Difference between revisions of "File:TetKK200.png"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
+ | Parameters, that determine the asymptotic behavior of [[Tetration]] to real base \(b\), versus logarithm of this base, \( \beta=\ln(b)\). |
||
+ | |||
+ | These parameters are: |
||
+ | |||
+ | [[Fixed point]] \(L=\) [[Filog]]\((\beta)\) |
||
+ | |||
+ | Asymptoitic growing factor \( K= \beta L \) |
||
+ | |||
+ | Asymptotic increment \( k= \ln(K) \) |
||
+ | |||
+ | Values correspond to the upped half of the complex plane; so, \(\Im(L)\ge 0\). Curve for \(L^*\) is not drawn. |
||
+ | ==Requirements== |
||
+ | For generation of the image, the following files should be loaded: |
||
+ | |||
+ | [[ado.cin]] |
||
+ | |||
+ | [[Filog.cin]] |
||
+ | |||
+ | k12.cc and TetKK.tex below. |
||
+ | ==k12.cc== |
||
+ | <pre> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | #define z_type std::complex<double> |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "Filog.cin" |
||
+ | #include "../ado.cin" |
||
+ | |||
+ | int main(){ z_type b, beta, L,K,k; int M,m,n; DB x,y; |
||
+ | FILE *o=fopen("k12.eps","w"); |
||
+ | #define M(x,y) fprintf(o,"%7.4lf %7.4lf M\n", 0.+x, 0.+y); |
||
+ | #define L(x,y) fprintf(o,"%7.4lf %7.4lf L\n", 0.+x, 0.+y); |
||
+ | ado(o,322,522); |
||
+ | fprintf(o,"10 110 translate 100 100 scale 2 setlinecap 1 setlinejoin\n"); |
||
+ | for(m=0;m<4;m++){M(m,0)L(m,4)} |
||
+ | for(n=0;n<5;n++){M(0,n)L(3,n)} |
||
+ | fprintf(o,".006 W S\n"); |
||
+ | M(exp(-1.),0)L(exp(-1.),4) fprintf(o,".002 W S\n"); |
||
+ | M(log(2.)/2.,0)L(log(2.)/2.,4) fprintf(o,".002 W S\n"); |
||
+ | DB x0=M_PI_2; M(x0,0)L(x0,1) fprintf(o,".002 W S\n"); |
||
+ | //for(n=0;n<31;n++){ beta=.1*n+1.e-15*I; x=Re(beta); y=Re(exp(beta));if(n==0) M(x,y) else L(x,y) } fprintf(o,".004 W S\n"); |
||
+ | DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n"); |
||
+ | DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n"); |
||
+ | DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Im(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .005 W S\n"); |
||
+ | DO(n,610){beta=.004+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 .9 RGB .018 W S\n"); |
||
+ | DO(n,610){beta=.004+.005*n+1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .02 W S\n"); |
||
+ | DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Im(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .02 W S\n"); |
||
+ | DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n"); |
||
+ | DO(n,610){beta=.002+.005*n-1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n"); |
||
+ | DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Im(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 0 RGB .007 W S\n"); |
||
+ | fprintf(o,"\%\%Showpage trailer\n"); |
||
+ | fclose(o); |
||
+ | system("epstopdf k12.eps"); |
||
+ | system(" xpdf k12.pdf"); |
||
+ | } |
||
+ | |||
+ | </pre> |
||
+ | |||
+ | ==TetKK.tex== |
||
+ | <pre> \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 324pt |
||
+ | \paperheight 462pt |
||
+ | \usepackage{graphicx} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | % \usepackage{rotate} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \topmargin -108pt |
||
+ | \oddsidemargin -72pt |
||
+ | \parindent 0pt |
||
+ | \begin{document} |
||
+ | \begin{picture}(320,530) |
||
+ | %\put(5,10){\ing{k03.pdf}} |
||
+ | \put(5,10){\ing{k12.pdf}} |
||
+ | \put(0,520){\sx{2}{$y$}} |
||
+ | \put(0,413){\sx{2}{$3$}} |
||
+ | \put(0,313){\sx{2}{$2$}} |
||
+ | \put(0,213){\sx{2}{$1$}} |
||
+ | \put(0,113){\sx{2}{$0$}} |
||
+ | \put(10,100){\sx{2}{$0$}} |
||
+ | \put(110,100){\sx{2}{$1$}} |
||
+ | \put(165,101){\sx{2}{$\frac{\pi}{2}$}} |
||
+ | \put(210,100){\sx{2}{$2$}} |
||
+ | % \put(110,300){\sx{2}{$3$}} |
||
+ | \put(308,100){\sx{2.1}{$\beta$}} |
||
+ | \put(56,424){\rot{90}\sx{1.6}{$y\!=\!\Re(L)$}\ero} |
||
+ | \put(27,406){\rot{-85}\sx{1.6}{$y\!=\!\Re(K)$}\ero} |
||
+ | \put(194,292){\rot{9}\sx{1.6}{$y\!=\!\Im(K)$}\ero} |
||
+ | \put(198,270){\rot{8}\sx{1.6}{$y\!=\!\Im(k)$}\ero} |
||
+ | \put(194,206){\rot{-17}\sx{1.6}{$y\!=\!\Im(L)$}\ero} |
||
+ | \put(188,163){\rot{8}\sx{1.6}{$y\!=\!\Re(k)$}\ero} |
||
+ | \put(226,94){\rot{-17}\sx{1.6}{$y\!=\!\Re(K)$}\ero} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </pre> |
||
+ | |||
+ | ==Generation command== |
||
+ | <pre> |
||
+ | make k11 |
||
+ | ./k11 |
||
+ | Latex TetKK |
||
+ | convert -density 200 TetKK.pdf PNG8:TetKK200.png |
||
+ | </pre> |
||
+ | ==References== |
||
+ | <references/> |
||
+ | [[Category:Ackermann]] |
||
+ | [[Category:Asymptotic expansion]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Kneser expansion]] |
||
+ | [[Category:Kneser function]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Superexponential]] |
||
+ | [[Category:Superfunctions]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:Tetration to real base]] |
Latest revision as of 12:45, 12 August 2020
Parameters, that determine the asymptotic behavior of Tetration to real base \(b\), versus logarithm of this base, \( \beta=\ln(b)\).
These parameters are:
Fixed point \(L=\) Filog\((\beta)\)
Asymptoitic growing factor \( K= \beta L \)
Asymptotic increment \( k= \ln(K) \)
Values correspond to the upped half of the complex plane; so, \(\Im(L)\ge 0\). Curve for \(L^*\) is not drawn.
Requirements
For generation of the image, the following files should be loaded:
k12.cc and TetKK.tex below.
k12.cc
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> #define z_type std::complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "Filog.cin" #include "../ado.cin" int main(){ z_type b, beta, L,K,k; int M,m,n; DB x,y; FILE *o=fopen("k12.eps","w"); #define M(x,y) fprintf(o,"%7.4lf %7.4lf M\n", 0.+x, 0.+y); #define L(x,y) fprintf(o,"%7.4lf %7.4lf L\n", 0.+x, 0.+y); ado(o,322,522); fprintf(o,"10 110 translate 100 100 scale 2 setlinecap 1 setlinejoin\n"); for(m=0;m<4;m++){M(m,0)L(m,4)} for(n=0;n<5;n++){M(0,n)L(3,n)} fprintf(o,".006 W S\n"); M(exp(-1.),0)L(exp(-1.),4) fprintf(o,".002 W S\n"); M(log(2.)/2.,0)L(log(2.)/2.,4) fprintf(o,".002 W S\n"); DB x0=M_PI_2; M(x0,0)L(x0,1) fprintf(o,".002 W S\n"); //for(n=0;n<31;n++){ beta=.1*n+1.e-15*I; x=Re(beta); y=Re(exp(beta));if(n==0) M(x,y) else L(x,y) } fprintf(o,".004 W S\n"); DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n"); DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n"); DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Im(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .005 W S\n"); DO(n,610){beta=.004+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 .9 RGB .018 W S\n"); DO(n,610){beta=.004+.005*n+1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .02 W S\n"); DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Im(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .02 W S\n"); DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n"); DO(n,610){beta=.002+.005*n-1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n"); DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Im(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 0 RGB .007 W S\n"); fprintf(o,"\%\%Showpage trailer\n"); fclose(o); system("epstopdf k12.eps"); system(" xpdf k12.pdf"); }
TetKK.tex
\documentclass[12pt]{article} \usepackage{geometry} \paperwidth 324pt \paperheight 462pt \usepackage{graphicx} \newcommand \sx {\scalebox} \newcommand \ing {\includegraphics} % \usepackage{rotate} \usepackage{rotating} \newcommand \rot {\begin{rotate}} \newcommand \ero {\end{rotate}} \topmargin -108pt \oddsidemargin -72pt \parindent 0pt \begin{document} \begin{picture}(320,530) %\put(5,10){\ing{k03.pdf}} \put(5,10){\ing{k12.pdf}} \put(0,520){\sx{2}{$y$}} \put(0,413){\sx{2}{$3$}} \put(0,313){\sx{2}{$2$}} \put(0,213){\sx{2}{$1$}} \put(0,113){\sx{2}{$0$}} \put(10,100){\sx{2}{$0$}} \put(110,100){\sx{2}{$1$}} \put(165,101){\sx{2}{$\frac{\pi}{2}$}} \put(210,100){\sx{2}{$2$}} % \put(110,300){\sx{2}{$3$}} \put(308,100){\sx{2.1}{$\beta$}} \put(56,424){\rot{90}\sx{1.6}{$y\!=\!\Re(L)$}\ero} \put(27,406){\rot{-85}\sx{1.6}{$y\!=\!\Re(K)$}\ero} \put(194,292){\rot{9}\sx{1.6}{$y\!=\!\Im(K)$}\ero} \put(198,270){\rot{8}\sx{1.6}{$y\!=\!\Im(k)$}\ero} \put(194,206){\rot{-17}\sx{1.6}{$y\!=\!\Im(L)$}\ero} \put(188,163){\rot{8}\sx{1.6}{$y\!=\!\Re(k)$}\ero} \put(226,94){\rot{-17}\sx{1.6}{$y\!=\!\Re(K)$}\ero} \end{picture} \end{document}
Generation command
make k11 ./k11 Latex TetKK convert -density 200 TetKK.pdf PNG8:TetKK200.png
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 12:39, 12 August 2020 | 897 × 1,279 (29 KB) | T (talk | contribs) |
You cannot overwrite this file.
File usage
The following page uses this file: