Difference between revisions of "File:FourierExampleGauss16pol04Ta.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Explicit plot]] of the [[self-Fourier function]] and its discrete approximation. |
||
− | Importing image file |
||
+ | |||
+ | The following curves are shown: |
||
+ | |||
+ | $y=A(x)=\exp(-x^2/2) x^2(-3+x^2)$ versus $x$, dashed curve; |
||
+ | |||
+ | its discrete presentaton with array of length $N=16$ with step $\mathrm {d}x=\sqrt{2 \pi/N} \approx0.626657$ , the $A$ is practically overlapped with the evaluation of its the Fourier transform, $B$, red curve, |
||
+ | which approximates |
||
+ | : $ B(x)=\frac{1}{\sqrt{2 \pi}} |
||
+ | \int_{-\infty}^{\infty} |
||
+ | \exp(-i p x)~ A(p)~ \mathrm {d} p$ |
||
+ | |||
+ | The difference of the discrete approcimations of $A$ and $B$ scaled with factor 100 is shown with saw-like line. |
||
+ | This modulus of this difference remains of order of 1/1000, and only at the zero-th point of the grid |
||
+ | (which corresponds to $x=–8 \mathrm{d} x \approx -5.013$ ) slightly exceeds this level. |
||
+ | |||
+ | ==Generators== |
||
+ | The colleagues are cordially invited to load the generator below, to confirm that it reproduced the picture presented and to play it; |
||
+ | for example, to change the function $F$ to just Gaussian exponential. |
||
+ | |||
+ | ==[[C++]] generator of lines== |
||
+ | The files [[ado.cin]] and [[fafo.cin]] should be in the working directory in order to compile the code below: |
||
+ | |||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #include <complex> |
||
+ | using namespace std; |
||
+ | #define z_type complex<double> |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define RI(x) x.real(),x.imag() |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | |||
+ | #include "ado.cin" |
||
+ | #include"fafo.cin" |
||
+ | |||
+ | DB F(DB x){DB u=x*x; return u*(-3.+u)*exp(-x*x/2.);} |
||
+ | |||
+ | main(){ z_type * a, *b, c; int j,m,n, N=16; FILE *o; |
||
+ | double step=sqrt(2*M_PI/N),x,y,u; |
||
+ | a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type))); |
||
+ | b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type))); |
||
+ | //for(j=0;j<N;j++) { x=step*(j-N/2); u=x*x; a[j]=b[j]=(3.+u*(-6.+u))*exp(-x*x/2); } |
||
+ | for(j=0;j<N;j++) { x=step*(j-N/2); u=x*x; a[j]=b[j]=F(x); } |
||
+ | fafo(b,N,1); |
||
+ | for(j=0;j<N;j++) printf("%2d %18.15f %18.15f %18.15f %18.15f\n", j, RI(a[j]), RI(b[j]) ); |
||
+ | o=fopen("FourierExampleGauss16pol04a.eps","w"); ado(o,1024,224); |
||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | fprintf(o,"522 122 translate 100 100 scale\n"); |
||
+ | M(-5,0) L(5,0) M(0,0) L(0,1) fprintf(o,".01 W S\n"); |
||
+ | M(-5,1) L(5,1) M(-5,-1) L(5,-1) |
||
+ | for(m=-5;m<6;m++) {M(m,-1) L(m,1)} fprintf(o,".004 W S\n"); |
||
+ | DO(m,201){x=-5.+.05*m; y=F(x); if(m/2*2==m)M(x,y)else L(x,y);} fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DB *X; X=(DB *) malloc((size_t)((N+1)*sizeof(DB))); DO(j,N){ x=step*(j-N/2); X[j]=x; } |
||
+ | DO(j,N){x=X[j];y=Re(a[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,".01 W 0 0 1 RGB S\n"); |
||
+ | DO(j,N){x=X[j];y=Re(b[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,"0.01 W 1 0 0 RGB S\n"); |
||
+ | DO(j,N){x=X[j];y=100.*(Re(b[j])-F(x)); if(j==0)M(x,y)else L(x,y);} fprintf(o,"0.007 W 0 0 .3 RGB S\n"); |
||
+ | printf("X[0]=%9.5f\n",X[0]); |
||
+ | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
+ | system("epstopdf FourierExampleGauss16pol04a.eps"); |
||
+ | system( "open FourierExampleGauss16pol04a.pdf"); //these 2 commands may be specific for macintosh |
||
+ | getchar(); system("killall Preview");// if run at another operational system, may need to modify |
||
+ | free(a); |
||
+ | free(b); |
||
+ | free(X); |
||
+ | } |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <nowiki> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \usepackage{geometry} %<br> |
||
+ | \paperwidth 1028pt %<br> |
||
+ | \paperheight 226pt %<br> |
||
+ | \topmargin -104pt %<br> |
||
+ | \oddsidemargin -76pt %<br> |
||
+ | \parindent 0pt %<br> |
||
+ | \pagestyle{empty} %<br> |
||
+ | \usepackage{graphicx} %<br> |
||
+ | \newcommand \sx \scalebox %<br> |
||
+ | \begin{document} %<br> |
||
+ | \begin{picture}(1024,220) %<br> |
||
+ | \put(4,0){\includegraphics{FourierExampleGauss16pol04a}} %<br> |
||
+ | \put(8,214){\sx{2}{$y$}} %<br> |
||
+ | \put(8,116){\sx{2}{0}} %<br> |
||
+ | \put(0,20){\sx{2}{$-\!1$}} %<br> |
||
+ | \put(104,0){\sx{2}{$-4$}} %<br> |
||
+ | \put(304,0){\sx{2}{$-2$}} %<br> |
||
+ | \put(523,0){\sx{2}{$0$}} %<br> |
||
+ | \put(723,0){\sx{2}{$2$}} %<br> |
||
+ | \put(923,0){\sx{2}{$4$}} %<br> |
||
+ | \put(1019,0){\sx{2}{$x$}} %<br> |
||
+ | \end{picture} %<br> |
||
+ | \end{document} |
||
+ | </nowiki> |
||
+ | |||
+ | |||
+ | [[Category:Fourier transform]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Self-Fourier functions]] |
Latest revision as of 09:39, 21 June 2013
Explicit plot of the self-Fourier function and its discrete approximation.
The following curves are shown:
$y=A(x)=\exp(-x^2/2) x^2(-3+x^2)$ versus $x$, dashed curve;
its discrete presentaton with array of length $N=16$ with step $\mathrm {d}x=\sqrt{2 \pi/N} \approx0.626657$ , the $A$ is practically overlapped with the evaluation of its the Fourier transform, $B$, red curve, which approximates
- $ B(x)=\frac{1}{\sqrt{2 \pi}}
\int_{-\infty}^{\infty} \exp(-i p x)~ A(p)~ \mathrm {d} p$
The difference of the discrete approcimations of $A$ and $B$ scaled with factor 100 is shown with saw-like line. This modulus of this difference remains of order of 1/1000, and only at the zero-th point of the grid (which corresponds to $x=–8 \mathrm{d} x \approx -5.013$ ) slightly exceeds this level.
Generators
The colleagues are cordially invited to load the generator below, to confirm that it reproduced the picture presented and to play it; for example, to change the function $F$ to just Gaussian exponential.
C++ generator of lines
The files ado.cin and fafo.cin should be in the working directory in order to compile the code below:
#include<math.h> #include<stdio.h> #include <stdlib.h> #include <complex> using namespace std; #define z_type complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define RI(x) x.real(),x.imag() #define DB double #define DO(x,y) for(x=0;x<y;x++)
#include "ado.cin" #include"fafo.cin"
DB F(DB x){DB u=x*x; return u*(-3.+u)*exp(-x*x/2.);}
main(){ z_type * a, *b, c; int j,m,n, N=16; FILE *o; double step=sqrt(2*M_PI/N),x,y,u; a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type))); b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type))); //for(j=0;j<N;j++) { x=step*(j-N/2); u=x*x; a[j]=b[j]=(3.+u*(-6.+u))*exp(-x*x/2); } for(j=0;j<N;j++) { x=step*(j-N/2); u=x*x; a[j]=b[j]=F(x); } fafo(b,N,1); for(j=0;j<N;j++) printf("%2d %18.15f %18.15f %18.15f %18.15f\n", j, RI(a[j]), RI(b[j]) ); o=fopen("FourierExampleGauss16pol04a.eps","w"); ado(o,1024,224); #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); fprintf(o,"522 122 translate 100 100 scale\n"); M(-5,0) L(5,0) M(0,0) L(0,1) fprintf(o,".01 W S\n"); M(-5,1) L(5,1) M(-5,-1) L(5,-1) for(m=-5;m<6;m++) {M(m,-1) L(m,1)} fprintf(o,".004 W S\n"); DO(m,201){x=-5.+.05*m; y=F(x); if(m/2*2==m)M(x,y)else L(x,y);} fprintf(o,".008 W 0 0 0 RGB S\n"); DB *X; X=(DB *) malloc((size_t)((N+1)*sizeof(DB))); DO(j,N){ x=step*(j-N/2); X[j]=x; } DO(j,N){x=X[j];y=Re(a[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,".01 W 0 0 1 RGB S\n"); DO(j,N){x=X[j];y=Re(b[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,"0.01 W 1 0 0 RGB S\n"); DO(j,N){x=X[j];y=100.*(Re(b[j])-F(x)); if(j==0)M(x,y)else L(x,y);} fprintf(o,"0.007 W 0 0 .3 RGB S\n"); printf("X[0]=%9.5f\n",X[0]); fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); system("epstopdf FourierExampleGauss16pol04a.eps"); system( "open FourierExampleGauss16pol04a.pdf"); //these 2 commands may be specific for macintosh getchar(); system("killall Preview");// if run at another operational system, may need to modify free(a); free(b); free(X); }
Latex generator of labels
\documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \paperwidth 1028pt %<br> \paperheight 226pt %<br> \topmargin -104pt %<br> \oddsidemargin -76pt %<br> \parindent 0pt %<br> \pagestyle{empty} %<br> \usepackage{graphicx} %<br> \newcommand \sx \scalebox %<br> \begin{document} %<br> \begin{picture}(1024,220) %<br> \put(4,0){\includegraphics{FourierExampleGauss16pol04a}} %<br> \put(8,214){\sx{2}{$y$}} %<br> \put(8,116){\sx{2}{0}} %<br> \put(0,20){\sx{2}{$-\!1$}} %<br> \put(104,0){\sx{2}{$-4$}} %<br> \put(304,0){\sx{2}{$-2$}} %<br> \put(523,0){\sx{2}{$0$}} %<br> \put(723,0){\sx{2}{$2$}} %<br> \put(923,0){\sx{2}{$4$}} %<br> \put(1019,0){\sx{2}{$x$}} %<br> \end{picture} %<br> \end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,134 × 470 (88 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: