Difference between revisions of "File:Fracit10t150.jpg"
(Iterate of linear fraction; $\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!2$. In general the $n$th iterate of $f$ can be expressed as follows: $\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}$ $y=f^n(x)$ is plotted versus $x$ for various...) |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
[[Iterate of linear fraction]]; |
[[Iterate of linear fraction]]; |
||
− | $\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\! |
+ | $\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!1$. |
In general the $n$th iterate of $f$ can be expressed as follows: |
In general the $n$th iterate of $f$ can be expressed as follows: |
||
Line 9: | Line 9: | ||
$y=f^n(x)$ is plotted versus $x$ for various values of $n$. |
$y=f^n(x)$ is plotted versus $x$ for various values of $n$. |
||
+ | |||
+ | For $c=1$, the limit should be considered. |
||
==Generator of curves== |
==Generator of curves== |
||
// File [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below. |
// File [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below. |
||
− | //<poem><nomathjax><nowiki> |
+ | // <poem><nomathjax><nowiki> |
+ | #include<math.h> |
||
− | #inc |
||
+ | #include<stdio.h> |
||
+ | #include<stdlib.h> |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #define DB double |
||
+ | #include"ado.cin" |
||
+ | |||
+ | DB c=1.; |
||
+ | |||
+ | //DB F(DB n,DB x){ DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); } |
||
+ | DB F(DB n,DB x){ if(c==1.) return x/(1.+n*x); DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); } |
||
+ | |||
+ | main(){ FILE *o; int m,n,k; DB x,y,t; |
||
+ | o=fopen("fracit10.eps","w"); |
||
+ | ado(o,702,702); |
||
+ | #define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y); |
||
+ | |||
+ | fprintf(o,"101 101 translate 100 100 scale 2 setlinecap\n"); |
||
+ | for(n=-1;n<7;n++) { M(-1,n)L(6,n)} |
||
+ | for(m=-1;m<7;m++) { M(m,-1)L(m,6)} |
||
+ | fprintf(o,".01 W S\n"); |
||
+ | |||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-4.,x);if(y>-10.4&&y<10.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n"); |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 4.,x);if(y>-10.4&&y<10.4){if(n==0){M(x,y)n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n"); |
||
+ | |||
+ | DO(k,41){ t=-2.+.1*k; |
||
+ | n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(t,x);if(y>-7.2&&y<7.2){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | } |
||
+ | |||
+ | fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); |
||
+ | fclose(o); |
||
+ | system("epstopdf fracit10.eps"); |
||
+ | system( "open fracit10.pdf"); |
||
+ | } |
||
//</nowiki></nomathjax></poem> |
//</nowiki></nomathjax></poem> |
||
Line 22: | Line 64: | ||
% <poem><nomathjax><nowiki> |
% <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
− | \do |
||
+ | \paperwidth 706pt |
||
+ | \paperheight 706pt |
||
+ | \textwidth 800pt |
||
+ | \textheight 800pt |
||
+ | \topmargin -108pt |
||
+ | \oddsidemargin -72pt |
||
+ | \parindent 0pt |
||
+ | \pagestyle{empty} |
||
+ | \usepackage {graphics} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \begin{document}%H0H1H2HHHHHHHHHHHHHH |
||
+ | \begin{picture}(704,704) |
||
+ | |||
+ | \put(79,684){\sx{3}{$y$}} |
||
+ | \put(79,592){\sx{3}{$5$}} |
||
+ | \put(79,492){\sx{3}{$4$}} |
||
+ | \put(79,392){\sx{3}{$3$}} |
||
+ | \put(79,292){\sx{3}{$2$}} |
||
+ | \put(79,192){\sx{3}{$1$}} |
||
+ | \put(79,92){\sx{3}{$0$}} |
||
+ | \put(94,74){\sx{3}{$0$}} |
||
+ | \put(194,74){\sx{3}{$1$}} |
||
+ | \put(294,74){\sx{3}{$2$}} |
||
+ | \put(394,74){\sx{3}{$3$}} |
||
+ | \put(494,74){\sx{3}{$4$}} |
||
+ | \put(594,74){\sx{3}{$5$}} |
||
+ | \put(686,75){\sx{3}{$x$}} |
||
+ | %\put(0,0){\ing{fracit05}} |
||
+ | %\put(0,0){\ing{fracit10}} |
||
+ | \put(0,0){\ing{fracit10}} |
||
+ | |||
+ | \put(20,200){\rot{70}\sx{3.2}{$n\!=\!2$}\ero} |
||
+ | \put(40,154){\rot{69}\sx{3.2}{$n\!=\!3$}\ero} |
||
+ | \put(6,122){\rot{22}\sx{3.2}{$n\!=\!4$}\ero} |
||
+ | |||
+ | \put(128, 0){\rot{49}\sx{2.9}{$n\!=\!-4$}\ero} |
||
+ | \put(203, 43){\rot{4}\sx{2.9}{$n\!=\!-3$}\ero} |
||
+ | \put(207,6){\rot{11}\sx{2.9}{$n\!=\!-2$}\ero} |
||
+ | |||
+ | %\put(139,560){\rot{89}\sx{3.2}{$n\!=\!-2$}\ero} |
||
+ | \put(194,560){\rot{87}\sx{3.2}{$n\!=\!-1$}\ero} |
||
+ | \put(252,558){\rot{85}\sx{3}{$n\!=\!-0.5$}\ero} |
||
+ | \put(274,558){\rot{83}\sx{3}{$n\!=\!-0.4$}\ero} |
||
+ | \put(304,558){\rot{79}\sx{3}{$n\!=\!-0.3$}\ero} |
||
+ | \put(352,558){\rot{76}\sx{3}{$n\!=\!-0.2$}\ero} |
||
+ | \put(424,558){\rot{64}\sx{3}{$n\!=\!-0.1$}\ero} |
||
+ | |||
+ | \put(580,567){\rot{45}\sx{3}{$n\!=\!0$}\ero} |
||
+ | \put(610,429){\rot{23}\sx{3}{$n\!=\!0.1$}\ero} |
||
+ | \put(608,343){\rot{14}\sx{3}{$n\!=\!0.2$}\ero} |
||
+ | \put(607,294){\rot{8}\sx{3}{$n\!=\!0.3$}\ero} |
||
+ | \put(606,260){\rot{6}\sx{3}{$n\!=\!0.4$}\ero} |
||
+ | \put(605,236){\rot{4}\sx{3}{$n\!=\!0.5$}\ero} |
||
+ | \put(620,178){\sx{3.2}{$n\!=\!1$}} |
||
+ | \put(620,139){\sx{3.2}{$n\!=\!2$}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
% </nowiki></nomathjax></poem> |
% </nowiki></nomathjax></poem> |
||
Line 28: | Line 131: | ||
<references/> |
<references/> |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
[[Category:C++]] |
[[Category:C++]] |
||
[[Category:Elementary function]] |
[[Category:Elementary function]] |
Latest revision as of 08:36, 1 December 2018
$\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!1$.
In general the $n$th iterate of $f$ can be expressed as follows:
$\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}$
$y=f^n(x)$ is plotted versus $x$ for various values of $n$.
For $c=1$, the limit should be considered.
Generator of curves
// File ado.cin should be loaded to the working directory in order to compile the C++ code below.
//
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DO(x,y) for(x=0;x<y;x++)
#define DB double
#include"ado.cin"
DB c=1.;
//DB F(DB n,DB x){ DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); }
DB F(DB n,DB x){ if(c==1.) return x/(1.+n*x); DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); }
main(){ FILE *o; int m,n,k; DB x,y,t;
o=fopen("fracit10.eps","w");
ado(o,702,702);
#define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y);
fprintf(o,"101 101 translate 100 100 scale 2 setlinecap\n");
for(n=-1;n<7;n++) { M(-1,n)L(6,n)}
for(m=-1;m<7;m++) { M(m,-1)L(m,6)}
fprintf(o,".01 W S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-4.,x);if(y>-10.4&&y<10.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(-1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F( 4.,x);if(y>-10.4&&y<10.4){if(n==0){M(x,y)n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
DO(k,41){ t=-2.+.1*k;
n=0;DO(m,3501){x=-1.+.002*(m-.5);y=F(t,x);if(y>-7.2&&y<7.2){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".01 W 0 0 0 RGB S\n");
}
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
system("epstopdf fracit10.eps");
system( "open fracit10.pdf");
}
//
Latex generator of labels
%File Fracit20t.pdf should be generated with the code above in order to compile the Latex document below.
%
\documentclass[12pt]{article}
\paperwidth 706pt
\paperheight 706pt
\textwidth 800pt
\textheight 800pt
\topmargin -108pt
\oddsidemargin -72pt
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}%H0H1H2HHHHHHHHHHHHHH
\begin{picture}(704,704)
\put(79,684){\sx{3}{$y$}}
\put(79,592){\sx{3}{$5$}}
\put(79,492){\sx{3}{$4$}}
\put(79,392){\sx{3}{$3$}}
\put(79,292){\sx{3}{$2$}}
\put(79,192){\sx{3}{$1$}}
\put(79,92){\sx{3}{$0$}}
\put(94,74){\sx{3}{$0$}}
\put(194,74){\sx{3}{$1$}}
\put(294,74){\sx{3}{$2$}}
\put(394,74){\sx{3}{$3$}}
\put(494,74){\sx{3}{$4$}}
\put(594,74){\sx{3}{$5$}}
\put(686,75){\sx{3}{$x$}}
%\put(0,0){\ing{fracit05}}
%\put(0,0){\ing{fracit10}}
\put(0,0){\ing{fracit10}}
\put(20,200){\rot{70}\sx{3.2}{$n\!=\!2$}\ero}
\put(40,154){\rot{69}\sx{3.2}{$n\!=\!3$}\ero}
\put(6,122){\rot{22}\sx{3.2}{$n\!=\!4$}\ero}
\put(128, 0){\rot{49}\sx{2.9}{$n\!=\!-4$}\ero}
\put(203, 43){\rot{4}\sx{2.9}{$n\!=\!-3$}\ero}
\put(207,6){\rot{11}\sx{2.9}{$n\!=\!-2$}\ero}
%\put(139,560){\rot{89}\sx{3.2}{$n\!=\!-2$}\ero}
\put(194,560){\rot{87}\sx{3.2}{$n\!=\!-1$}\ero}
\put(252,558){\rot{85}\sx{3}{$n\!=\!-0.5$}\ero}
\put(274,558){\rot{83}\sx{3}{$n\!=\!-0.4$}\ero}
\put(304,558){\rot{79}\sx{3}{$n\!=\!-0.3$}\ero}
\put(352,558){\rot{76}\sx{3}{$n\!=\!-0.2$}\ero}
\put(424,558){\rot{64}\sx{3}{$n\!=\!-0.1$}\ero}
\put(580,567){\rot{45}\sx{3}{$n\!=\!0$}\ero}
\put(610,429){\rot{23}\sx{3}{$n\!=\!0.1$}\ero}
\put(608,343){\rot{14}\sx{3}{$n\!=\!0.2$}\ero}
\put(607,294){\rot{8}\sx{3}{$n\!=\!0.3$}\ero}
\put(606,260){\rot{6}\sx{3}{$n\!=\!0.4$}\ero}
\put(605,236){\rot{4}\sx{3}{$n\!=\!0.5$}\ero}
\put(620,178){\sx{3.2}{$n\!=\!1$}}
\put(620,139){\sx{3.2}{$n\!=\!2$}}
\end{picture}
\end{document}
%
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 21:18, 4 August 2013 | 1,466 × 1,466 (564 KB) | T (talk | contribs) | Iterate of linear fraction; $\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!2$. In general the $n$th iterate of $f$ can be expressed as follows: $\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}$ $y=f^n(x)$ is plotted versus $x$ for various... |
You cannot overwrite this file.
File usage
The following page uses this file: