Difference between revisions of "File:LogisticSecK2.jpg"
($ -> \( ; refs ; pre ; keywords) |
|||
| Line 1: | Line 1: | ||
| + | {{oq|File:LogisticSecK2.jpg|Original file (6,807 × 3,044 pixels, file size: 996 KB, MIME type: image/jpeg) }} |
||
| + | |||
[[Logistic Sequence]] of real argument. |
[[Logistic Sequence]] of real argument. |
||
| − | + | \(y=F(x)=\mathrm{LogisticSequence}_s(x)\) versus \(x`) for various values of parameter \(s\). |
|
| − | + | Here \(F\) is simplest superfunction of the [[Logistic operator]], id est, solution of |
|
the transfer equation |
the transfer equation |
||
| + | \[ |
||
| − | + | F(z\!+\!1) = s F(z)(1-F(z)) |
|
| + | \] |
||
| − | for the logistic operator |
+ | for the logistic operator \(\mathrm{LogisticOperator}_s(z)=sz(1-z)\) |
as [[transfer function]]. |
as [[transfer function]]. |
||
| Line 19: | Line 23: | ||
</ref>. |
</ref>. |
||
| + | This plot is used as Fig.7.3 at page 73 of book «[[Superfunctions]]»<ref> |
||
| ⚫ | |||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - 2020/7/28 |
||
| − | <references/> |
||
| + | </ref><ref>https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| − | |||
| + | </ref> |
||
| ⚫ | |||
| + | <br> |
||
| ⚫ | |||
| + | in order to show that the holomorphic extension of the [[Logistic sequence]] ([[Logistic Sequence]] |
||
| ⚫ | |||
| + | <ref> |
||
| ⚫ | |||
| + | http://www.milefoot.com/math/discrete/sequences/logisticseq.htm |
||
| ⚫ | |||
| + | Logistic sequences are a class of sequences that possess a very simple recursive definition, yet exhibit a wide variety of end behaviors. .. (2025) |
||
| + | </ref> or [[logistic map sequence]] <ref> |
||
| + | https://jart.icat.unam.mx/index.php/jart/article/view/1786/997 |
||
| + | G.Laguna-Sancheza, D.Aguirre-Guerrerob, I.Robles-Martinez. |
||
| + | Chaotic logistic map sequences with good autocorrelation properties. |
||
| + | Journal of Applied Research and Technology 21 (2023) 367-375, |
||
| + | </ref>) |
||
| + | is pretty smooth at regular; the only oscillations become more frequent at the increase of the real part of the argument. |
||
==[[C++]] generator of curves of the First picture== |
==[[C++]] generator of curves of the First picture== |
||
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 75: | Line 86: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
==[[C++]] generator of curves of the Second picture== |
==[[C++]] generator of curves of the Second picture== |
||
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 125: | Line 134: | ||
getchar(); system("killall Preview"); |
getchar(); system("killall Preview"); |
||
} |
} |
||
| + | </pre> |
||
| − | |||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
==[[Latex]] generator of labels== |
==[[Latex]] generator of labels== |
||
| + | <pre> |
||
| − | |||
| − | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
| Line 186: | Line 192: | ||
\put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}} |
\put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}} |
||
\end{picture}} |
\end{picture}} |
||
| − | |||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
The free use is allowed, attribute the source. |
The free use is allowed, attribute the source. |
||
| + | |||
| ⚫ | |||
| + | {{ref}} |
||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | «[[Holomorphic extension of the Collatz subsequence]]», |
||
| + | «[[LogisitcOperator]]», |
||
| + | <b>«[[LogisticSequence]]»</b>, |
||
| + | «[[Table of superfunctions]]», |
||
| + | «[[Transfer equation]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | |||
| ⚫ | |||
| ⚫ | |||
| + | [[Category:Collatz sequence]] |
||
| + | [[Category:Elutin Pavel Vyacheslavocish]] |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
Revision as of 13:23, 21 August 2025
Logistic Sequence of real argument.
\(y=F(x)=\mathrm{LogisticSequence}_s(x)\) versus \(x`) for various values of parameter \(s\).
Here \(F\) is simplest superfunction of the Logistic operator, id est, solution of the transfer equation
\[ F(z\!+\!1) = s F(z)(1-F(z)) \]
for the logistic operator \(\mathrm{LogisticOperator}_s(z)=sz(1-z)\) as transfer function.
This solution exponentially approaches zero at minus infinity.
The holomorphic extension of the logistic sequence is described in 2010 in the Moscow University Physics Bulletin [1].
This plot is used as Fig.7.3 at page 73 of book «Superfunctions»[2][3]
in order to show that the holomorphic extension of the Logistic sequence (Logistic Sequence
[4] or logistic map sequence [5])
is pretty smooth at regular; the only oscillations become more frequent at the increase of the real part of the argument.
C++ generator of curves of the First picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi6.eps","w");ado(o,164,24);
fprintf(o,"62 2 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=-3;m<6;m++){if(m==0){M(m,-.04)L(m,1.06)} else{M(m,0)L(m,1)}}
for(n=0;n<2;n++){ M( -3,n)L(5,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(3.4);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .7 0 RGB S\n");
maq(3.);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
fprintf(o,"1 setlinejoin 1 setlinecap\n");
maq(3.8);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
fprintf(o,".015 W 0 0 1 RGB [.001 .025] 0 setdash S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi6.eps");
system( "open logi6.pdf");
getchar(); system("killall Preview");
}
C++ generator of curves of the Second picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi5.eps","w");ado(o,164,44);
fprintf(o,"62 22 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=-3;m<6;m++){if(m==0){M(m,-1.06)L(m,1.06)} else{M(m,-1)L(m,1)}}
for(n=-1;n<2;n++){ M( -3,n)L(5,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(4.);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .7 0 RGB S\n");
maq(3.9);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
fprintf(o,"1 setlinejoin 1 setlinecap\n");
maq(4.1);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
fprintf(o,".015 W 0 0 1 RGB [.001 .02] 0 setdash S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi5.eps");
system( "open logi5.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 492pt
\paperheight 220pt
\topmargin -100pt
\oddsidemargin -72pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\sx{3}{\begin{picture}(166,22)
\put( 1,1){\includegraphics{logi6}}
%\put( 64,48){\sx{.6}{$F(x)$}}
\put( 50,16){\sx{.4}{$F(x)$}}
\put( 0,22){\sx{.3}{$1$}}
\put( 0, 3){\sx{.3}{$0$}}
%\put( -1, 3){\sx{.4}{$-1$}}
\put( 20, 0){\sx{.3}{$-2$}}
\put( 40, 0){\sx{.3}{$-1$}}
\put( 62.5, 0){\sx{.3}{$0$}}
\put( 82.5, 0){\sx{.3}{$1$}}
\put(102.5, 0){\sx{.3}{$2$}}
\put(122.5, 0){\sx{.3}{$3$}}
\put(142.5, 0){\sx{.3}{$4$}}
\put(162, 0){\sx{.3}{$x$}}
\put(91,15.5){\sx{.3}{$s\!=\!3$}}
\put(91,11){\sx{.3}{$s\!=\!3.4$}}
\put(93, 5){\sx{.3}{$s\!=\!3.8$}}
\end{picture}}
\vskip 9pt
\sx{3}{\begin{picture}(166,44)
\put( 1,1){\includegraphics{logi5}}
%\put( 64,48){\sx{.6}{$F(x)$}}
\put( 50,36){\sx{.4}{$F(x)$}}
\put( 0,41.5){\sx{.3}{$1$}}
\put( 0,22){\sx{.3}{$0$}}
\put( -1, 2){\sx{.3}{$-\!1$}}
\put( 20, 0){\sx{.3}{$-2$}}
\put( 40, 0){\sx{.3}{$-1$}}
\put( 62.5, 0){\sx{.3}{$0$}}
\put( 82.5, 0){\sx{.3}{$1$}}
\put(102.5, 0){\sx{.3}{$2$}}
\put(122.5, 0){\sx{.3}{$3$}}
\put(142.5, 0){\sx{.3}{$4$}}
\put(162, 0){\sx{.3}{$x$}}
\put(91.3,29){\sx{.3}{$s\!=\!3.9$}}
%\put(91,21){\sx{.3}{$s\!=\!4$}}
\put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}}
\end{picture}}
\end{document}
The free use is allowed, attribute the source.
References
- ↑ http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
- ↑ https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - 2020/7/28
- ↑ https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
- ↑ http://www.milefoot.com/math/discrete/sequences/logisticseq.htm Logistic sequences are a class of sequences that possess a very simple recursive definition, yet exhibit a wide variety of end behaviors. .. (2025)
- ↑ https://jart.icat.unam.mx/index.php/jart/article/view/1786/997 G.Laguna-Sancheza, D.Aguirre-Guerrerob, I.Robles-Martinez. Chaotic logistic map sequences with good autocorrelation properties. Journal of Applied Research and Technology 21 (2023) 367-375,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:13, 1 December 2018 | 6,807 × 3,044 (996 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: