Difference between revisions of "Theorem on increment of tetration"

From TORI
Jump to: navigation, search
(References)
Line 1: Line 1:
  +
<div class="thumb tright" style="float:right;width:322px">
[[Theorem on increment of tetration]] is statement about asymptotic behavior of solution of the [[Transfer equation]] with exponential transfer functions. It applies not only to [[tetration]], but also to other superexponentials.
 
  +
<div style="width:340px">
  +
[[File:TetKK200.png|340px]]<small>
  +
Fig.1. Asymptoric parameters of [[Tetration]] versus \(\beta\)
  +
</small>
  +
</div></div>
  +
  +
[[Theorem on increment of tetration]] is statement about asymptotic behavior of solution of the [[Transfer equation]] with exponential transfer functions.
  +
  +
The matter of the Theorem is coincidence of two curves (thick red and thin black) in Fig.1.
  +
These curves represent imaginary part of the growing factor \(K\) and that of the increment \(k\) of the asymptotic solution versus logarithm of the base.
  +
From the first glance, the strange overlapping of the curves may look as an error.
  +
The Theorem indicates, that it is not an occasional coincidence, but the unavoidable equality.
  +
  +
The therorem applies not only to [[tetration]], but also to other superexponentials.
   
 
==Statement==
 
==Statement==
Line 22: Line 36:
   
 
\( \Im(K) = \Im(k) \)
 
\( \Im(K) = \Im(k) \)
  +
  +
==Proof==
  +
  +
Substitution of the asymptotic of solutioun \(F\) into the transfer equation gives
  +
  +
\( K=\beta L = \ln(\beta) \)
  +
  +
Then, \( \exp(k)=\beta L\)
  +
  +
\( k=\ln(\beta\, L) =\)
  +
\(\ln(L) + \ln(\beta) =\)
  +
\(K + \ln(\beta) \)
  +
  +
While \( \beta >0 \), its logarithm is real.<br>
  +
Hence, the imaginary parts of \(k\) and \(K\) are the same.
  +
  +
(End of proof)
  +
  +
The quantities mentioned are plotted in Fig.1 as functions of \(\beta\)
  +
 
==Applications==
 
==Applications==
<div style="float:right;width:300px">
 
<div style="width:320px">
 
[[File:TetKK200.png|320px]]<small>
 
Fig.1. Asymptoric parameters of [[Tetration]] versus \(\beta\)
 
</small>
 
</div></div>
 
 
Fig.1 shows the asymptotic parameters of [[tetration]] to base \(\ln(\beta)\):
 
Fig.1 shows the asymptotic parameters of [[tetration]] to base \(\ln(\beta)\):
   
Line 37: Line 65:
 
and
 
and
   
\(L=L_1=\) [[Filog]]\((\beta^*)^*\)
+
\(L=L_2=\) [[Filog]]\((\beta^*)^*\)
   
 
Real and imaginary parts of the asymptotic growing factor
 
Real and imaginary parts of the asymptotic growing factor
Line 53: Line 81:
   
 
The imaginary parts of \(K\) and \(k\) coincide.
 
The imaginary parts of \(K\) and \(k\) coincide.
  +
 
==References==
 
==References==
 
<references/>
 
<references/>
 
 
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi [[Hellmuth Kneser]]. Reelle analytische Lösungen der Gleichung \(\varphi(\varphi(x)=e^x\) und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67
 
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi [[Hellmuth Kneser]]. Reelle analytische Lösungen der Gleichung \(\varphi(\varphi(x)=e^x\) und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67
   
 
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br>
 
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br>
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
+
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. [[Mathematics of Computation]], v.78 (2009), 1647-1670.
   
http://www.vmj.ru/articles/2010_2_4.pdf D.Kouznetsov. Superexponential as special function. [[Vladikavkaz Mathematical Journal]], 2010, v.12, issue 2, p.31-45, In Russian. English version:
+
http://www.vmj.ru/articles/2010_2_4.pdf D.Kouznetsov. Superexponential as special function. [[Vladikavkaz Mathematical Journal]], 2010, v.12, issue 2, p.31-45, Russian version. <br>
  +
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vmj&paperid=10&option_lang=eng
  +
D.Yu.Kuznetsov. “Tetrational as special function”, Vladikavkaz. Mat. Zh., 12:2 (2010), 31–45,
  +
English version.
   
 
http://link.springer.com/article/10.1007/s10444-017-9524-1 [[William Paulsen]] and [[Samuel Cowgill]]. Solving F(z+1)=bF(z) in the complex plane. Advances in Computational Mathematics, 2017 March 7, p. 1–22
 
http://link.springer.com/article/10.1007/s10444-017-9524-1 [[William Paulsen]] and [[Samuel Cowgill]]. Solving F(z+1)=bF(z) in the complex plane. Advances in Computational Mathematics, 2017 March 7, p. 1–22

Revision as of 14:25, 12 August 2020

TetKK200.png Fig.1. Asymptoric parameters of Tetration versus \(\beta\)

Theorem on increment of tetration is statement about asymptotic behavior of solution of the Transfer equation with exponential transfer functions.

The matter of the Theorem is coincidence of two curves (thick red and thin black) in Fig.1. These curves represent imaginary part of the growing factor \(K\) and that of the increment \(k\) of the asymptotic solution versus logarithm of the base. From the first glance, the strange overlapping of the curves may look as an error. The Theorem indicates, that it is not an occasional coincidence, but the unavoidable equality.

The therorem applies not only to tetration, but also to other superexponentials.

Statement

Let \(F\) be solution of equation

\(F(z\!+\!1)=\exp\big(\beta F(z)\big)\)

for some \(\beta>0\).

Let \(L\) be the fixed point, id est, \(\exp(\beta L)=L\)

Let \(F(z)=L+\varepsilon+O(\varepsilon^2) \)

where \(\varepsilon = \exp(kz) \) for some increment \(k\).

Let \(~ K\!=\!\exp(k)\)

Then

\( \Im(K) = \Im(k) \)

Proof

Substitution of the asymptotic of solutioun \(F\) into the transfer equation gives

\( K=\beta L = \ln(\beta) \)

Then, \( \exp(k)=\beta L\)

\( k=\ln(\beta\, L) =\) \(\ln(L) + \ln(\beta) =\) \(K + \ln(\beta) \)

While \( \beta >0 \), its logarithm is real.
Hence, the imaginary parts of \(k\) and \(K\) are the same.

(End of proof)

The quantities mentioned are plotted in Fig.1 as functions of \(\beta\)

Applications

Fig.1 shows the asymptotic parameters of tetration to base \(\ln(\beta)\):

Real and imaginary parts of the fixed points

\(L=L_1=\) Filog\((\beta)\)

and

\(L=L_2=\) Filog\((\beta^*)^*\)

Real and imaginary parts of the asymptotic growing factor

\(K= \beta L\)

Real and imaginary parts of the asymptotic increment

\(k=\ln(K) \)

For \(\beta < 1/\mathrm e\), the two fixed points are shown; and the two values of the corresponding growing factor and two values of the corresponding increment are drown.

For real positive \(\beta\),

The imaginary parts of \(K\) and \(k\) coincide.

References

http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi Hellmuth Kneser. Reelle analytische Lösungen der Gleichung \(\varphi(\varphi(x)=e^x\) und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67

http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.

http://www.vmj.ru/articles/2010_2_4.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45, Russian version.
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vmj&paperid=10&option_lang=eng D.Yu.Kuznetsov. “Tetrational as special function”, Vladikavkaz. Mat. Zh., 12:2 (2010), 31–45, English version.

http://link.springer.com/article/10.1007/s10444-017-9524-1 William Paulsen and Samuel Cowgill. Solving F(z+1)=bF(z) in the complex plane. Advances in Computational Mathematics, 2017 March 7, p. 1–22

https://www.morebooks.de/store/gb/book/superfunctions/isbn/978-620-2-67286-3 Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020.

Keywords

Asymptotic analysis, Filog, Fixed point, Growing factor, Increment, Kneser Expansion, Superfunction, Tetration