spectral linewidth. In the case of an ideal two-level atom, the product of the linewidth and the lifetime is of order of unity, which obeys the Heisenberg uncertainty principle. In solid-state laser materials, the linewidth is several orders of magnitude larger so the spectra of emission and absorption are determined by distribution of excitation among sublevels rather than by the shape of the spectral line of each individual transition between sublevels. This distribution is determined by the effective temperature within each of laser levels. The McCumber hypothesis is that the distribution of excitation among sublevels is thermal. The effective temperature determines the spectra of emission and absorption ( The effective temperature is called a temperature by scientists even if the excited medium as whole is pretty far from the thermal state )

Deduction of the McCumber relation

McCumberRelationActiveCemters.pngFig.1. Sketch of sublevels

Consider the set of active centers (fig.1.).

Assume fast transition between sublevels within each level, and slow transition between levels. According to the McCumber hypothesis, the cross-sections \(\sigma_{\rm a}\) and \(\sigma_{\rm e}\) do not depend on the populations \(N_1\) and \(N_2\).

We can deduce the relation, assuming the thermal state within each of bunch 1 and bunch 2 of levels, shown in the sketch at right.

Let \( D(\omega)\) be spectral density of photons at frequency \( \omega \) in a medium.
Let \(~v(\omega)~\) be group velocity of light in the medium.
Then product \(~n_2\sigma_{\rm e}(\omega) v(\omega)D(\omega)~\) is spectral rate of stimulated emission, and \(~n_1\sigma_{\rm a}(\omega) v(\omega)D(\omega)~\) is that of absorption; \(a(\omega)n_2\) is spectral rate of spontaneous emission.
(Note that in this approximation, there is no such thing as a spontaneous absorption.)

The balance of photons gives:

(3) \(~ ~ ~ n_2\sigma_{\rm e}(\omega) v(\omega)D(\omega)+n_2 a(\omega)= n_1\sigma_{\rm a}(\omega) v(\omega)D(\omega) \)

Which can be rewritten as

(4) \(\displaystyle ~ ~ ~ D(\omega)= \frac{\frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega) v(\omega)}} {\frac{n_1}{n_2} \frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega)}-1} \)

The thermal distribution of density of photons follows from the laws of the blackbody radiation

(5) \(\displaystyle ~~ ~ ~ D(\omega)~=~ \frac{\frac{1}{\pi^2} \frac{\omega^2}{c^3}} {\exp\!\left(\frac{\hbar\omega}{k_{\rm B}T}\right)-1} \)

Both (4) and (5) hold for all frequencies \(~\omega~\). For the case of idealized two-level active centers, \(~\sigma_{\rm a}(\omega)=\sigma_{\rm e}(\omega)~\), and \(~n_1/n_2=\exp\!\left( \frac{\hbar\omega}{k_{\rm B}T} \right)\), which leads to the relation between the spectral rate of spontaneous emission \(a(\omega)\) and the emission cross-section \(~\sigma_{\rm e}(\omega)~\) . (We keep the term probability of emission for the quantity \(~\sigma_{\rm a}(\omega){\rm d}\omega{\rm d}t~\), which is probability of emission of a photon within small spectral interval \(~(\omega,\omega+{\rm d}\omega)~\) during a short time interval \(~(t,t+{\rm d}t)~\), assuming that at time \(~t~\) the atom is excited.) The relation (1) is fundamental property of spontaneous and stimulated emission, and perhaps the only way to prohibit a spontaneous break of the thermal equilibrium in the thermal state of excitations and photons.

For each site number \(~s~\), for each sublevel number \(j\), the partial spectral emission probability \(~a_{s,j}(\omega)~\) can be expressed from consideration of idealized two-level atoms

(6) \(~ ~ ~ a_{s,j}(\omega)=\sigma_{s,j}(\omega) \frac{\omega^2 v(\omega)}{\pi^2c^3}~~. \)

Neglecting the cooperative coherent effects, the emission is additive: for any concentration \(~q_{s}~\) of sites and for any partial population \(~n_{s,j}~\) of sublevels, the same proportionality between \(~\sigma{\rm a}~\) and \(~\sigma_{\rm e}~\) holds for the effective cross-sections:

(7) \( ~ ~ ~ \frac{\sigma_{\rm a}(\omega)}{\sigma_{\rm e}(\omega)}= \frac{\omega^2 v(\omega)}{\pi^2c^3} \)

Then, the comparison of (D1) and (D2) gives the relation

(8) \(~ ~ ~ \frac{n_1}{n_2} \frac{\sigma_{\rm a}(\omega)} {\sigma_{\rm e}(\omega)}= \exp\!\left( \frac{\hbar\omega}{k_{\rm B}T}\right)~~. \)

This relation is equivalent of the McCumber relation (mc), if we define the zero-line frequency \(\omega_{Z}\) as solution of equation

(9) \(~ ~ \left(\frac{n_2}{n_1}\right)_{\!T}= \exp\!\left(\frac{\hbar \omega_{\rm Z}}{k_{\rm B}T}\right) \)

The subscript \(~T~\) indicates that the ratio of populations in evaluated in the thermal state. The zero-line frequency can be expressed as

(10) \( ~ ~ ~ \omega_{\rm Z}=\frac{k_{\rm B}T}{\hbar} \ln \left(\frac{n_1}{n_2}\right)_{T} \)

Then (10) becomes an equivalent of the McCumber relation (mc).

No specific property of sublevels of active medium is required to keep the McCumber relation. It follows from the assumption about quick transfer of energy among excited laser levels and among lower laser levels. The McCumber relation (mc) has the same range of validity as the concept of the emission cross-section itself.

Confirmation of the McCumber relation

The McCumber relation is confirmed for various media [5][6]. In particular relation (1) makes it possible to approximate two functions of frequency, emission and absorption cross sections, with single fit [7].

Violation of McCumber leads to perpetual motion

MacCumberViFig1.jpg Fig.2. Cross-sections for Yb:Gd2SiO5 versus \( \lambda\) reported [8][9][10] (thick lines) and correction of \(\sigma_{\mathrm{emission}}\) by [3] (thin black line).

In 2006 the strong violation of McCumber relation was "observed" for Yb:Gd2SiO5 and reported in 3 independent journals [8][9][10]. Typical dependence of the effective cross-sections on \( \lambda=\frac{2\pi c}{\omega}\) reported is shown in FIg.2 with thick curves. The emission cross-section is practically zero at wavelength 975nm; this property makes Yb:Gd2SiO5 an excellent material for efficient solid-state lasers.

However, the property reported (thick curves) is not compatible with the Second Law of thermodynamics. With such a material, the Perpetual motion device would be possible. It would be sufficient to fill a box with reflecting walls with Yb:Gd2SiO5 and allow it to exchange radiation with a blackbody through a spectrally-selective window which is transparent in vicinity of 975nm and reflective at other wavelengths. Due to the lack of emissivity at 975nm the medium should warm, breaking the thermal equilibrium.

On the base of the McCumber relation, the experimental results [8][9] were corrected [3], see figure at right; then this correction had been confirmed experimentally[11].

Conclusions

The McCumber relation (1) seems to be the only way to prohibit the perpetual motion of Second kind in the two–level approximation. Any deviation of the cross-sections from the McCumber relation leads to the violation of the Second Law of thermodynamics. In this sense, the range of validity of the MacCumber relation is the same, as the range of validity of concept of existence of the effective cross-sections.

References

  1. 1.0 1.1 http://prola.aps.org/abstract/PR/v136/i4A/pA954_1 D.E.McCumber. Einstein relations connecting broadband emission and absorption spectra. PRB 136 (4A), 954–957 (1964)
  2. 2.0 2.1 http://www.sciencedirect.com/science/book/9780120845903 P.C.Becker, N.A.Olson, J.R.Simpson. Erbium-doped fiber amplifiers: fundamentals and theory (Academic, 1999).
  3. 3.0 3.1 3.2 http://www.ils.uec.ac.jp/~dima/PAPERS/ApplPhysLett_90_066101.pdf
    http://mizugadro.mydns.jp/PAPERS/ApplPhysLett_90_066101.pdf D. Kouznetsov. Comment on Efficient diode-pumped Yb:Gd2SiO5 laser (Appl.Phys.Lett.88,221117(2006)). APL, v.90, p.066101 (2007)
  4. http://www.ils.uec.ac.jp/~dima/PAPERS/2007mc.pdf
    http://mizugadro.mydns.jp/PAPERS/2007mc.pdf D.Kouznetsov. Broadband laser materials and the McCumber relation. Chinese Optics Letters v.5, p.S240–S242 (2007)
  5. http://jap.aip.org/resource/1/japiau/v92/i1/p180_s1 R.S.Quimby, . Range of validity of McCumber theory in relating absorption and emission cross sections J. Appl. Phys. 92 p.180–187 (2002)
  6. http://josab.osa.org/abstract.cfm?id=97826 R.M.Martin, R.S.Quimby. Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses JOSAB 23 p.1770–1775 (2006)
  7. http://josab.osa.org/abstract.cfm?id=84730 D.Kouznetsov, J.-F.Bisson, K.Takaichi, K.Ueda. Single-mode solid-state laser with short wide unstable cavity JOSAB 22 p.1605–1619 (2005)
  8. 8.0 8.1 8.2 http://apl.aip.org/resource/1/applab/v88/i22/p221117_s1 Wenxue Li, Haifeng Pan, Liang’en Ding, Heping Zeng, Wei Lu, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu. Efficient diode-pumped Yb:Gd_2 Si O_5 laser. Appl.Phys.Lett. v.88, 221117 (2006)
  9. 9.0 9.1 9.2 http://dx.doi.org/10.1364/OE.14.006681 Wenxue Li, Shixiang Xu, Haifeng Pan, Liangen Ding, Heping Zeng, Wei Lu, Chunlei Guo, Guangjun Zhao, Chengfeng Yan, Liangbi Su, and Jun Xu. Efficient tunable diode-pumped Yb:LYSO laser. Optics Express, Vol. 14, Issue 15, pp. 6681-6686 (2006), doi 10.1364/OPEX.14.000686
  10. 10.0 10.1 http://www.sciencedirect.com/science/article/pii/S0038109805010094
    http://210.72.9.5:8080/thesis/2006/2/17/142414.pdf C.Yan, G.Zhao, L.Zhang, J.Xu, X.Liang, D.Juan, W.Li, H.Pan, L.Ding, H.Zeng. A new Yb-doped oxyorthosilicate laser crystal: Yb: Gd_2 Si O_5. Solid State Comm. v.137, 451-455 (2006)
  11. http://apl.aip.org/resource/1/applab/v90/i6/p066103_s1 G.Zhao, . Response to Comment on Efficient diode-pumped Yb:Gd2SiO5 laser (Appl. Phys. Lett. 90, 066101 2007) APL 90 p.066103 (2007)