Difference between revisions of "Holomorphic function"

From TORI
Jump to navigation Jump to search
 
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
==Definition==
 
==Definition==
   
Assume, for any $z \in C\subseteq \mathbb C$, there is defined function $f(z) \in \mathbb C$ such that for any $z \in C$ there exist the derivative
+
Assume, for any \(z \in C\subseteq \mathbb C\), there is defined function \(f(z) \in \mathbb C\) such that for any \(z \in C\) there exist the derivative
:$\displaystyle f'(z)= \lim_{t \rightarrow 0,~ t\in \mathbb C}~ \frac{f(z\!+\!t)-f(z)}{t}
+
:\(\displaystyle f'(z)= \lim_{t \rightarrow 0,~ t\in \mathbb C}~ \frac{f(z\!+\!t)-f(z)}{t}
$
+
\)
   
Then, function $f$ is called holomorphic on $C$.
+
Then, function \(f\) is called holomorphic on \(C\).
   
  +
==Cauchi-Riemann==
==Cauchi–Riemann==
 
   
 
==Infinite detivatives==
 
==Infinite detivatives==

Latest revision as of 21:08, 25 January 2021

Holomorphic function is concept of the theory of functions of complex variables that refers the the existence of the derivative.

Definition

Assume, for any \(z \in C\subseteq \mathbb C\), there is defined function \(f(z) \in \mathbb C\) such that for any \(z \in C\) there exist the derivative

\(\displaystyle f'(z)= \lim_{t \rightarrow 0,~ t\in \mathbb C}~ \frac{f(z\!+\!t)-f(z)}{t} \)

Then, function \(f\) is called holomorphic on \(C\).

Cauchi-Riemann

Infinite detivatives

Other notations

Examples

References

http://en.citizendium.org/wiki/Holomorphic_function
http://en.wikipedia.org/wiki/Holomorphic_function
http://www.proofwiki.org/wiki/Definition:Holomorphic_Function
http://www.proofwiki.org/wiki/Equivalence_of_Definitions_for_Analytic_Function