Difference between revisions of "File:E1efig09abc1a150.png"
(Importing image file) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Complex map]]s of [[tetration]] $\mathrm{tet}_b$ to base<br> |
||
− | Importing image file |
||
+ | $b\!=\!1.5$ , left, <br> |
||
+ | $b\!=\!\exp(1/\mathrm e)$ , center, and<br> |
||
+ | $b\!=\!\sqrt{2}$ , right. |
||
+ | |||
+ | $f\!=\! \mathrm{tet}(x\!+\!\mathrm i y)$ is shown in the $x,y$ plane with levels |
||
+ | $~p\!=\!\Re(f)\!=\! \mathrm{const}~$ and levels |
||
+ | $~q\!=\!\Im(f)\!=\! \mathrm{const}~$. The integer levels are shown with thick lines. |
||
+ | |||
+ | This image is close to the figure 9 in the article |
||
+ | <ref name="e1e"> |
||
+ | http://tori.ils.uec.ac.jp/PAPERS/2011e1e.pdf |
||
+ | H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). (Mathematics of Computation, 2011, in press) |
||
+ | </ref>. |
||
+ | |||
+ | The [[C++]] generators of the pictures used in the figure are available and will be uploaded upon request. |
||
+ | |||
+ | Copyleft 2011 by Dmitrii Kouznetsov. You may copy, modify and/or distribute the image for free but the source should be attributed. |
||
+ | |||
+ | ==[[C++]] generator of first map, $b\!=\!1.5$ == |
||
+ | |||
+ | In order to compile the code below, |
||
+ | the following files should be loaded: |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]], |
||
+ | [[GLxw2048.inc]], |
||
+ | [[f2048b15.inc]], |
||
+ | [[f15.cin]] |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include<complex> |
||
+ | typedef complex<double> z_type; |
||
+ | |||
+ | // #include <complex.h> |
||
+ | // #define z_type complex<double> |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | //DB T22=-8.5715740896774235522; |
||
+ | //DB T42= 9.6180745210214273558; |
||
+ | //#include "f21E.cin" |
||
+ | //#include "e1etf.cin" |
||
+ | #include "f15.cin" |
||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | // int M=201,M1=M+1; |
||
+ | // int N=401,N1=N+1; |
||
+ | int M=81,M1=M+1; |
||
+ | int N=161,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | // FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92); |
||
+ | // FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212); |
||
+ | // FILE *o;o=fopen("be1ezoom.eps","w"); ado(o,0,0,87,87); |
||
+ | FILE *o;o=fopen("b15zoom.eps","w"); ado(o,87,87); |
||
+ | fprintf(o,"46 45 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]=-4.+.1*(m-.5); |
||
+ | DO(n,N1) Y[n]=-4.+.05*(n-.5); |
||
+ | for(m=-4;m<5;m++) {M(m,-4)L(m,4)} |
||
+ | for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n"); |
||
+ | for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);} |
||
+ | for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);} |
||
+ | for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);} |
||
+ | for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);} |
||
+ | /* |
||
+ | fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n"); |
||
+ | //fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n"); |
||
+ | M(-4.7, 4.5) fprintf(o,"(y)s\n"); |
||
+ | M( 4.6,-4.8) fprintf(o,"(x)s\n"); |
||
+ | M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n"); |
||
+ | */ |
||
+ | |||
+ | //z_type tm,tp,F[M1*N1];; |
||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DB b=sqrt(2); |
||
+ | DO(m,M1){x=X[m]; printf("x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | if(abs(z+2.)>.04) |
||
+ | { |
||
+ | // c=F21E(z); |
||
+ | // c=E1ETF(z); |
||
+ | c=F15(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-9999 && p<9999) g[m*N1+n]=p; |
||
+ | if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q; |
||
+ | } |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | p=2.; q=1.1;; |
||
+ | #include "plofu.cin" |
||
+ | |||
+ | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
+ | // p=1.e-15; |
||
+ | // for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) ) |
||
+ | ; } |
||
+ | //y=2*M_PI/log(2.); |
||
+ | // y=M_PI/log(log(2)); |
||
+ | //y=9.064720284; |
||
+ | |||
+ | // M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n"); |
||
+ | // |
||
+ | // DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) } |
||
+ | // fprintf(o,".11 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | //M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some pri |
||
+ | nters |
||
+ | |||
+ | //M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n"); |
||
+ | fprintf(o,"%cTrailer\n",'%'); |
||
+ | fclose(o); |
||
+ | // system( "gv b15zoom.eps &"); //for UNIX |
||
+ | system( "open b15zoom.eps"); //for macintosh |
||
+ | system("epstopdf b15zoom.eps"); |
||
+ | // system( "xpdf be1ezoom.pdf"); // for LINUX |
||
+ | getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[C++]] generator of second map== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[C++]] generator of third map, $b\!=\!\sqrt{2}\!\approx\!1.41$== |
||
+ | Files required: |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]], |
||
+ | [[sqrt2f21e.cin]] |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include<complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | |||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | DB T22=-8.5715740896774235522; |
||
+ | DB T42= 9.6180745210214273558; |
||
+ | //#include "f21E.cin" |
||
+ | #include "sqrt2f21e.cin" |
||
+ | //#include "e1etf.cin" |
||
+ | //#include "f15.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | // int M=201,M1=M+1; |
||
+ | // int N=401,N1=N+1; |
||
+ | int M=81,M1=M+1; |
||
+ | int N=161,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | // FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92); |
||
+ | // FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212); |
||
+ | // FILE *o;o=fopen("bq2zoom.eps","w"); ado(o,87,87); |
||
+ | FILE *o;o=fopen("e1e09q2.eps","w"); ado(o,87,87); |
||
+ | fprintf(o,"46 45 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]=-4.+.1*(m-.5); |
||
+ | DO(n,N1) Y[n]=-4.+.05*(n-.5); |
||
+ | for(m=-4;m<5;m++) {M(m,-4)L(m,4)} |
||
+ | for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | /* |
||
+ | fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n"); |
||
+ | for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);} |
||
+ | for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);} |
||
+ | for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);} |
||
+ | for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);} |
||
+ | */ |
||
+ | /* |
||
+ | fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n"); |
||
+ | //fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n"); |
||
+ | M(-4.7, 4.5) fprintf(o,"(y)s\n"); |
||
+ | M( 4.6,-4.8) fprintf(o,"(x)s\n"); |
||
+ | M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n"); |
||
+ | */ |
||
+ | |||
+ | //z_type tm,tp,F[M1*N1];; |
||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DB b=sqrt(2); |
||
+ | DO(m,M1){x=X[m]; printf("x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | if(abs(z+2.)>.04) |
||
+ | { |
||
+ | c=F21E(z); |
||
+ | //c=E1ETF(z); |
||
+ | // c=F15(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-9999 && p<9999) g[m*N1+n]=p; |
||
+ | if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q; |
||
+ | } |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | p=2.; q=1.1;; |
||
+ | #include "plofu.cin" |
||
+ | |||
+ | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
+ | // p=1.e-15; |
||
+ | // for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) ); } |
||
+ | //y=2*M_PI/log(2.); |
||
+ | // y=M_PI/log(log(2)); |
||
+ | //y=9.064720284; |
||
+ | |||
+ | // M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n"); |
||
+ | // |
||
+ | // DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) } |
||
+ | // fprintf(o,".11 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | //M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some printers |
||
+ | |||
+ | //M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
+ | system("epstopdf e1e09q2.eps"); |
||
+ | system( "open e1e09q2.pdf"); |
||
+ | getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:E1e]] |
||
+ | [[Category:Base sqrt(2)]] |
||
+ | [[Category:Complex maps]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:Holomorphic functions]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Tetration]] |
Latest revision as of 08:34, 1 December 2018
Complex maps of tetration $\mathrm{tet}_b$ to base
$b\!=\!1.5$ , left,
$b\!=\!\exp(1/\mathrm e)$ , center, and
$b\!=\!\sqrt{2}$ , right.
$f\!=\! \mathrm{tet}(x\!+\!\mathrm i y)$ is shown in the $x,y$ plane with levels $~p\!=\!\Re(f)\!=\! \mathrm{const}~$ and levels $~q\!=\!\Im(f)\!=\! \mathrm{const}~$. The integer levels are shown with thick lines.
This image is close to the figure 9 in the article [1].
The C++ generators of the pictures used in the figure are available and will be uploaded upon request.
Copyleft 2011 by Dmitrii Kouznetsov. You may copy, modify and/or distribute the image for free but the source should be attributed.
C++ generator of first map, $b\!=\!1.5$
In order to compile the code below, the following files should be loaded: ado.cin, conto.cin, GLxw2048.inc, f2048b15.inc, f15.cin
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
// #include <complex.h>
// #define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//DB T22=-8.5715740896774235522;
//DB T42= 9.6180745210214273558;
//#include "f21E.cin"
//#include "e1etf.cin"
#include "f15.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
// int M=201,M1=M+1;
// int N=401,N1=N+1;
int M=81,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92);
// FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212);
// FILE *o;o=fopen("be1ezoom.eps","w"); ado(o,0,0,87,87);
FILE *o;o=fopen("b15zoom.eps","w"); ado(o,87,87);
fprintf(o,"46 45 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.1*(m-.5);
DO(n,N1) Y[n]=-4.+.05*(n-.5);
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);}
/*
fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
//fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
M(-4.7, 4.5) fprintf(o,"(y)s\n");
M( 4.6,-4.8) fprintf(o,"(x)s\n");
M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n");
*/
//z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DB b=sqrt(2);
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
if(abs(z+2.)>.04)
{
// c=F21E(z);
// c=E1ETF(z);
c=F15(z);
p=Re(c); q=Im(c);
if(p>-9999 && p<9999) g[m*N1+n]=p;
if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2.; q=1.1;;
#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
// p=1.e-15;
// for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) )
; }
//y=2*M_PI/log(2.);
// y=M_PI/log(log(2));
//y=9.064720284;
// M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n");
//
// DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) }
// fprintf(o,".11 W 0 0 0 RGB S\n");
//M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some pri
nters
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n");
fprintf(o,"%cTrailer\n",'%');
fclose(o);
// system( "gv b15zoom.eps &"); //for UNIX
system( "open b15zoom.eps"); //for macintosh
system("epstopdf b15zoom.eps");
// system( "xpdf be1ezoom.pdf"); // for LINUX
getchar(); system("killall Preview"); // For macintosh
}
C++ generator of second map
C++ generator of third map, $b\!=\!\sqrt{2}\!\approx\!1.41$
Files required: ado.cin, conto.cin, sqrt2f21e.cin
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
DB T22=-8.5715740896774235522;
DB T42= 9.6180745210214273558;
//#include "f21E.cin"
#include "sqrt2f21e.cin"
//#include "e1etf.cin"
//#include "f15.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
// int M=201,M1=M+1;
// int N=401,N1=N+1;
int M=81,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("f21E.eps","w"); ado(o,0,0,94,92);
// FILE *o;o=fopen("02.eps","w"); ado(o,0,0,214,212);
// FILE *o;o=fopen("bq2zoom.eps","w"); ado(o,87,87);
FILE *o;o=fopen("e1e09q2.eps","w"); ado(o,87,87);
fprintf(o,"46 45 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.1*(m-.5);
DO(n,N1) Y[n]=-4.+.05*(n-.5);
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
/*
fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
for(m=-2;m<0;m+=2) {M(-4.7,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(-4.4,m-.2) fprintf(o,"(%1d)s\n",m);}
for(m=-2;m<0;m+=2) {M(m-.3,-4.48) fprintf(o,"(%1d)s\n",m);}
for(m= 0;m<3;m+=2) {M(m-.16,-4.48) fprintf(o,"(%1d)s\n",m);}
*/
/*
fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
//fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
M(-4.7, 4.5) fprintf(o,"(y)s\n");
M( 4.6,-4.8) fprintf(o,"(x)s\n");
M(-4,0)L(4.1,0) M(0,-4)L(0,4.1) fprintf(o,".01 W 1 0 1 RGB S\n");
*/
//z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DB b=sqrt(2);
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
if(abs(z+2.)>.04)
{
c=F21E(z);
//c=E1ETF(z);
// c=F15(z);
p=Re(c); q=Im(c);
if(p>-9999 && p<9999) g[m*N1+n]=p;
if(q>-9999 && q<9999 && fabs(q)>1.e-14) f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2.; q=1.1;;
#include "plofu.cin"
fprintf(o,"0 setlinejoin 0 setlinecap\n");
// p=1.e-15;
// for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.15f\n",q, Re(TQ2E(z)) ); }
//y=2*M_PI/log(2.);
// y=M_PI/log(log(2));
//y=9.064720284;
// M(-2,0)L(-10.1, 0) fprintf(o,"0.05 W 1 1 1 RGB S\n");
//
// DO(n,20){ M(-2.-.4*n,0)L(-2-.4*(n+.5),0) }
// fprintf(o,".11 W 0 0 0 RGB S\n");
//M(-2,0)L(-4.1, 0) fprintf(o,".1 W 0 0 0 RGB [.14 .14] 0 setdash S\n"); //fails at some printers
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf e1e09q2.eps");
system( "open e1e09q2.pdf");
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labels
References
- ↑ http://tori.ils.uec.ac.jp/PAPERS/2011e1e.pdf H.Trappmann, D.Kouznetsov. Computation of the Two Regular Super-Exponentials to base exp(1/e). (Mathematics of Computation, 2011, in press)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,234 × 711 (883 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: