Difference between revisions of "File:SdPow2map.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of function [[SdPow]]$_2$ ; |
||
− | Importing image file |
||
+ | |||
+ | $F(z)=$[[SdPow]]$_2(z)=\exp(-2^z)$ |
||
+ | |||
+ | is shown with lines of constant real part and lines of constant imaginary part: |
||
+ | |||
+ | $u\!+\mathrm i v=F(x\!+\mathrm i y)$ |
||
+ | |||
+ | == Superpower == |
||
+ | |||
+ | [[Superpower]] function $F$ is [[superfunction]] for the quadratic transfer function $T(z)\!=\!z^2$, |
||
+ | which is in its turn, interpreted as [[power function]] to base 2. |
||
+ | |||
+ | [[Superpower]] function $F$ is solution of the transfer equation |
||
+ | |||
+ | $F(z\!+\!1)=T(F(z))$ |
||
+ | |||
+ | ==[[C++]] generator of map== |
||
+ | Files [[ado.cin]] and [[conto.cin]] should be loaded in order to compile the [[C++]] code below. |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=501,M1=M+1; |
||
+ | int N=501,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | //FILE *o;o=fopen("superpower2ma.eps","w");ado(o,1020,1020); |
||
+ | FILE *o;o=fopen("sdpow2ma.eps","w");ado(o,1020,1020); |
||
+ | fprintf(o,"510 510 translate\n 100 100 scale\n"); |
||
+ | DO(m,M1) X[m]=-5.+.02*(m-.5); |
||
+ | DO(n,N1) Y[n]=-5.+.02*(n-.5); |
||
+ | for(m=-5;m<6;m++){if(m==0){M(m,-5.1)L(m,5.1)} else{M(m,-5)L(m,5)}} |
||
+ | for(n=-5;n<6;n++){ M( -5,n)L(5,n)} |
||
+ | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=1.e15; f[m*N1+n]=1.e15;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=exp(-pow(2.,z)); |
||
+ | p=Re(c); |
||
+ | q=Im(c); |
||
+ | if(p>-2.e15 && p<1.e15 |
||
+ | && q>-1.e15 && q<1.e15 |
||
+ | ) |
||
+ | {g[m*N1+n]=p; |
||
+ | f[m*N1+n]=q; |
||
+ | } |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=10;q=.4; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".013 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".011 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".011 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".028 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".028 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-1.e14,1.e14); fprintf(o,".028 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
||
+ | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-1.e14,1.e14); fprintf(o,".024 W 0 0 0 RGB S\n"); |
||
+ | for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf sdpow2ma.eps"); |
||
+ | system( "open sdpow2ma.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{graphicx} |
||
+ | \usepackage{geometry} |
||
+ | %\usepackage{rotate} |
||
+ | %\usepackage{rotation} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 1044px |
||
+ | \paperheight 1036px |
||
+ | \topmargin -98px |
||
+ | \oddsidemargin -90px |
||
+ | \textwidth 2000px |
||
+ | \textheight 2000px |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \begin{document} |
||
+ | \begin{picture}(1030,1026) \normalsize |
||
+ | \put(30,20){\ing{"sdpow2ma"}} |
||
+ | %\put(30,20){\ing{"superpower2ma"}} |
||
+ | \put(16,1016){\sx{3}{$y$}} |
||
+ | \put(16,918){\sx{3}{$4$}} |
||
+ | \put(16,818){\sx{3}{$3$}} |
||
+ | \put(16,718){\sx{3}{$2$}} |
||
+ | \put(16,618){\sx{3}{$1$}} |
||
+ | \put(16,518){\sx{3}{$0$}} |
||
+ | \put(-10,418){\sx{3}{$-1$}} |
||
+ | \put(-10,318){\sx{3}{$-2$}} |
||
+ | \put(-10,218){\sx{3}{$-3$}} |
||
+ | \put(-10,118){\sx{3}{$-4$}} |
||
+ | \put(-10,18){\sx{3}{$-5$}} |
||
+ | \put(10,-1){\sx{3}{$-5$}} |
||
+ | \put(110,-1){\sx{3}{$-4$}} |
||
+ | \put(210,-1){\sx{3}{$-3$}} |
||
+ | \put(310,-1){\sx{3}{$-2$}} |
||
+ | \put(410,-1){\sx{3}{$-1$}} |
||
+ | \put(534,-1){\sx{3}{$0$}} |
||
+ | \put(634,-1){\sx{3}{$1$}} |
||
+ | \put(734,-1){\sx{3}{$2$}} |
||
+ | \put(834,-1){\sx{3}{$3$}} |
||
+ | \put(934,-1){\sx{3}{$4$}} |
||
+ | \put(1028,-1){\sx{3.1}{$x$}} |
||
+ | \put(150,978){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
+ | \put(150,756){\rot{1}{ \sx{3}{$u\!=\!1$}} \ero} |
||
+ | \put(150,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
+ | \put(150,290){\rot{-1}{ \sx{3}{$u\!=\!1$}} \ero} |
||
+ | \put(150,68){\rot{0.}{ \sx{3}{$v\!=\!0$}} \ero} |
||
+ | % |
||
+ | \put(336,484){\rot{90}{ \sx{3}{$u\!=\!0.8$}} \ero} |
||
+ | \put(454,484){\rot{90}{ \sx{3}{$u\!=\!0.6$}} \ero} |
||
+ | \put(538,484){\rot{90}{ \sx{3}{$u\!=\!0.4$}} \ero} |
||
+ | \put(618,484){\rot{90}{ \sx{3}{$u\!=\!0.2$}} \ero} |
||
+ | %\put(530,489){\rot{90}{ \sx{3}{$u\!=\!2$}} \ero} |
||
+ | % |
||
+ | \put(780,564){\rot{-11}{ \sx{3}{$u\!=\!0$}} \ero} |
||
+ | \put(790,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero} |
||
+ | \put(782,482){\rot{10}{ \sx{3}{$u\!=\!0$}} \ero} |
||
+ | % |
||
+ | \put(310,926){\rot{90}{ \sx{3}{$u\!=\!1.2$}} \ero} |
||
+ | \put(400,926){\rot{90}{ \sx{3}{$u\!=\!1.4$}} \ero} |
||
+ | \put(442,926){\rot{90}{ \sx{3}{$u\!=\!1.6$}} \ero} |
||
+ | \put(476,926){\rot{90}{ \sx{3}{$u\!=\!1.8$}} \ero} |
||
+ | \put(502,936){\rot{90}{ \sx{3}{$u\!=\!2$}} \ero} |
||
+ | % |
||
+ | \put(800,978){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}%%% |
||
+ | \put(788,938){\rot{12}{ \sx{3}{$u\!=\!0$}} \ero} % |
||
+ | \put(816,906){\rot{24}{ \sx{3}{$v\!=\!0$}} \ero} % |
||
+ | \put(820,870){\rot{32}{ \sx{3}{$u\!=\!0$}} \ero} |
||
+ | % |
||
+ | \put(310,26){\rot{90}{ \sx{3}{$u\!=\!1.2$}} \ero} |
||
+ | \put(400,26){\rot{90}{ \sx{3}{$u\!=\!1.4$}} \ero} |
||
+ | \put(442,26){\rot{90}{ \sx{3}{$u\!=\!1.6$}} \ero} |
||
+ | \put(476,26){\rot{90}{ \sx{3}{$u\!=\!1.8$}} \ero} |
||
+ | \put(502,36){\rot{90}{ \sx{3}{$u\!=\!2$}} \ero} |
||
+ | % |
||
+ | \put(658,172){\rot{-31}{ \sx{3}{$u\!=\!0$}} \ero} |
||
+ | % |
||
+ | % |
||
+ | \put(508,800){\rot{-33}{ \sx{3}{$v\!=\!-1$}} \ero} |
||
+ | %\put(480,748){\rot{-16}{ \sx{3}{$v\!=\!-0.8$}} \ero} |
||
+ | \put(476,730){\rot{-17}{ \sx{3}{$v\!=\!-0.6$}} \ero} |
||
+ | \put(478,670){\rot{-6}{ \sx{3}{$v\!=\!-0.4$}} \ero} |
||
+ | \put(480,602){\rot{0}{ \sx{3}{$v\!=\!-0.2$}} \ero} |
||
+ | |||
+ | \put(480,446){\rot{2}{ \sx{3}{$v\!=\!0.2$}} \ero}%% |
||
+ | \put(482,372){\rot{9}{ \sx{3}{$v\!=\!0.4$}} \ero}%% |
||
+ | \put(500,320){\rot{16}{ \sx{3}{$v\!=\!0.6$}} \ero} |
||
+ | \put(528,262){\rot{28}{ \sx{3}{$v\!=\!1$}} \ero} |
||
+ | %\put(508,348){\rot{-33}{ \sx{3}{$v\!=\!-1$}} \ero} |
||
+ | %\put(480,268){\rot{-12}{ \sx{3}{$v\!=\!-0.6$}} \ero} |
||
+ | %\put(480,210){\rot{-4}{ \sx{3}{$v\!=\!-0.4$}} \ero} |
||
+ | %\put(480,150){\rot{0}{ \sx{3}{$v\!=\!-0.2$}} \ero} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:Power function]] |
||
+ | [[Category:SdPow]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Superpower]] |
Latest revision as of 08:51, 1 December 2018
Complex map of function SdPow$_2$ ;
$F(z)=$SdPow$_2(z)=\exp(-2^z)$
is shown with lines of constant real part and lines of constant imaginary part:
$u\!+\mathrm i v=F(x\!+\mathrm i y)$
Superpower
Superpower function $F$ is superfunction for the quadratic transfer function $T(z)\!=\!z^2$, which is in its turn, interpreted as power function to base 2.
Superpower function $F$ is solution of the transfer equation
$F(z\!+\!1)=T(F(z))$
C++ generator of map
Files ado.cin and conto.cin should be loaded in order to compile the C++ code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=501,M1=M+1;
int N=501,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("superpower2ma.eps","w");ado(o,1020,1020);
FILE *o;o=fopen("sdpow2ma.eps","w");ado(o,1020,1020);
fprintf(o,"510 510 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-5.+.02*(m-.5);
DO(n,N1) Y[n]=-5.+.02*(n-.5);
for(m=-5;m<6;m++){if(m==0){M(m,-5.1)L(m,5.1)} else{M(m,-5)L(m,5)}}
for(n=-5;n<6;n++){ M( -5,n)L(5,n)}
fprintf(o,".01 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=1.e15; f[m*N1+n]=1.e15;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=exp(-pow(2.,z));
p=Re(c);
q=Im(c);
if(p>-2.e15 && p<1.e15
&& q>-1.e15 && q<1.e15
)
{g[m*N1+n]=p;
f[m*N1+n]=q;
}
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=10;q=.4;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".013 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".011 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".011 W 0 0 .9 RGB S\n");
for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".028 W .9 0 0 RGB S\n");
for(m=1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".028 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-1.e14,1.e14); fprintf(o,".028 W .6 0 .6 RGB S\n");
for(m=-10;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-1.e14,1.e14); fprintf(o,".024 W 0 0 0 RGB S\n");
for(m=1;m<11;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".024 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf sdpow2ma.eps");
system( "open sdpow2ma.pdf");
getchar(); system("killall Preview");//for mac
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{geometry}
%\usepackage{rotate}
%\usepackage{rotation}
\usepackage{rotating}
\paperwidth 1044px
\paperheight 1036px
\topmargin -98px
\oddsidemargin -90px
\textwidth 2000px
\textheight 2000px
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\begin{picture}(1030,1026) \normalsize
\put(30,20){\ing{"sdpow2ma"}}
%\put(30,20){\ing{"superpower2ma"}}
\put(16,1016){\sx{3}{$y$}}
\put(16,918){\sx{3}{$4$}}
\put(16,818){\sx{3}{$3$}}
\put(16,718){\sx{3}{$2$}}
\put(16,618){\sx{3}{$1$}}
\put(16,518){\sx{3}{$0$}}
\put(-10,418){\sx{3}{$-1$}}
\put(-10,318){\sx{3}{$-2$}}
\put(-10,218){\sx{3}{$-3$}}
\put(-10,118){\sx{3}{$-4$}}
\put(-10,18){\sx{3}{$-5$}}
\put(10,-1){\sx{3}{$-5$}}
\put(110,-1){\sx{3}{$-4$}}
\put(210,-1){\sx{3}{$-3$}}
\put(310,-1){\sx{3}{$-2$}}
\put(410,-1){\sx{3}{$-1$}}
\put(534,-1){\sx{3}{$0$}}
\put(634,-1){\sx{3}{$1$}}
\put(734,-1){\sx{3}{$2$}}
\put(834,-1){\sx{3}{$3$}}
\put(934,-1){\sx{3}{$4$}}
\put(1028,-1){\sx{3.1}{$x$}}
\put(150,978){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(150,756){\rot{1}{ \sx{3}{$u\!=\!1$}} \ero}
\put(150,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(150,290){\rot{-1}{ \sx{3}{$u\!=\!1$}} \ero}
\put(150,68){\rot{0.}{ \sx{3}{$v\!=\!0$}} \ero}
%
\put(336,484){\rot{90}{ \sx{3}{$u\!=\!0.8$}} \ero}
\put(454,484){\rot{90}{ \sx{3}{$u\!=\!0.6$}} \ero}
\put(538,484){\rot{90}{ \sx{3}{$u\!=\!0.4$}} \ero}
\put(618,484){\rot{90}{ \sx{3}{$u\!=\!0.2$}} \ero}
%\put(530,489){\rot{90}{ \sx{3}{$u\!=\!2$}} \ero}
%
\put(780,564){\rot{-11}{ \sx{3}{$u\!=\!0$}} \ero}
\put(790,522){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}
\put(782,482){\rot{10}{ \sx{3}{$u\!=\!0$}} \ero}
%
\put(310,926){\rot{90}{ \sx{3}{$u\!=\!1.2$}} \ero}
\put(400,926){\rot{90}{ \sx{3}{$u\!=\!1.4$}} \ero}
\put(442,926){\rot{90}{ \sx{3}{$u\!=\!1.6$}} \ero}
\put(476,926){\rot{90}{ \sx{3}{$u\!=\!1.8$}} \ero}
\put(502,936){\rot{90}{ \sx{3}{$u\!=\!2$}} \ero}
%
\put(800,978){\rot{0}{ \sx{3}{$v\!=\!0$}} \ero}%%%
\put(788,938){\rot{12}{ \sx{3}{$u\!=\!0$}} \ero} %
\put(816,906){\rot{24}{ \sx{3}{$v\!=\!0$}} \ero} %
\put(820,870){\rot{32}{ \sx{3}{$u\!=\!0$}} \ero}
%
\put(310,26){\rot{90}{ \sx{3}{$u\!=\!1.2$}} \ero}
\put(400,26){\rot{90}{ \sx{3}{$u\!=\!1.4$}} \ero}
\put(442,26){\rot{90}{ \sx{3}{$u\!=\!1.6$}} \ero}
\put(476,26){\rot{90}{ \sx{3}{$u\!=\!1.8$}} \ero}
\put(502,36){\rot{90}{ \sx{3}{$u\!=\!2$}} \ero}
%
\put(658,172){\rot{-31}{ \sx{3}{$u\!=\!0$}} \ero}
%
%
\put(508,800){\rot{-33}{ \sx{3}{$v\!=\!-1$}} \ero}
%\put(480,748){\rot{-16}{ \sx{3}{$v\!=\!-0.8$}} \ero}
\put(476,730){\rot{-17}{ \sx{3}{$v\!=\!-0.6$}} \ero}
\put(478,670){\rot{-6}{ \sx{3}{$v\!=\!-0.4$}} \ero}
\put(480,602){\rot{0}{ \sx{3}{$v\!=\!-0.2$}} \ero}
\put(480,446){\rot{2}{ \sx{3}{$v\!=\!0.2$}} \ero}%%
\put(482,372){\rot{9}{ \sx{3}{$v\!=\!0.4$}} \ero}%%
\put(500,320){\rot{16}{ \sx{3}{$v\!=\!0.6$}} \ero}
\put(528,262){\rot{28}{ \sx{3}{$v\!=\!1$}} \ero}
%\put(508,348){\rot{-33}{ \sx{3}{$v\!=\!-1$}} \ero}
%\put(480,268){\rot{-12}{ \sx{3}{$v\!=\!-0.6$}} \ero}
%\put(480,210){\rot{-4}{ \sx{3}{$v\!=\!-0.4$}} \ero}
%\put(480,150){\rot{0}{ \sx{3}{$v\!=\!-0.2$}} \ero}
\end{picture}
\end{document}
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 2,175 × 2,158 (1.47 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: