Difference between revisions of "Kneser expansion"
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
While in this article, only the special natural superexponential is considered. In this case, the fixed point is |
While in this article, only the special natural superexponential is considered. In this case, the fixed point is |
||
+ | \( |
||
− | $ |
||
− | L= (-\mathrm{ProductLog}(-1))^*\approx |
+ | L= (-\mathrm{ProductLog}(-1))^*\approx\) \( |
− | 0.3181315 |
+ | 0.3181315\) \(+\) |
− | + | \(1.3372357 \,\mathrm i |
|
+ | \) |
||
− | $ |
||
− | The solution of |
+ | The solution of \(F\) of the [[transfer equation]] |
+ | \( |
||
− | $ |
||
F(z+1)=\exp(F(z)) |
F(z+1)=\exp(F(z)) |
||
+ | \) |
||
− | $ |
||
is asymptotically expanded in the gollowing form: |
is asymptotically expanded in the gollowing form: |
||
− | + | \( \displaystyle |
|
F(z)=L+\exp(L z)+\sum_{n=2}^{M_0} a_{0,n} \exp(L n z) + O(\exp(L (M_0\!+ |
F(z)=L+\exp(L z)+\sum_{n=2}^{M_0} a_{0,n} \exp(L n z) + O(\exp(L (M_0\!+ |
||
− | \!1)z) |
+ | \!1)z)\) |
− | + | \(\displaystyle + b_1 \exp(2 \pi \mathrm i z) \sum_{n=1}^{M_1} a_{1,n} \exp(L n z) + ..\) |
|
− | + | \(\displaystyle + b_2 \exp(4 \pi \mathrm i z) \sum_{n=1}^{M_2} a_{2,n} \exp(L n z) + .. \) |
|
+ | .. |
||
− | Coefficients |
+ | Coefficients \(a_{0,n}\) for \(n=1..12\) can be evaluated with the [[Mathematica]] code below |
<poem><nomathjax><nowiki> |
<poem><nomathjax><nowiki> |
||
M=12; f0 = L + e + Sum[a[n] e^n, {n,2,M}]; |
M=12; f0 = L + e + Sum[a[n] e^n, {n,2,M}]; |
Latest revision as of 22:50, 15 August 2020
Kneser expansion is asymptotic representation of superexponential constructed at its fixed point.
While in this article, only the special natural superexponential is considered. In this case, the fixed point is
\( L= (-\mathrm{ProductLog}(-1))^*\approx\) \( 0.3181315\) \(+\) \(1.3372357 \,\mathrm i \)
The solution of \(F\) of the transfer equation
\( F(z+1)=\exp(F(z)) \)
is asymptotically expanded in the gollowing form:
\( \displaystyle F(z)=L+\exp(L z)+\sum_{n=2}^{M_0} a_{0,n} \exp(L n z) + O(\exp(L (M_0\!+ \!1)z)\) \(\displaystyle + b_1 \exp(2 \pi \mathrm i z) \sum_{n=1}^{M_1} a_{1,n} \exp(L n z) + ..\) \(\displaystyle + b_2 \exp(4 \pi \mathrm i z) \sum_{n=1}^{M_2} a_{2,n} \exp(L n z) + .. \)
..
Coefficients \(a_{0,n}\) for \(n=1..12\) can be evaluated with the Mathematica code below
M=12; f0 = L + e + Sum[a[n] e^n, {n,2,M}];
f1 = L + L e + Sum[a[n]L^n e^n, {n,2,M}];
s0 = ReplaceAll[Series[Exp[f0],{e,0,M}] - f1, Exp[L]->L];
co[2] = Extract[Solve[Coefficient[s0,e^2]==0, a[2]], 1];
A[2] = ReplaceAll[a[2], co[2]]
s[3] = Simplify[ReplaceAll[s0, a[2] -> A[2]]];
For[m = 3, m <= M, Print[m];
co[m] = Extract[Solve[Coefficient[s[m], e^m] == 0, a[m]], 1];
A[m] = ReplaceAll[a[m], co[m]];
s[m+1] = Simplify[ReplaceAll[s[m], a[m]->A[m]]]; m++]
tableM = Table[{a[m], A[m]}, {m,2,M}];
Le = N[Conjugate[-ProductLog[-1]], 64]
N[TableForm[Table[{a[m], ReplaceAll[A[m], L -> Le]}, {m, 2, M}]], 16]
References
http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN002175851 H.Kneser. Reelle analytische Lösungen der Gleichung φ(φ(x))=ex. Equationes Mathematicae, Journal fur die reine und angewandte Mathematik {\bf 187} 56–67 (1950)
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
Keywords
Iteration, Tetration, Transfer equation, Transfer function, Superexponential Superfunction,,,,