Difference between revisions of "File:Test8trubes300.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Test of the [[Discrete Bessel]] transform of the truncated [[Bessel function]] |
||
− | Importing image file |
||
+ | |||
+ | $f(x)=J_0(x)\,$[[UnitStep]]$(\lambda\!-\!x)$ |
||
+ | |||
+ | where $~ \lambda=\,$[[BesselJZero]]$[0,1]\approx 2.404825557695773$ |
||
+ | ==Description== |
||
+ | |||
+ | Small red circle represent the input function, represented at the grid of $M\!=\!8$ points; the coordinates of these circles are $(x_n,f(x_n))$ for $n=1..8$, where $x_n$ are abscissas of the grid for the [[discrete Bessel]]. |
||
+ | |||
+ | These circles follow the smooth profile $y\!=\!J_0(x)$, shown with thin black curve |
||
+ | |||
+ | The input array is determined with $f_n\!=\! f(x_n)\, w_n$ for $n=1.8$ |
||
+ | |||
+ | The transform matrix $T$ of the [[Discrete Bessel]] determines the output $\displaystyle g_n=\sum_{m=1}^M T_{n,m}\, f_m$ |
||
+ | |||
+ | This output is represented by the big blue circles wit coordinates $(x_n,g_n/w_n)$ for $n=1.8$ |
||
+ | |||
+ | It follows the expected smooth curve |
||
+ | |||
+ | $\displaystyle |
||
+ | y=g(x)=$ $\displaystyle |
||
+ | \int_0^\infty f(t) \, J_0(t \, x) \, t \, \mathrm d t=$ $\displaystyle |
||
+ | \int_0^\lambda J_0(t) \, J_0(t \, x) \, t \, \mathrm d t=$ $\displaystyle |
||
+ | \lambda \, J_1(\lambda) \, \frac{J_0(\lambda\, x)}{1\!-\!x^2} |
||
+ | $ |
||
+ | |||
+ | Curve $y=g(x)$ approaches the ordinate axis $x\!=\!0$ with zero derivative at point |
||
+ | |||
+ | $y\!=\!\lambda \, J_1(\lambda) \approx 1.2484591696955065$ |
||
+ | |||
+ | The pole at $x\!=\!1$ due to denominator in the expression for $g(x)$ is compensated by the zero at $x\!=\!1$ in the numerator; so, the first zero of $g(x)$ is |
||
+ | |||
+ | $x=\,$[[BesselJZero]]$[0,2]/\lambda = \,$[[BesselJZero]]$[0,2]/$[[BesselJZero]]$[0,1]\,$ $\approx 2.2954172674276943$ |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include<stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | DB jnp(int n,DB x){ return .5*( jn(n-1,x)-jn(n+1,x) ) ; } // Derivative of n th Bessel |
||
+ | DB jnz(int v, int k){ DB x,t; t=M_PI*(k+.5*v-.25); x= t - (v*v-.25)*.5/t; |
||
+ | x-= jn(v,x)/jnp(v,x); // Newton adjustment of the root |
||
+ | x-= jn(v,x)/jnp(v,x); |
||
+ | x-= jn(v,x)/jnp(v,x); |
||
+ | return x; } // the k th zero of v th Bessel |
||
+ | #include"ado.cin" |
||
+ | |||
+ | int main(){ int m,n,v,k; DB s, x,y; FILE *o; |
||
+ | int M=8; |
||
+ | DB X[M+1],W[M+1],T[M+1][M+1],TT[M+1][M+1], F[M],G[M]; |
||
+ | DB S=jnz(0,M+1); |
||
+ | DB jd=jnz(0,1); |
||
+ | DB qs=sqrt(1./S); |
||
+ | DB q=sqrt(2./S); |
||
+ | for(n=1;n<M+1;n++){ x=jnz(0,n); X[n]=x*qs; y=W[n]=q/fabs(j1(x)); |
||
+ | printf("%3d %20.16lf %20.16lf\n",n,X[n],W[n]); } |
||
+ | for(m=1;m<=M;m++){// printf("%2d",m); |
||
+ | for(n=1;n<=M;n++){ T[m][n]=W[m]*j0(X[m]*X[n])*W[n]; }} |
||
+ | //for(m=1;m<=M;m++){printf("\n"); |
||
+ | //for(n=1;n<=M;n++){printf("%14.10lf",T[m][n]); }} |
||
+ | //printf("\n"); |
||
+ | //for(m=1;m<=M;m++){printf("\n"); |
||
+ | //for(n=1;n<=M;n++){ s=0.; |
||
+ | // for(k=1;k<=M;k++) s+=T[m][k]*T[k][n] ; |
||
+ | // TT[m][n]=s;printf("%14.10lf",TT[m][n]); |
||
+ | // }} |
||
+ | //printf("\n\n"); |
||
+ | //for(m=1;m<=M;m++){x=X[m]; y=exp(-x*x/2.); F[m]=y*W[m]; /* printf("%14.10lf",F[m]); */ } |
||
+ | for(m=1;m<=M;m++){x=X[m]; if(x<jd) y=j0(x); else y=0.; F[m]=y*W[m]; /*printf("%14.10lf",F[m]);*/ } |
||
+ | /*printf("\n");*/ |
||
+ | for(m=1;m<=M;m++){ s=0.; for(n=1;n<=M;n++) s+=T[m][n]*F[n]; |
||
+ | G[m]=s;} |
||
+ | //for(m=1;m<=M;m++) printf("%14.10lf",G[m]); |
||
+ | //printf("\n"); |
||
+ | o=fopen("test8trube.eps", "w"); ado(o,520,220); |
||
+ | #define M(x,y) fprintf(o,"%8.4lf %8.4lf M\n",0.+x, 0.+y); |
||
+ | #define L(x,y) fprintf(o,"%8.4lf %8.4lf L\n",0.+x, 0.+y); |
||
+ | #define O(x,y) fprintf(o,"%8.4lf %8.4lf O\n",0.+x, 0.+y); |
||
+ | #define o(x,y) fprintf(o,"%8.4lf %8.4lf o\n",0.+x, 0.+y); |
||
+ | fprintf(o,"10 60 translate 100 100 scale\n"); |
||
+ | DO(n,6){M(n,1)L(n,0)} |
||
+ | DO(n,3){M(0,n/2.)L(5,n/2.)} |
||
+ | fprintf(o,"2 setlinecap 2 setlinejoin .006 W S\n"); |
||
+ | |||
+ | //M(0,1) DO(n,500){x=.02*(n+1); y=exp(-x*x/2.); L(x,y)} |
||
+ | M(0,1) DO(n,127){x=.04*(n+1); y=j0(x); L(x,y)} |
||
+ | fprintf(o,"1 setlinecap 1 setlinejoin S\n"); |
||
+ | |||
+ | DO(n,127){x=.04*(n+.2); y=j0(jd*x)/(1.-x*x)*jd*j1(jd); if(n==0)M(x,y) else L(x,y) |
||
+ | printf("%6.4lf %6.3lf\n",x,y);} |
||
+ | fprintf(o,"1 setlinecap 1 setlinejoin S\n"); |
||
+ | |||
+ | fprintf(o,"1 0 0 RGB .016 W\n"); for(m=1;m<=M;m++) o(X[m],F[m]/W[m]) |
||
+ | fprintf(o,"0 0 1 RGB .01 W\n"); for(m=1;m<=M;m++) O(X[m],G[m]/W[m]) |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o); |
||
+ | system("epstopdf test8trube.eps"); |
||
+ | system("open test8trube.pdf"); |
||
+ | return 0; |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \usepackage{graphicx} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 514pt |
||
+ | \paperheight 188pt |
||
+ | \topmargin -110pt |
||
+ | \oddsidemargin -92pt |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \begin{document} |
||
+ | \begin{picture}(410,212) |
||
+ | %\put(2,4){\ing{bessel8testSte}} |
||
+ | \put(2,4){\ing{test8trube}} |
||
+ | \put(2,190){\sx{1.4}{\rot{-2}$\displaystyle y\!=\!\lambda J_1(\lambda) \frac{J_0(\lambda\, x)}{1\!-\!x^2}$ \ero}} |
||
+ | %\put(1,189){\sx{1.4}{$\frac 3 2$}} |
||
+ | \put(2,159){\sx{1.4}{$1$}} |
||
+ | \put(14,150){\sx{1.4}{\rot{-6}$\displaystyle y\!=\! J_0(x)$ \ero}} |
||
+ | \put(2,110){\sx{1.42}{$\frac 1 2$}} |
||
+ | \put(2,59){\sx{1.4}{0}} |
||
+ | \put(10,50){\sx{1.4}{0}} |
||
+ | \put(108,50){\sx{1.4}{1}} |
||
+ | \put(208,50){\sx{1.4}{2}} |
||
+ | \put(308,50){\sx{1.4}{3}} |
||
+ | \put(409,50){\sx{1.4}{4}} |
||
+ | \put(504,50){\sx{1.5}{$x$}} |
||
+ | \put(366,30){\sx{1.4}{\rot{0}$\displaystyle y\!=\! J_0(x)$ \ero}} |
||
+ | %\put(123,114){\sx{1.4}{\rot{-52}$y\!=\! 2 J_1(2x)/x$\ero }} |
||
+ | %\put(184,141){\sx{1.2}{step }} |
||
+ | %\put(210,134){\sx{1.2}{\rot{-90}step\ero }} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Bessel function]] |
||
+ | [[Category:Bessel transform]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Discrete Bessel]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Test]] |
Latest revision as of 08:53, 1 December 2018
Test of the Discrete Bessel transform of the truncated Bessel function
$f(x)=J_0(x)\,$UnitStep$(\lambda\!-\!x)$
where $~ \lambda=\,$BesselJZero$[0,1]\approx 2.404825557695773$
Description
Small red circle represent the input function, represented at the grid of $M\!=\!8$ points; the coordinates of these circles are $(x_n,f(x_n))$ for $n=1..8$, where $x_n$ are abscissas of the grid for the discrete Bessel.
These circles follow the smooth profile $y\!=\!J_0(x)$, shown with thin black curve
The input array is determined with $f_n\!=\! f(x_n)\, w_n$ for $n=1.8$
The transform matrix $T$ of the Discrete Bessel determines the output $\displaystyle g_n=\sum_{m=1}^M T_{n,m}\, f_m$
This output is represented by the big blue circles wit coordinates $(x_n,g_n/w_n)$ for $n=1.8$
It follows the expected smooth curve
$\displaystyle y=g(x)=$ $\displaystyle \int_0^\infty f(t) \, J_0(t \, x) \, t \, \mathrm d t=$ $\displaystyle \int_0^\lambda J_0(t) \, J_0(t \, x) \, t \, \mathrm d t=$ $\displaystyle \lambda \, J_1(\lambda) \, \frac{J_0(\lambda\, x)}{1\!-\!x^2} $
Curve $y=g(x)$ approaches the ordinate axis $x\!=\!0$ with zero derivative at point
$y\!=\!\lambda \, J_1(\lambda) \approx 1.2484591696955065$
The pole at $x\!=\!1$ due to denominator in the expression for $g(x)$ is compensated by the zero at $x\!=\!1$ in the numerator; so, the first zero of $g(x)$ is
$x=\,$BesselJZero$[0,2]/\lambda = \,$BesselJZero$[0,2]/$BesselJZero$[0,1]\,$ $\approx 2.2954172674276943$
C++ generator of curves
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
DB jnp(int n,DB x){ return .5*( jn(n-1,x)-jn(n+1,x) ) ; } // Derivative of n th Bessel
DB jnz(int v, int k){ DB x,t; t=M_PI*(k+.5*v-.25); x= t - (v*v-.25)*.5/t;
x-= jn(v,x)/jnp(v,x); // Newton adjustment of the root
x-= jn(v,x)/jnp(v,x);
x-= jn(v,x)/jnp(v,x);
return x; } // the k th zero of v th Bessel
#include"ado.cin"
int main(){ int m,n,v,k; DB s, x,y; FILE *o;
int M=8;
DB X[M+1],W[M+1],T[M+1][M+1],TT[M+1][M+1], F[M],G[M];
DB S=jnz(0,M+1);
DB jd=jnz(0,1);
DB qs=sqrt(1./S);
DB q=sqrt(2./S);
for(n=1;n<M+1;n++){ x=jnz(0,n); X[n]=x*qs; y=W[n]=q/fabs(j1(x));
printf("%3d %20.16lf %20.16lf\n",n,X[n],W[n]); }
for(m=1;m<=M;m++){// printf("%2d",m);
for(n=1;n<=M;n++){ T[m][n]=W[m]*j0(X[m]*X[n])*W[n]; }}
//for(m=1;m<=M;m++){printf("\n");
//for(n=1;n<=M;n++){printf("%14.10lf",T[m][n]); }}
//printf("\n");
//for(m=1;m<=M;m++){printf("\n");
//for(n=1;n<=M;n++){ s=0.;
// for(k=1;k<=M;k++) s+=T[m][k]*T[k][n] ;
// TT[m][n]=s;printf("%14.10lf",TT[m][n]);
// }}
//printf("\n\n");
//for(m=1;m<=M;m++){x=X[m]; y=exp(-x*x/2.); F[m]=y*W[m]; /* printf("%14.10lf",F[m]); */ }
for(m=1;m<=M;m++){x=X[m]; if(x<jd) y=j0(x); else y=0.; F[m]=y*W[m]; /*printf("%14.10lf",F[m]);*/ }
/*printf("\n");*/
for(m=1;m<=M;m++){ s=0.; for(n=1;n<=M;n++) s+=T[m][n]*F[n];
G[m]=s;}
//for(m=1;m<=M;m++) printf("%14.10lf",G[m]);
//printf("\n");
o=fopen("test8trube.eps", "w"); ado(o,520,220);
#define M(x,y) fprintf(o,"%8.4lf %8.4lf M\n",0.+x, 0.+y);
#define L(x,y) fprintf(o,"%8.4lf %8.4lf L\n",0.+x, 0.+y);
#define O(x,y) fprintf(o,"%8.4lf %8.4lf O\n",0.+x, 0.+y);
#define o(x,y) fprintf(o,"%8.4lf %8.4lf o\n",0.+x, 0.+y);
fprintf(o,"10 60 translate 100 100 scale\n");
DO(n,6){M(n,1)L(n,0)}
DO(n,3){M(0,n/2.)L(5,n/2.)}
fprintf(o,"2 setlinecap 2 setlinejoin .006 W S\n");
//M(0,1) DO(n,500){x=.02*(n+1); y=exp(-x*x/2.); L(x,y)}
M(0,1) DO(n,127){x=.04*(n+1); y=j0(x); L(x,y)}
fprintf(o,"1 setlinecap 1 setlinejoin S\n");
DO(n,127){x=.04*(n+.2); y=j0(jd*x)/(1.-x*x)*jd*j1(jd); if(n==0)M(x,y) else L(x,y)
printf("%6.4lf %6.3lf\n",x,y);}
fprintf(o,"1 setlinecap 1 setlinejoin S\n");
fprintf(o,"1 0 0 RGB .016 W\n"); for(m=1;m<=M;m++) o(X[m],F[m]/W[m])
fprintf(o,"0 0 1 RGB .01 W\n"); for(m=1;m<=M;m++) O(X[m],G[m]/W[m])
fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf test8trube.eps");
system("open test8trube.pdf");
return 0;
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\paperwidth 514pt
\paperheight 188pt
\topmargin -110pt
\oddsidemargin -92pt
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\begin{picture}(410,212)
%\put(2,4){\ing{bessel8testSte}}
\put(2,4){\ing{test8trube}}
\put(2,190){\sx{1.4}{\rot{-2}$\displaystyle y\!=\!\lambda J_1(\lambda) \frac{J_0(\lambda\, x)}{1\!-\!x^2}$ \ero}}
%\put(1,189){\sx{1.4}{$\frac 3 2$}}
\put(2,159){\sx{1.4}{$1$}}
\put(14,150){\sx{1.4}{\rot{-6}$\displaystyle y\!=\! J_0(x)$ \ero}}
\put(2,110){\sx{1.42}{$\frac 1 2$}}
\put(2,59){\sx{1.4}{0}}
\put(10,50){\sx{1.4}{0}}
\put(108,50){\sx{1.4}{1}}
\put(208,50){\sx{1.4}{2}}
\put(308,50){\sx{1.4}{3}}
\put(409,50){\sx{1.4}{4}}
\put(504,50){\sx{1.5}{$x$}}
\put(366,30){\sx{1.4}{\rot{0}$\displaystyle y\!=\! J_0(x)$ \ero}}
%\put(123,114){\sx{1.4}{\rot{-52}$y\!=\! 2 J_1(2x)/x$\ero }}
%\put(184,141){\sx{1.2}{step }}
%\put(210,134){\sx{1.2}{\rot{-90}step\ero }}
\end{picture}
\end{document}
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 2,133 × 780 (135 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: