Difference between revisions of "File:Sqrt2sufuplot.png"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
  +
<div style="margin:-18px -14px 0px -200px; background-color:#fff">
Importing image file
 
  +
<div style="margin:0px 0px 0px 30px; line-height:1.2em"><br>
  +
Four superexponentials to base \(b=\sqrt{2}\)
  +
  +
They are real-holomorphic solutions \(F\) of the transfer equation
  +
  +
\( \exp_b(F(z))=F(z\!+\!1) \)
  +
  +
with different values at zero and different asymptotic properties.
  +
  +
Along the real axis, functions
  +
\(F_{2,3} \) and
  +
\(F_{4,3} \) coincide with 24 decimal figures;
  +
the deviation
  +
  +
\( d_{42}(x)=F_{4,3}(x)-F_{2,3}(x) \)
  +
  +
scaled with factor \(10^{24} \) is shown with violet sinusoidal bell.
  +
  +
==Usage==
  +
This image is used in book [[Суперфункции]] (2014, In Russian) <ref name="r">
  +
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br>
  +
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br>
  +
http://mizugadro.mydns.jp/BOOK/202.pdf
  +
Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014.
  +
</ref> is figure 16.10, page 237.
  +
  +
This image is used in book [[Superfunctions]] (2020, in English) <ref name="e">
  +
https://www.morebooks.de/store/gb/book/superfunctions/isbn/978-620-2-67286-3 <br>
  +
https://mizugadro.mydns.jp/BOOK/466.pdf
  +
D.Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020.
  +
</ref> as figure 16.9, page 232.
  +
  +
The English version <ref name="e"/> happen to be better, than the Russian <ref name="r"/> one; so, <ref name="e"/> can be recommended for the description.
  +
  +
This image is used also in article with Henryk Trappmann
  +
<ref>
  +
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html <br>
  +
http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf offprint
  +
D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
  +
</ref>, Fig.3, page 1740. <br>
  +
Henryk had asked the Editor to consider superexponentials to base \( b \!=\!\sqrt{2} \);
  +
this pic had been plotted to satisfy his curiosity.
  +
  +
See the description in the cited literature.
  +
The description happens to be a little bit long; so, it is not reproduced here).
  +
  +
==Refereces==
  +
<references/>
  +
  +
  +
==[[C++]] generator of the curves==
  +
Files [[ado.cin]],
  +
[[conto.cin]],
  +
[[sqrt2f21e.cin]],
  +
[[sqrt2f23e.cin]],
  +
[[sqrt2f43e.cin]],
  +
[[sqrt2f45e.cin]]
  +
should be loaded in order to compile the code below.
  +
  +
<poem><nomathjax><nowiki>
  +
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
#include <complex>
  +
typedef std::complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
#include "ado.cin"
  +
#include "sqrt2f21e.cin"
  +
#include "sqrt2f23e.cin"
  +
#include "sqrt2f43e.cin"
  +
#include "sqrt2f45e.cin"
  +
//#include "superex.cin"
  +
//#include "slog14128.cin"
  +
#include "difapro.cin"
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  +
// FILE *o;o=fopen("rearea1.eps","w"); ado(o,202,148);
  +
FILE *o;o=fopen("sqrt23.eps","w"); ado(o,202,148);
  +
fprintf(o,"101 41 translate\n 10 10 scale\n");
  +
#define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y);
  +
M(0,-4.06)L(0,10.06)
  +
M(-10.06,0)L(10.06,0)
  +
fprintf(o,".03 W S\n");
  +
for(n=-10;n<11;n++){if(n!=0){M(n,0)L(n,-.1)}}
  +
for(n= -4;n<11;n++){if(n!=0){M(0,n)L(-.1,n)}}
  +
fprintf(o,".03 W S\n");
  +
M(-2,-4)L(-2,0)
  +
M(0,2)L(10,2)
  +
//M(-2,2)L(4,-4)
  +
M(-10,4)L(0,4)
  +
fprintf(o,".01 W S\n");
  +
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
for(m=0;m< 84; m+=4) { x=-1.84+.01*m; z=x; y=Re(F21E(z)); if(m==0) M(x,y) else L(x,y)}
  +
for(m=0;m<511; m+=10){ x=-1. +.01*m; z=x; y=Re(F21E(z)); L(x,y)}
  +
for(m=520;m<1101;m+=20){ x=-1. +.01*m; z=x; y=Re(F21E(z)); L(x,y)}
  +
fprintf(o,".05 W 0 0 1 RGB S\n");
  +
  +
for(m=0;m<201;m+=5) { x=-10+.1*m; z=x; y=Re(F23E(z)); if(m==0) M(x,y) else L(x,y)}
  +
fprintf(o,".05 W 0 .8 0 RGB S\n");
  +
  +
//for(m=0;m<201;m+=5) { x=-10+.1*m; z=x; y=Re(F43E(z)); if(m==0) M(x,y) else L(x,y)}
  +
//fprintf(o,".02 W .5 0 .5 RGB S\n");
  +
  +
for(m=0;m<166;m+=5) { x=-10+sqrt(1.*m); z=x; y=Re(F45E(z)); if(m==0) M(x,y) else L(x,y)}
  +
fprintf(o,".03 W 1 0 0 RGB S\n");
  +
  +
//for(m=0;m<386;m+=5) { x=-1.984+.01*m; z=x; y=Re(FSEXP(z)); if(m==0) M(x,y) else L(x,y)}
  +
//fprintf(o,".07 W 0 1 1 RGB S\n");
  +
  +
//for(m=0;m<145;m+=2) { y=-4+.1*m; z=z_type(y,0.); x=Re(FSLOG(z)); if(m==0) M(x,y) else L(x,y)}
  +
//fprintf(o,".012 W 0 0 0 RGB S\n");
  +
  +
DO(m,502){ x=-10.+.04*m;
  +
z=z_type(x,0.);
  +
c=difapro(z);
  +
y=Re(c)*1.e24;
  +
if(m==0) M(x,y) else L(x,y)}
  +
fprintf(o,".02 W .6 0 .6 RGB S\n");
  +
  +
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
  +
system("epstopdf sqrt23.eps");
  +
system( "open sqrt23.pdf");
  +
getchar(); system("killall Preview"); // For macintosh
  +
}
  +
</nowiki></nomathjax></poem>
  +
  +
==[[Latex]] generator of the labels==
  +
  +
<poem><nomathjax><nowiki>
  +
\documentclass[12pt]{article}
  +
\usepackage{geometry}
  +
\usepackage{graphicx}
  +
\usepackage{rotating}
  +
\paperwidth 424pt
  +
\paperheight 302pt
  +
\topmargin -106pt
  +
\oddsidemargin -73pt
  +
\textwidth 1064pt
  +
\textheight 1060pt
  +
\pagestyle {empty}
  +
\newcommand \sx {\scalebox}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\newcommand \ing {\includegraphics}
  +
\parindent 0pt
  +
\pagestyle{empty}
  +
\begin{document} \sx{2.1}{\begin{picture}(146,142)
  +
%\put(10,10){\ing{IterPowPlot}}
  +
%\put(40,40){\ing{Itereq2tlo}}
  +
\put(0,0){\ing{sqrt23}}
  +
\put(95,139){\sx{.7}{$y$}}
  +
\put(95,119){\sx{.6}{$8$}}
  +
\put(95, 99){\sx{.6}{$6$}}
  +
\put(95, 79){\sx{.6}{$4$}}
  +
\put(95, 59){\sx{.6}{$2$}}
  +
\put(91, 19){\sx{.6}{$-2$}}
  +
\put( 17,35){\sx{.6}{$-\!8$}}
  +
\put( 37,35){\sx{.6}{$-\!6$}}
  +
\put( 57,35){\sx{.6}{$-\!4$}}
  +
\put( 77,35){\sx{.6}{$-\!2$}}
  +
\put(120,35){\sx{.6}{$2$}}
  +
\put(140,35){\sx{.6}{$4$}}
  +
\put(160,35){\sx{.6}{$6$}}
  +
\put(180,35){\sx{.6}{$8$}}
  +
\put(197.6,35){\sx{.7}{$x$}}
  +
%
  +
\put(110,93){\sx{.6}{$y\!=\!F_{4,5}(x)\!=\!\mathrm{SuExp}_{\sqrt{2},5}(x)$}}
  +
%\put(116, 88){\sx{.7}{$y\!=\!\mathrm{tet}(x)$}}
  +
\put(126, 69){\sx{.6}{$y\!=\!F_{2,3}(x)$, $y\!=\!F_{4,3}(x)$}}
  +
\put(126, 54){\sx{.6}{$y\!=\!F_{2,1}(x)\!=\!\mathrm{tet}_{\sqrt{2}}(x)$}}
  +
%\put(108, 44){\sx{.7}{$y\!=\!10^{24}w(x)$}}
  +
%\enp}
  +
\put(126,44){\sx{.6}{$y\!=\!10^{24} d_{42}(x)$}}
  +
\end{picture}}
  +
\end{document}
  +
  +
</nowiki></nomathjax></poem>
  +
  +
[[Category:Base sqrt2]]
  +
[[Category:Book]]
  +
[[Category:BookPlot]]
  +
[[Category:C++]]
  +
[[Category:Explicit plot]]
  +
[[Category:Exp]]
  +
[[Category:Generator]]
  +
[[Category:Latex]]
  +
[[Category:Superfunction]]
  +
[[Category:Tetration]]

Latest revision as of 10:11, 10 June 2022


Four superexponentials to base \(b=\sqrt{2}\)

They are real-holomorphic solutions \(F\) of the transfer equation

\( \exp_b(F(z))=F(z\!+\!1) \)

with different values at zero and different asymptotic properties.

Along the real axis, functions \(F_{2,3} \) and \(F_{4,3} \) coincide with 24 decimal figures; the deviation

\( d_{42}(x)=F_{4,3}(x)-F_{2,3}(x) \)

scaled with factor \(10^{24} \) is shown with violet sinusoidal bell.

Usage

This image is used in book Суперфункции (2014, In Russian) [1] is figure 16.10, page 237.

This image is used in book Superfunctions (2020, in English) [2] as figure 16.9, page 232.

The English version [2] happen to be better, than the Russian [1] one; so, [2] can be recommended for the description.

This image is used also in article with Henryk Trappmann [3], Fig.3, page 1740.
Henryk had asked the Editor to consider superexponentials to base \( b \!=\!\sqrt{2} \); this pic had been plotted to satisfy his curiosity.

See the description in the cited literature. The description happens to be a little bit long; so, it is not reproduced here).

Refereces


C++ generator of the curves

Files ado.cin, conto.cin, sqrt2f21e.cin, sqrt2f23e.cin, sqrt2f43e.cin, sqrt2f45e.cin should be loaded in order to compile the code below.



 #include <math.h>
 #include <stdio.h>
 #include <stdlib.h>
 #define DB double
 #define DO(x,y) for(x=0;x<y;x++)
 #include <complex>
 typedef std::complex<double> z_type;
 #define Re(x) x.real()
 #define Im(x) x.imag()
 #define I z_type(0.,1.)
#include "ado.cin"
#include "sqrt2f21e.cin"
#include "sqrt2f23e.cin"
#include "sqrt2f43e.cin"
#include "sqrt2f45e.cin"
//#include "superex.cin"
//#include "slog14128.cin"
#include "difapro.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
// FILE *o;o=fopen("rearea1.eps","w"); ado(o,202,148);
  FILE *o;o=fopen("sqrt23.eps","w"); ado(o,202,148);
 fprintf(o,"101 41 translate\n 10 10 scale\n");
#define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y);
M(0,-4.06)L(0,10.06)
M(-10.06,0)L(10.06,0)
fprintf(o,".03 W S\n");
for(n=-10;n<11;n++){if(n!=0){M(n,0)L(n,-.1)}}
for(n= -4;n<11;n++){if(n!=0){M(0,n)L(-.1,n)}}
fprintf(o,".03 W S\n");
M(-2,-4)L(-2,0)
M(0,2)L(10,2)
//M(-2,2)L(4,-4)
M(-10,4)L(0,4)
fprintf(o,".01 W S\n");

fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=0;m< 84; m+=4) { x=-1.84+.01*m; z=x; y=Re(F21E(z)); if(m==0) M(x,y) else L(x,y)}
for(m=0;m<511; m+=10){ x=-1. +.01*m; z=x; y=Re(F21E(z)); L(x,y)}
for(m=520;m<1101;m+=20){ x=-1. +.01*m; z=x; y=Re(F21E(z)); L(x,y)}
fprintf(o,".05 W 0 0 1 RGB S\n");

for(m=0;m<201;m+=5) { x=-10+.1*m; z=x; y=Re(F23E(z)); if(m==0) M(x,y) else L(x,y)}
fprintf(o,".05 W 0 .8 0 RGB S\n");

//for(m=0;m<201;m+=5) { x=-10+.1*m; z=x; y=Re(F43E(z)); if(m==0) M(x,y) else L(x,y)}
//fprintf(o,".02 W .5 0 .5 RGB S\n");

for(m=0;m<166;m+=5) { x=-10+sqrt(1.*m); z=x; y=Re(F45E(z)); if(m==0) M(x,y) else L(x,y)}
fprintf(o,".03 W 1 0 0 RGB S\n");

//for(m=0;m<386;m+=5) { x=-1.984+.01*m; z=x; y=Re(FSEXP(z)); if(m==0) M(x,y) else L(x,y)}
//fprintf(o,".07 W 0 1 1 RGB S\n");

//for(m=0;m<145;m+=2) { y=-4+.1*m; z=z_type(y,0.); x=Re(FSLOG(z)); if(m==0) M(x,y) else L(x,y)}
//fprintf(o,".012 W 0 0 0 RGB S\n");

DO(m,502){ x=-10.+.04*m;
                z=z_type(x,0.);
                c=difapro(z);
                y=Re(c)*1.e24;
                if(m==0) M(x,y) else L(x,y)}
fprintf(o,".02 W .6 0 .6 RGB S\n");


 fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf sqrt23.eps");
        system( "open sqrt23.pdf");
        getchar(); system("killall Preview"); // For macintosh
}

Latex generator of the labels


\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\paperwidth 424pt
\paperheight 302pt
\topmargin -106pt
\oddsidemargin -73pt
\textwidth 1064pt
\textheight 1060pt
\pagestyle {empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\parindent 0pt
\pagestyle{empty}
\begin{document} \sx{2.1}{\begin{picture}(146,142)
%\put(10,10){\ing{IterPowPlot}}
%\put(40,40){\ing{Itereq2tlo}}
\put(0,0){\ing{sqrt23}}
\put(95,139){\sx{.7}{$y$}}
\put(95,119){\sx{.6}{$8$}}
\put(95, 99){\sx{.6}{$6$}}
\put(95, 79){\sx{.6}{$4$}}
\put(95, 59){\sx{.6}{$2$}}
\put(91, 19){\sx{.6}{$-2$}}
\put( 17,35){\sx{.6}{$-\!8$}}
\put( 37,35){\sx{.6}{$-\!6$}}
\put( 57,35){\sx{.6}{$-\!4$}}
\put( 77,35){\sx{.6}{$-\!2$}}
\put(120,35){\sx{.6}{$2$}}
\put(140,35){\sx{.6}{$4$}}
\put(160,35){\sx{.6}{$6$}}
\put(180,35){\sx{.6}{$8$}}
\put(197.6,35){\sx{.7}{$x$}}
%
\put(110,93){\sx{.6}{$y\!=\!F_{4,5}(x)\!=\!\mathrm{SuExp}_{\sqrt{2},5}(x)$}}
%\put(116, 88){\sx{.7}{$y\!=\!\mathrm{tet}(x)$}}
\put(126, 69){\sx{.6}{$y\!=\!F_{2,3}(x)$, $y\!=\!F_{4,3}(x)$}}
\put(126, 54){\sx{.6}{$y\!=\!F_{2,1}(x)\!=\!\mathrm{tet}_{\sqrt{2}}(x)$}}
%\put(108, 44){\sx{.7}{$y\!=\!10^{24}w(x)$}}
%\enp}
\put(126,44){\sx{.6}{$y\!=\!10^{24} d_{42}(x)$}}
\end{picture}}
\end{document}

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:14, 1 December 2018Thumbnail for version as of 06:14, 1 December 20183,520 × 2,507 (408 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata