Difference between revisions of "SdPow"

From TORI
Jump to: navigation, search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 1: Line 1:
 
[[File:Superpower2plot.jpg|360px|thumb|Fig.1. Quadratic function (black curve) and two its [[superfunction]]s]]
 
[[File:Superpower2plot.jpg|360px|thumb|Fig.1. Quadratic function (black curve) and two its [[superfunction]]s]]
[[File:SdPow2map.jpg|360px|thumb|Fig.2. $u\!+\mathrm i v=\mathrm{SdPow}_2(x\!+\mathrm i y)$]]
+
[[File:SdPow2map.jpg|360px|thumb|Fig.2. \(u\!+\mathrm i v=\mathrm{SdPow}_2(x\!+\mathrm i y)\)]]
   
   
[[SdPow]] is specific [[superpower]] function, id est, the [[superfunction]] of the [[power function]] $~z\mapsto z^a\!=\!\exp(\ln(z) \,a)~$
+
[[SdPow]] is specific [[superpower]] function, id est, the [[superfunction]] of the [[power function]] \(~z\mapsto z^a\!=\!\exp(\ln(z) \,a)~\)
 
 
For given parameter $a$,
+
For given parameter \(a\),
   
$\mathrm{SdPow}_a(z)=\exp(a^z)$
+
\(\mathrm{SdPow}_a(z)=\exp(a^z)\)
   
Usually, it is assumed, that $a\!>\!1$.
+
Usually, it is assumed, that \(a\!>\!1\).
   
 
==Transfer function==
 
==Transfer function==
Function $F\!=\!\mathrm{SdPow}_a$ is [[superfunction]] for the
+
Function \(F\!=\!\mathrm{SdPow}_a\) is [[superfunction]] for the
specific [[power function]] $T(z)\!=\!z^a$.
+
specific [[power function]] \(T(z)\!=\!z^a\).
 
The superfunction satisfies the [[transfer equation]]
 
The superfunction satisfies the [[transfer equation]]
   
$T(F(z))=F(z\!+\!1)$
+
\(T(F(z))=F(z\!+\!1)\)
   
For this specific transfer function $T$, the two real-holomorphix solutions are [[SuPow]] and [[SdPow]]:
+
For this specific transfer function \(T\), the two real-holomorphix solutions are [[SuPow]] and [[SdPow]]:
   
$\mathrm{SdPow}_a(z)=\exp(-a^z)$
+
\(\mathrm{SdPow}_a(z)=\exp(-a^z)\)
   
$\mathrm{SuPow}_a(z)=\exp(a^z)$
+
\(\mathrm{SuPow}_a(z)=\exp(a^z)\)
   
For the [[power function]] both, the [[superfunction]]s and the [[Abel function]]s can be expressed as elementary functions. For $a\!=\!2$, these functions are who functions are shown in Fig.1.
+
For the [[power function]] both, the [[superfunction]]s and the [[Abel function]]s can be expressed as elementary functions. For \(a\!=\!2\), these functions are who functions are shown in Fig.1.
   
For the same $a\!=\!2$, the [[complex map]] of function [[SdPow]] is shown in FIg.2.
+
For the same \(a\!=\!2\), the [[complex map]] of function [[SdPow]] is shown in FIg.2.
   
 
==References==
 
==References==

Latest revision as of 18:48, 30 July 2019

Fig.1. Quadratic function (black curve) and two its superfunctions
Fig.2. \(u\!+\mathrm i v=\mathrm{SdPow}_2(x\!+\mathrm i y)\)


SdPow is specific superpower function, id est, the superfunction of the power function \(~z\mapsto z^a\!=\!\exp(\ln(z) \,a)~\)

For given parameter \(a\),

\(\mathrm{SdPow}_a(z)=\exp(a^z)\)

Usually, it is assumed, that \(a\!>\!1\).

Transfer function

Function \(F\!=\!\mathrm{SdPow}_a\) is superfunction for the specific power function \(T(z)\!=\!z^a\). The superfunction satisfies the transfer equation

\(T(F(z))=F(z\!+\!1)\)

For this specific transfer function \(T\), the two real-holomorphix solutions are SuPow and SdPow:

\(\mathrm{SdPow}_a(z)=\exp(-a^z)\)

\(\mathrm{SuPow}_a(z)=\exp(a^z)\)

For the power function both, the superfunctions and the Abel functions can be expressed as elementary functions. For \(a\!=\!2\), these functions are who functions are shown in Fig.1.

For the same \(a\!=\!2\), the complex map of function SdPow is shown in FIg.2.

References


Keywords

AdPow, Elementary function, Power function, SdPow, SuPow, Superfunction Superpower