Difference between revisions of "File:Vladi04.jpg"
($ -> \( ; description ; refs ; pre ; keywords) |
|||
| Line 1: | Line 1: | ||
| + | ==Summary== |
||
| ⚫ | |||
| + | {{oq|Vladi04.jpg|}} |
||
| + | |||
| + | Maps of Fig.14.6 from page 192 of book «[[Superfunctions]]» |
||
| + | <ref> |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 |
||
| + | https://mizugadro.mydns.jp/BOOK/458.pdf Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Piblishing]], 2020. Page 192, Fig.14.6. |
||
| + | </ref>, 2020, |
||
| + | |||
| + | These maps appear also in Рис.14.6 at page 191 of the Russian version «[[Суперфункции]]» <ref> |
||
| + | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
| ⚫ | |||
| + | Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref> |
||
| + | |||
| + | The figure shows the |
||
| ⚫ | |||
<b>Left:</b> |
<b>Left:</b> |
||
| − | + | \(u\!+\!\mathrm i v = \mathrm{naiv}(x+\mathrm i y)\) |
|
| − | + | \(\displaystyle |
|
| − | \mathrm{naiv}(z)=\sum_{n=0}^{N-1} c_n z^n |
+ | \mathrm{naiv}(z)=\sum_{n=0}^{N-1} c_n z^n\) |
| − | + | \(\mathrm{tet}(z)=\mathrm{naiv}(z)+O(z^N)\) |
|
| − | for |
+ | for \(N=50\). |
<b>Center:</b> |
<b>Center:</b> |
||
| − | + | \(\displaystyle D_1= |
|
D_{1}(z)=-\lg\left( \frac |
D_{1}(z)=-\lg\left( \frac |
||
{|\ln(\mathrm{naiv}(z\!+\!1)-\mathrm{naiv}(z)|} |
{|\ln(\mathrm{naiv}(z\!+\!1)-\mathrm{naiv}(z)|} |
||
{|\ln(\mathrm{naiv}(z\!+\!1)|+|\mathrm{naiv}(z)|} \right) |
{|\ln(\mathrm{naiv}(z\!+\!1)|+|\mathrm{naiv}(z)|} \right) |
||
| + | \) |
||
| − | $ |
||
<b>Right:</b> |
<b>Right:</b> |
||
| − | + | \(\displaystyle |
|
D_2=D_{2}(z)=-\lg\left( \frac |
D_2=D_{2}(z)=-\lg\left( \frac |
||
{|\exp(\mathrm{naiv}(z\!-\!1)-\mathrm{naiv}(z)|} |
{|\exp(\mathrm{naiv}(z\!-\!1)-\mathrm{naiv}(z)|} |
||
{|\exp(\mathrm{naiv}(z\!-\!1)|+|\mathrm{naiv}(z)|} \right) |
{|\exp(\mathrm{naiv}(z\!-\!1)|+|\mathrm{naiv}(z)|} \right) |
||
| + | \) |
||
| − | $ |
||
| − | For |
+ | For \(D=D_1\) and \(D=D_2\), levels \(D=1,2,4,6,8,10,12,14 ~ ~ \) are drawn. |
| + | Level \(D=1\) is drawn with thick line. |
||
| + | Symbol "15" indicates the region, where the agreement is better than 14. |
||
| + | <!-- |
||
Usage: this is figure 14.6 of the book [[Суперфункции]] (2014, In Russian) <ref> |
Usage: this is figure 14.6 of the book [[Суперфункции]] (2014, In Russian) <ref> |
||
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
| ⚫ | |||
http://mizugadro.mydns.jp/BOOK/202.pdf |
http://mizugadro.mydns.jp/BOOK/202.pdf |
||
Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
</ref>; the English version is in preparation in 2015. |
</ref>; the English version is in preparation in 2015. |
||
| + | !--> |
||
First time published in the [[Vladikavkaz Matehmatical Journal]] |
First time published in the [[Vladikavkaz Matehmatical Journal]] |
||
| Line 42: | Line 62: | ||
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
Figure 4. |
Figure 4. |
||
| − | </ref>. |
+ | </ref>, 2010. |
==[[C++]] generator of the first picture== |
==[[C++]] generator of the first picture== |
||
| − | [[vladinaiv49.cin]], |
+ | /* [[vladinaiv49.cin]], |
[[ado.cin]], |
[[ado.cin]], |
||
[[conto.cin]] |
[[conto.cin]] |
||
| − | should be loaded in order to compile the code below |
+ | should be loaded in order to compile the code below */ |
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 120: | Line 140: | ||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[C++]] generator of the second picture== |
==[[C++]] generator of the second picture== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 190: | Line 210: | ||
//getchar(); system("killall Preview");// for macintosh |
//getchar(); system("killall Preview");// for macintosh |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==[[C++]] generator of the third picture== |
==[[C++]] generator of the third picture== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 260: | Line 279: | ||
//getchar(); system("killall Preview");// for macintosh |
//getchar(); system("killall Preview");// for macintosh |
||
} |
} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
| − | |||
==[[Latex]] combiner== |
==[[Latex]] combiner== |
||
| + | <pre> |
||
| − | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{graphicx} |
\usepackage{graphicx} |
||
| Line 322: | Line 340: | ||
\end{document} |
\end{document} |
||
| + | </pre> |
||
| − | </nowiki></nomathjax></poem> |
||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | |||
| + | {{fer}} |
||
| + | ==Keytwords== |
||
| + | |||
| + | «[[Natural tetration]]», |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration]]», |
||
| + | |||
| + | «[[Суперфункции]]», |
||
| ⚫ | |||
[[Category:Agreement]] |
[[Category:Agreement]] |
||
| − | [[Category: |
+ | [[Category:Aproximation]] |
| ⚫ | |||
[[Category:BookMap]] |
[[Category:BookMap]] |
||
| − | [[Category: |
+ | [[Category:Complex map]] |
[[Category:C++]] |
[[Category:C++]] |
||
| + | [[Category:Fit]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
||
| + | [[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Tetration]] |
||
Latest revision as of 06:32, 16 December 2025
Summary
Maps of Fig.14.6 from page 192 of book «Superfunctions» [1], 2020,
These maps appear also in Рис.14.6 at page 191 of the Russian version «Суперфункции» [2]
The figure shows the Complex map of the truncated Taylor expansion of the natural tetration and the agreements \(D_1\) and \(D_2\) of this approximation.
Left:
\(u\!+\!\mathrm i v = \mathrm{naiv}(x+\mathrm i y)\)
\(\displaystyle \mathrm{naiv}(z)=\sum_{n=0}^{N-1} c_n z^n\)
\(\mathrm{tet}(z)=\mathrm{naiv}(z)+O(z^N)\)
for \(N=50\).
Center:
\(\displaystyle D_1= D_{1}(z)=-\lg\left( \frac {|\ln(\mathrm{naiv}(z\!+\!1)-\mathrm{naiv}(z)|} {|\ln(\mathrm{naiv}(z\!+\!1)|+|\mathrm{naiv}(z)|} \right) \)
Right:
\(\displaystyle D_2=D_{2}(z)=-\lg\left( \frac {|\exp(\mathrm{naiv}(z\!-\!1)-\mathrm{naiv}(z)|} {|\exp(\mathrm{naiv}(z\!-\!1)|+|\mathrm{naiv}(z)|} \right) \)
For \(D=D_1\) and \(D=D_2\), levels \(D=1,2,4,6,8,10,12,14 ~ ~ \) are drawn. Level \(D=1\) is drawn with thick line. Symbol "15" indicates the region, where the agreement is better than 14.
First time published in the Vladikavkaz Matehmatical Journal
[3], 2010.
C++ generator of the first picture
/* vladinaiv49.cin, ado.cin, conto.cin should be loaded in order to compile the code below */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "vladinaiv49.cin"
//#include "superlo.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=150,M1=M+1;
int N=301,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("fignaiv.eps","w");ado(o,0,0,62,62);
FILE *o;o=fopen("vladi04a.eps","w");ado(o,62,62);
fprintf(o,"31 31 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-3.+.04*(m-.5);
//DO(n,N1)Y[n]=-6 +.03*(n-.5);
DB sy=2.8/sinh(.005*N);
DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5));
/*
for(m=-20;m<21;m++){ z=z_type(Re(Zo),Im(Zo)*m/20.009); c=FSLOG(z); x=Re(c); y=Im(c); if(m==-20)M(x,y)else L(x,y) }
for(m=20;m>-21;m--){ z=z_type(Re(Zo),Im(Zo)*m/20.009); c=FSLOG(z); x=Re(c)+1;y=Im(c); L(x,y) }
fprintf(o,"1 1 0 RGB F\n");
*/
/*
for(m=-20;m<21;m++){ z=z_type(Re(Zo),Im(Zo)*m/20.008); c=FSLOG(z); x=Re(c);y=Im(c); if(m==-20)M(x,y)else L(x,y) }
for(m=20;m>-21;m--){ z=z_type(Re(Zo),Im(Zo)*m/20.008); c=FSLOG(z); x=Re(c)+1;y=Im(c);if(m==20)M(x,y)else L(x,y) }
fprintf(o,".006 W 0 0 0 RGB S\n");
*/
for(m=-3;m<4;m++) { if(m==0){M(m,-3.2)L(m,3.2)} else {M(m,-3)L(m,3)} }
for(n=-3;n<4;n++) { M( -3,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=naiv49(z);
p=Re(c); q=Im(c);
if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p;
if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q;
}}
p=1;q=.5;
conto(o,g,w,v,X,Y,M,N, ( Re(Zo) ),-q,q); fprintf(o,".1 W 1 .5 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( Im(Zo) ),-q,q); fprintf(o,".1 W .2 1 .5 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-Im(Zo) ),-q,q); fprintf(o,".1 W .5 1 .2 RGB S\n");
#include"plofu.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi04a.eps");
system( "open vladi04a.pdf"); //macintosh
// system( "xpdf vladi04a.pdf"); //linux
//getchar(); system("killall Preview"); //macintosh
}
C++ generator of the second picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "superex.cin"
#include "vladinaiv49.cin"
//#include "superlo.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=150,M1=M+1;
int N=301,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("fignaivL.eps","w");ado(o,62,62);
FILE *o;o=fopen("vladi04b.eps","w");ado(o,62,62);
fprintf(o,"31 31 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-3.+.04*(m-.5);
//DO(n,N1)Y[n]=-6 +.03*(n-.5);
DB sy=2.8/sinh(.005*N);
DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5));
/*
for(m=-20;m<21;m++){ z=z_type(Re(Zo),Im(Zo)*m/20.009); c=FSLOG(z); x=Re(c); y=Im(c); if(m==-20)M(x,y)else L(x,y) }
for(m=20;m>-21;m--){ z=z_type(Re(Zo),Im(Zo)*m/20.009); c=FSLOG(z); x=Re(c)+1;y=Im(c); L(x,y) }
fprintf(o,"1 1 0 RGB F\n");
*/
/*
for(m=-20;m<21;m++){ z=z_type(Re(Zo),Im(Zo)*m/20.008); c=FSLOG(z); x=Re(c);y=Im(c); if(m==-20)M(x,y)else L(x,y) }
for(m=20;m>-21;m--){ z=z_type(Re(Zo),Im(Zo)*m/20.008); c=FSLOG(z); x=Re(c)+1;y=Im(c);if(m==20)M(x,y)else L(x,y) }
fprintf(o,".006 W 0 0 0 RGB S\n");
*/
for(m=-3;m<4;m++) { if(m==0){M(m,-3.2)L(m,3.2)} else {M(m,-3)L(m,3)} }
for(n=-3;n<4;n++) { M( -3,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=log(naiv49(z+1.));
d=naiv49(z);
c = - log( abs(c-d) / (abs(c)+abs(d)) )/log(10.);
p=Re(c); //q=Im(c);
if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p;
// if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q;
}}
#include"plodi.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi04b.eps");
system( "open vladi04b.pdf");// for macintosh
//getchar(); system("killall Preview");// for macintosh
}
C++ generator of the third picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "superex.cin"
#include "vladinaiv49.cin"
//#include "superlo.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=150,M1=M+1;
int N=301,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("vladi04c.eps","w");ado(o,62,62);
fprintf(o,"31 31 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-3.+.04*(m-.5);
//DO(n,N1)Y[n]=-6 +.03*(n-.5);
DB sy=2.8/sinh(.005*N);
DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5));
/*
for(m=-20;m<21;m++){ z=z_type(Re(Zo),Im(Zo)*m/20.009); c=FSLOG(z); x=Re(c); y=Im(c); if(m==-20)M(x,y)else L(x,y) }
for(m=20;m>-21;m--){ z=z_type(Re(Zo),Im(Zo)*m/20.009); c=FSLOG(z); x=Re(c)+1;y=Im(c); L(x,y) }
fprintf(o,"1 1 0 RGB F\n");
*/
/*
for(m=-20;m<21;m++){ z=z_type(Re(Zo),Im(Zo)*m/20.008); c=FSLOG(z); x=Re(c);y=Im(c); if(m==-20)M(x,y)else L(x,y) }
for(m=20;m>-21;m--){ z=z_type(Re(Zo),Im(Zo)*m/20.008); c=FSLOG(z); x=Re(c)+1;y=Im(c);if(m==20)M(x,y)else L(x,y) }
fprintf(o,".006 W 0 0 0 RGB S\n");
*/
for(m=-3;m<4;m++) { if(m==0){M(m,-3.2)L(m,3.2)} else {M(m,-3)L(m,3)} }
for(n=-3;n<4;n++) { M( -3,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=exp(naiv49(z-1.));
d=naiv49(z);
c = - log( abs(c-d) / (abs(c)+abs(d)) )/log(10.);
p=Re(c); //q=Im(c);
if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p;
// if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q;
}}
#include"plodi.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi04c.eps");
system( "open vladi04c.pdf");// for macintosh
//getchar(); system("killall Preview");// for macintosh
}
Latex combiner
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{rotating}
\usepackage{geometry}
\paperwidth 428px
\paperheight 134px
\topmargin -106pt
\oddsidemargin -80pt
\pagestyle{empty}
\begin{document}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \vladiax
{
\put(-3,58.6){\sx{.5}{$y$}}
\put(-3,49){\sx{.5}{$2$}}
\put(-3,39){\sx{.5}{$1$}}
\put(-3,29){\sx{.5}{$0$}}
\put(-7,19){\sx{.5}{$-1$}}
\put(-7, 9){\sx{.5}{$-2$}}
\put( 6 ,-4){\sx{.5}{$-2$}}
\put(17 ,-4){\sx{.5}{$-1$}}
\put(30,-4){\sx{.5}{$0$}}
\put(40, -4){\sx{.5}{$1$}}
\put(50, -4){\sx{.5}{$2$}}
\put(58.4, -4){\sx{.5}{$x$}}
}
%~\sx{2.33}{\begin{picture}(70,60)
~\sx{2.02}{\begin{picture}(70,60)
\put(0,0){\includegraphics{vladi04a}}
\put(25,24){\sx{.4}{\rot{90} $ u\!=\!\Re(L)$ \ero }}
\put(32,51){\sx{.4}{\rot{-61} $ v\!=\!\Im(L)$ \ero }}
\put(27,44){\sx{.4}{\rot{-36} $ v\!=\!1$ \ero }}
\put(26,30){\sx{.4}{\rot{ 0} $ v\!=\!0$ \ero }}
\put(26,15.6){\sx{.4}{\rot{32} $ v\!=\!-1$ \ero }}
\put(35,11){\sx{.4}{\rot{61} $ v\!=\!\Im(L^*)$ \ero }}
\vladiax
\end{picture}}
\sx{2.02}{\begin{picture}(70,60)
\put(0,0){\includegraphics{vladi04b}}
\vladiax
\put(23,29){\sx{.55}{$15$}}
\put(43, 53){\sx{.55}{$D_{1}\!<\!1$}}
\end{picture}}
\sx{2.02}{\begin{picture}(58,60)
\put(0,0){\includegraphics{vladi04c}}
\vladiax
\put(32,29){\sx{.55}{$15$}}
\put(43,53){\sx{.55}{$D_{2}\!<\!1$}}
\end{picture}}
\end{document}
References
- ↑ https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 https://mizugadro.mydns.jp/BOOK/458.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Piblishing, 2020. Page 192, Fig.14.6.
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑ http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. Figure 4.
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 06:14, 1 December 2018 | 3,566 × 1,116 (767 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.