Difference between revisions of "Navier-Stokes equation"

From TORI
Jump to: navigation, search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 9: Line 9:
 
In the simple case,
 
In the simple case,
 
it can be formulated as follows:
 
it can be formulated as follows:
: $ \rho \, \Big(\dot{\vec v}+ (\vec v \cdot \nabla) \vec v \Big)=
+
: \( \rho \, \Big(\dot{\vec v}+ (\vec v \cdot \nabla) \vec v \Big)=
-\nabla p + \mu \nabla^2 \vec v + \vec f$
+
-\nabla p + \mu \nabla^2 \vec v + \vec f\)
: $ \dot \rho + \nabla (\rho \vec v)=0$
+
: \( \dot \rho + \nabla (\rho \vec v)=0\)
: $ p=P(\rho)$
+
: \( p=P(\rho)\)
Functions $P$ and $\vec f\!=\!\vec f(x)$ are supposed to be given; $\nabla$ differentiates with respect to coordinates $x$; $\mu$ is real constant.
+
Functions \(P\) and \(\vec f\!=\!\vec f(x)\) are supposed to be given; \(\nabla\) differentiates with respect to coordinates \(x\); \(\mu\) is real constant.
 
==Play with systems of coordinates==
 
==Play with systems of coordinates==
 
===Cylindric coordinates===
 
===Cylindric coordinates===
   
 
In the cylindric coordinates, the equation can be written as follows:
 
In the cylindric coordinates, the equation can be written as follows:
: $
+
: \(
 
\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\phi}^2}{r}\right) =
 
\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\phi}^2}{r}\right) =
 
-\frac{\partial p}{\partial r} +
 
-\frac{\partial p}{\partial r} +
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2}-\frac{u_r}{r^2}-\frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r$
+
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2}-\frac{u_r}{r^2}-\frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r\)
: $
+
: \(
 
\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + u_z \frac{\partial u_{\phi}}{\partial z} + \frac{u_r u_{\phi}}{r}\right) =
 
\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + u_z \frac{\partial u_{\phi}}{\partial z} + \frac{u_r u_{\phi}}{r}\right) =
 
-\frac{1}{r}\frac{\partial p}{\partial \phi} +
 
-\frac{1}{r}\frac{\partial p}{\partial \phi} +
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{\partial^2 u_{\phi}}{\partial z^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi}$
+
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{\partial^2 u_{\phi}}{\partial z^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi}\)
: $
+
: \(
 
\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_z}{\partial \phi} + u_z \frac{\partial u_z}{\partial z}\right) =
 
\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_z}{\partial \phi} + u_z \frac{\partial u_z}{\partial z}\right) =
-\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_z}{\partial \phi^2} + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z$
+
-\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_z}{\partial \phi^2} + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z\)
   
 
===Polar coordinates===
 
===Polar coordinates===
 
In the bi-dimensional case, the cylindric coordinates become the polar ones;
 
In the bi-dimensional case, the cylindric coordinates become the polar ones;
: $
+
: \(
 
\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}^2}{r}\right) =
 
\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}^2}{r}\right) =
 
-\frac{\partial p}{\partial r} +
 
-\frac{\partial p}{\partial r} +
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} -\frac{u_r}{r^2}-\frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r$
+
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} -\frac{u_r}{r^2}-\frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r\)
: $
+
: \(
 
\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_r u_{\phi}}{r}\right) =
 
\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_r u_{\phi}}{r}\right) =
 
-\frac{1}{r}\frac{\partial p}{\partial \phi} +
 
-\frac{1}{r}\frac{\partial p}{\partial \phi} +
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi}$
+
\mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi}\)
   
 
===Case of symmetric solenoidal flow===
 
===Case of symmetric solenoidal flow===
For the symmetric solenoidal flow, $v_r$ and all the derivatives with respect to $\phi$ can be neglected; this leads to
+
For the symmetric solenoidal flow, \(v_r\) and all the derivatives with respect to \(\phi\) can be neglected; this leads to
: $
+
: \(
\rho \frac{u_{\phi}^2}{r} = \frac{\partial p}{\partial r} $
+
\rho \frac{u_{\phi}^2}{r} = \frac{\partial p}{\partial r} \)
: $
+
: \(
 
\rho \frac{\partial u_{\phi}}{\partial t} =
 
\rho \frac{\partial u_{\phi}}{\partial t} =
\mu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) - \mu \frac{u_\phi}{r^2}$
+
\mu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) - \mu \frac{u_\phi}{r^2}\)
   
These equations can be used to construct the quasi-stationary idealization of curl: $\partial p/\partial r=\frac{\rho}{r} u_\phi^2$, and the relaxation rate is determined by the
+
These equations can be used to construct the quasi-stationary idealization of curl: \(\partial p/\partial r=\frac{\rho}{r} u_\phi^2\), and the relaxation rate is determined by the
: $
+
: \(
 
\frac{\partial u_{\phi}}{\partial t} =
 
\frac{\partial u_{\phi}}{\partial t} =
\nu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) - \nu \frac{u_\phi}{r^2}$
+
\nu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) - \nu \frac{u_\phi}{r^2}\)
where $~\nu=\mu/\rho~$ is kinematic viscosity.
+
where \(~\nu=\mu/\rho~\) is kinematic viscosity.
For the air, [[Landafshitz]] suggest the estimete $\nu\approx 0.15~ \rm cm^2/sec$ while the density of air $\rho \approx 1.2~ \rm kg/m^3$.
+
For the air, [[Landafshitz]] suggest the estimete \(\nu\approx 0.15~ \rm cm^2/sec\) while the density of air \(\rho \approx 1.2~ \rm kg/m^3\).
   
 
The last equation determines the decay of the curl in the approximation without turbulence. The angular momentum conserves; therefore, while the curl is alone, the only decay allowed is the spreading.
 
The last equation determines the decay of the curl in the approximation without turbulence. The angular momentum conserves; therefore, while the curl is alone, the only decay allowed is the spreading.
Line 76: Line 76:
 
==Navier-Stokes from the variational principle==
 
==Navier-Stokes from the variational principle==
 
The Navier-Stokes equations follow from the [[principle of the stationary action]] for the Lagrangian
 
The Navier-Stokes equations follow from the [[principle of the stationary action]] for the Lagrangian
: $ \displaystyle \mathcal L=u_k (u_{k,0} + u_{k,j} u_j+ b_k)- \frac{\nu}{2} (u_{i,j}+u_{j,i})^2 $
+
: \( \displaystyle \mathcal L=u_k (u_{k,0} + u_{k,j} u_j+ b_k)- \frac{\nu}{2} (u_{i,j}+u_{j,i})^2 \)
 
under assumption, that variation of velocities does not affect variation of the accelerations
 
under assumption, that variation of velocities does not affect variation of the accelerations
 
<ref name="enrico">http://www.icatweb.org/vol7/7.3/06-scubba.pdf} Enrico Sciubba. Flow Exergy as a Lagrangian for the Navier-Stokes Equations for Incompressible Flow. Int. J. Thermodynamics, ISSN 1301-9724 Vol. 7, (No. 3), pp.115-122, September-2004
 
<ref name="enrico">http://www.icatweb.org/vol7/7.3/06-scubba.pdf} Enrico Sciubba. Flow Exergy as a Lagrangian for the Navier-Stokes Equations for Incompressible Flow. Int. J. Thermodynamics, ISSN 1301-9724 Vol. 7, (No. 3), pp.115-122, September-2004

Latest revision as of 18:26, 30 July 2019

Breaking of the idealized ocean wave

Navier-Stokes equation is system of equations for the vector of velosity of some isotropic fluid [1]. In the simple case, it can be formulated as follows:

\( \rho \, \Big(\dot{\vec v}+ (\vec v \cdot \nabla) \vec v \Big)= -\nabla p + \mu \nabla^2 \vec v + \vec f\)
\( \dot \rho + \nabla (\rho \vec v)=0\)
\( p=P(\rho)\)

Functions \(P\) and \(\vec f\!=\!\vec f(x)\) are supposed to be given; \(\nabla\) differentiates with respect to coordinates \(x\); \(\mu\) is real constant.

Play with systems of coordinates

Cylindric coordinates

In the cylindric coordinates, the equation can be written as follows:

\( \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\phi}^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} + \frac{\partial^2 u_r}{\partial z^2}-\frac{u_r}{r^2}-\frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r\)
\( \rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + u_z \frac{\partial u_{\phi}}{\partial z} + \frac{u_r u_{\phi}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{\partial^2 u_{\phi}}{\partial z^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi}\)
\( \rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_z}{\partial \phi} + u_z \frac{\partial u_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_z}{\partial \phi^2} + \frac{\partial^2 u_z}{\partial z^2}\right] + \rho g_z\)

Polar coordinates

In the bi-dimensional case, the cylindric coordinates become the polar ones;

\( \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \phi^2} -\frac{u_r}{r^2}-\frac{2}{r^2}\frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r\)
\( \rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\phi}}{r} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_r u_{\phi}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\phi}}{\partial \phi^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}\right] + \rho g_{\phi}\)

Case of symmetric solenoidal flow

For the symmetric solenoidal flow, \(v_r\) and all the derivatives with respect to \(\phi\) can be neglected; this leads to

\( \rho \frac{u_{\phi}^2}{r} = \frac{\partial p}{\partial r} \)
\( \rho \frac{\partial u_{\phi}}{\partial t} = \mu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) - \mu \frac{u_\phi}{r^2}\)

These equations can be used to construct the quasi-stationary idealization of curl: \(\partial p/\partial r=\frac{\rho}{r} u_\phi^2\), and the relaxation rate is determined by the

\( \frac{\partial u_{\phi}}{\partial t} = \nu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial u_{\phi}}{\partial r}\right) - \nu \frac{u_\phi}{r^2}\)

where \(~\nu=\mu/\rho~\) is kinematic viscosity. For the air, Landafshitz suggest the estimete \(\nu\approx 0.15~ \rm cm^2/sec\) while the density of air \(\rho \approx 1.2~ \rm kg/m^3\).

The last equation determines the decay of the curl in the approximation without turbulence. The angular momentum conserves; therefore, while the curl is alone, the only decay allowed is the spreading.

Exact solutions

The exact solutions for the Navier-Stokes equation are available for some symmetric cases. Such solutions will be collected in the special article Analytic solutions of the Navier-Stokes equation.

Numerical solutions

The hundreds programmers work on the efficient numerical approximation for the solutions of the Navier-Stokes equation during a half-century; Some commercial packets are available [2]. For the beginning of century 21, the achievements are modest. For example, the efficient approximation of the Serega function that describe the shape of the breaking of the idealized oceanic wave (see the picture at the top) is not loaded.

There is special wiki dedicated to the numerical analysis of the equation of Navier-Stokes [3], that offers the collection of descriptions of the numerous software for the semi-authomatic approximation of its solutions.


Navier-Stokes from the variational principle

The Navier-Stokes equations follow from the principle of the stationary action for the Lagrangian

\( \displaystyle \mathcal L=u_k (u_{k,0} + u_{k,j} u_j+ b_k)- \frac{\nu}{2} (u_{i,j}+u_{j,i})^2 \)

under assumption, that variation of velocities does not affect variation of the accelerations [4].

Such a deduction is loaded as Navier-Stokes from variational principle. The deduction is, softly speaking, doubtful; so, the concept needs confirmation. In particular, the efficient approximations of the solutions could follow from such a strange variational principle.

References

  1. http://www.scribd.com/doc/8314363/Fluid-Mechanics-L-D-Landau-E-M-Lifschitz L.D.Landau. E.M.Lifshitz. Fluid Mechanics. Volume 6 of the course of Theoretical Physics, Translation from Russian by J.B.Sykes and W.H.Reid. par.15, page 45, eq.(15.7)
  2. http://www.ih2vof.ihcantabria.com/ IH2VOF solves the two-dimensional wave flow for hybrid domains in a coupled NS-type equation system..
  3. http://www.cfd-online.com/Wiki/ community project to create the Computational Fluid Dynamics reference
  4. http://www.icatweb.org/vol7/7.3/06-scubba.pdf} Enrico Sciubba. Flow Exergy as a Lagrangian for the Navier-Stokes Equations for Incompressible Flow. Int. J. Thermodynamics, ISSN 1301-9724 Vol. 7, (No. 3), pp.115-122, September-2004

http://home.comcast.net/~cmdaven/navier.htm Clyde M. Davenport. Incompressible Navier-Stokes equations reduce to Bernoulli's Law © 2003, 2008
http://www.cfd-online.com/Wiki/Navier-Stokes_equations
http://mathworld.wolfram.com/Navier-StokesEquations.html
http://universe-review.ca/R13-10-NSeqs.htm
http://www.claymath.org/millennium/Navier-Stokes_Equations/
http://www.grc.nasa.gov/WWW/k-12/airplane/nseqs.html
http://en.wikipedia.org/wiki/Navier–Stokes_equations