Difference between revisions of "File:Acosq1plotT.png"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
Graphic of real and imaginary parts of [[acosc1]]$\left( \mathrm e ^{ \mathrm i \pi/4 } x \right)$ versus $x$.
Importing image file
 
  +
  +
Define
  +
$\mathrm{acosq}_1(z)=\mathrm{acosc}_1\left( \mathrm e ^{ \mathrm i \pi/4 } z \right)$
  +
  +
Then
  +
$\Re(\mathrm{acosq}_1(x))$ and $\Im(\mathrm{acosq}_1(x))$ are plotted versus $x$ with thick blue and thick red lines.
  +
  +
The thin lines show the real and imaginary parts the cubic polynomial corresponding to the truncation of the [[Taylor expansion]] at zero;
  +
:\mathrm{expan}_1(z)=\frac{3 \pi}{2}
  +
\frac{3 \pi z}{2}+\frac{3 \pi
  +
z^2}{2}+\frac{3}{16} \pi \left(8+3 \pi
  +
^2\right) z^3+O\left(z^4\right)$
  +
:\mathrm{expanq}_1(z)=:\mathrm{expan}_1(z \mathrm e^{\rm i \pi /4})$
  +
  +
[[Category:ArcCosc]]
  +
[[Category:Explicit plot]]
  +
[[Category:Taylor expansion]]

Latest revision as of 09:41, 21 June 2013

Graphic of real and imaginary parts of acosc1$\left( \mathrm e ^{ \mathrm i \pi/4 } x \right)$ versus $x$.

Define $\mathrm{acosq}_1(z)=\mathrm{acosc}_1\left( \mathrm e ^{ \mathrm i \pi/4 } z \right)$

Then $\Re(\mathrm{acosq}_1(x))$ and $\Im(\mathrm{acosq}_1(x))$ are plotted versus $x$ with thick blue and thick red lines.

The thin lines show the real and imaginary parts the cubic polynomial corresponding to the truncation of the Taylor expansion at zero;

\mathrm{expan}_1(z)=\frac{3 \pi}{2}

\frac{3 \pi z}{2}+\frac{3 \pi

  z^2}{2}+\frac{3}{16} \pi  \left(8+3 \pi
  ^2\right) z^3+O\left(z^4\right)$
\mathrm{expanq}_1(z)=:\mathrm{expan}_1(z \mathrm e^{\rm i \pi /4})$

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20132,512 × 3,504 (379 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata