Difference between revisions of "File:SelfCosFTt200.png"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
Two self-fourier functions and their discrete representations and their discrete [[CosFourier]] transforms with $N\!=\!16$ nodes;
Importing image file
 
  +
: $ \displaystyle f_0(x)=\exp(-x^2/2)$
  +
: $ \displaystyle f_1(x)=\exp(-x^2/2) (x^4-3x^2)$
  +
These functions are shown with dotted lines.
  +
  +
The discrete representations at the equidistant grid of $N=16$ nodes with step $d=\sqrt{\pi/N}$ are shown with thick lines.
  +
Their [[DCTI]] transforms are shown with thin black lines.
  +
For these self-fourier functions, the [[DCTI]]s coincide with the originals with 8 decimal digits.
  +
  +
The generator below can be used to test the numeric implementation of the [[CosFourier]] transform.
  +
  +
==[[C++]] generator of curves==
  +
  +
// Files [[zfour1.cin]], [[zrealft.cin]], [[zcosft1.cin]] should be loaded in the working directory for the compilation of the [[C++]] code below.
  +
  +
// cosft below realizes the [[DCFTI]] transform; the numeration of elements of the input array begins with zero.
  +
  +
#include<math.h>
  +
#include<stdio.h>
  +
#include <stdlib.h>
  +
using namespace std;
  +
#include <complex>
  +
#define z_type complex<double>
  +
#include "zfour1.cin"
  +
#include "zrealft.cin"
  +
#include "zcosft1.cin"
  +
#define DB double
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
  +
//#include "cosft.cin"
  +
void cosft(z_type a[], int N){ int n; DB d; zcosft1(a-1,N); d=sqrt(2./N); DO(n,N) a[n]*=d; }
  +
// this cosft does the normalized [[DCTI]]
  +
void ado(FILE *O, int X, int Y)
  +
{ fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
  +
fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
  +
fprintf(O,"/M {moveto} bind def\n");
  +
fprintf(O,"/L {lineto} bind def\n");
  +
fprintf(O,"/S {stroke} bind def\n");
  +
fprintf(O,"/s {show newpath} bind def\n");
  +
fprintf(O,"/C {closepath} bind def\n");
  +
fprintf(O,"/F {fill} bind def\n");
  +
fprintf(O,"/o {.01 0 360 arc C F} bind def\n");
  +
fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
  +
fprintf(O,"/W {setlinewidth} bind def\n");
  +
fprintf(O,"/RGB {setrgbcolor} bind def\n");}
  +
  +
// #include "ado.cin"
  +
main(){ z_type *a, *b; int j,N=16; FILE *o; DB x,y,d,xx=x*x;
  +
o=fopen("SelfFourierDCTI.eps","w"); ado(o,55,24);
  +
#define M(x,y) fprintf(o,"%8.4f %8.4f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%8.4f %8.4f L\n",0.+x,0.+y);
  +
#define o(x,y) fprintf(o,"%8.4f %8.4f o\n",0.+x,0.+y);
  +
fprintf(o,"1 13 translate 10 10 scale\n");
  +
M(0, 1)L(0,-1) M(0,0)L(5,0) fprintf(o,"2 setlinecap .004 W S\n");
  +
M(0, 1)L(5, 1) fprintf(o,"2 setlinecap .004 W S\n");
  +
M(0,-1)L(5,-1) fprintf(o,"2 setlinecap .004 W S\n");
  +
for(j=1;j<11;j++){ M(j,-1)L(j,1);} fprintf(o,"2 setlinecap .004 W S\n");
  +
d=sqrt(M_PI/N);
  +
a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
  +
b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
  +
for(j=0;j<N+1;j++){x=d*j; xx=x*x; b[j]=a[j]=exp(-.5*x*x)*xx*(xx-3.) ;}
  +
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 .9 0 RGB .02 W S\n");
  +
cosft(a,N);
  +
//zcosft1(a-1,N); for(j=0;j<N+1;j++) a[j]/=sqrt(.5*N);
  +
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 0 0 RGB .008 W S\n");
  +
DO(j,N) a[j]-=b[j];
  +
for(j=0;j<N+1;j++) printf("%2d %19.16f %19.16f \n",j,a[j].real(),a[j].imag());
  +
fprintf(o,"0 0 0 RGB\n"); DO(j,120){x=.04*j; xx=x*x; y=exp(-.5*xx)*xx*(xx-3.); o(x,y) if(x>9) break;}
  +
for(j=0;j<N+1;j++){x=d*j; xx=x*x; b[j]=a[j]=exp(-.5*x*x) ;}
  +
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 0 1 RGB .016 W S\n");
  +
cosft(a,N);
  +
//zcosft1(a-1,N); for(j=0;j<N+1;j++) a[j]/=sqrt(.5*N);
  +
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 0 0 RGB .005 W S\n");
  +
DO(j,N) a[j]-=b[j];
  +
for(j=0;j<N+1;j++) printf("%2d %19.16f %19.16f \n",j,a[j].real(),a[j].imag());
  +
fprintf(o,"0 0 0 RGB\n"); DO(j,120){x=.04*j; xx=x*x; y=exp(-.5*xx); o(x,y) if(x>9) break;}
  +
free(a);
  +
free(b);
  +
fprintf(o,"showpage\n");
  +
fprintf(o,"%c%cTrailer\n",'%','%');
  +
fclose(o);
  +
system("epstopdf SelfFourierDCTI.eps");
  +
system( "open SelfFourierDCTI.pdf");
  +
}
  +
  +
==[[Latex]] generator of labels==
  +
  +
%File [[SelfCosFT.pdf]] should be generated in the working directory with the code above in order to compile the [[Latex]] document below.
  +
  +
<nowiki>
  +
\documentclass[12pt]{article} %<br>
  +
\usepackage{geometry} %<br>
  +
\paperwidth 530pt %<br>
  +
\paperheight 230pt %<br>
  +
\topmargin -92pt %<br>
  +
\oddsidemargin -78pt %<br>
  +
\textwidth 800pt %<br>
  +
\textheight 300pt %<br>
  +
\parindent 0pt %<br>
  +
\pagestyle{empty} %<br>
  +
\usepackage{graphicx} %<br>
  +
\usepackage{epstopdf} %<br>
  +
\newcommand \sx \scalebox %<br>
  +
\begin{document} %<br>
  +
\begin{picture}(520,220) %<br>
  +
%\put(16,0){\sx{10}{\includegraphics{SelfCosFT}}} %<br>
  +
\put(16,0){\sx{10}{\includegraphics{SelfFourierDCTI}}} %<br>
  +
\put(12,223){\sx{1.8}{$1$}} %<br>
  +
\put(12,124){\sx{1.8}{$0$}} %<br>
  +
\put(2, 24){\sx{1.8}{$-\!1$}} %<br>
  +
\put(122, 14){\sx{1.8}{$1$}} %<br>
  +
\put(222, 14){\sx{1.8}{$2$}} %<br>
  +
\put(322, 14){\sx{1.8}{$3$}} %<br>
  +
\put(422, 14){\sx{1.8}{$4$}} %<br>
  +
\put(522, 14){\sx{1.9}{$x$}} %<br>
  +
\put(99, 212){\sx{2}{$f_0(x)$}} %<br>
  +
\put( 58, 102){\sx{2}{$f_1(x)$}} %<br>
  +
%\put( 66, 100){\sx{2}{$\exp(-x^2/2)(x^4-3x^2)$}} %<br>
  +
\end{picture} %<br>
  +
\end{document} %<br>
  +
% </nowiki>
  +
  +
==References==
  +
<references/>
  +
  +
[[Category:CosFourier]]
  +
[[Category:C++]]
  +
[[Category:Latex]]
  +
[[Category:Self Fourier]]
  +
[[Category:Explicit plot]]

Latest revision as of 09:42, 21 June 2013

Two self-fourier functions and their discrete representations and their discrete CosFourier transforms with $N\!=\!16$ nodes;

$ \displaystyle f_0(x)=\exp(-x^2/2)$
$ \displaystyle f_1(x)=\exp(-x^2/2) (x^4-3x^2)$

These functions are shown with dotted lines.

The discrete representations at the equidistant grid of $N=16$ nodes with step $d=\sqrt{\pi/N}$ are shown with thick lines. Their DCTI transforms are shown with thin black lines. For these self-fourier functions, the DCTIs coincide with the originals with 8 decimal digits.

The generator below can be used to test the numeric implementation of the CosFourier transform.

C++ generator of curves

// Files zfour1.cin, zrealft.cin, zcosft1.cin should be loaded in the working directory for the compilation of the C++ code below.

// cosft below realizes the DCFTI transform; the numeration of elements of the input array begins with zero.

#include<math.h>
#include<stdio.h>
#include <stdlib.h>
using namespace std;
#include <complex>
#define z_type complex<double>
#include "zfour1.cin"
#include "zrealft.cin"
#include "zcosft1.cin"
#define DB double
#define Re(x) x.real()
#define Im(x) x.imag()
#define DO(x,y) for(x=0;x<y;x++)

//#include "cosft.cin" 
 void cosft(z_type a[], int N){ int n; DB d; zcosft1(a-1,N); d=sqrt(2./N); DO(n,N) a[n]*=d; }
// this cosft does the normalized DCTI
void ado(FILE *O, int X, int Y)
{       fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
       fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
       fprintf(O,"/M {moveto} bind def\n");
       fprintf(O,"/L {lineto} bind def\n");
       fprintf(O,"/S {stroke} bind def\n");
       fprintf(O,"/s {show newpath} bind def\n");
       fprintf(O,"/C {closepath} bind def\n");
       fprintf(O,"/F {fill} bind def\n");
       fprintf(O,"/o {.01 0 360 arc C F} bind def\n");
       fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
       fprintf(O,"/W {setlinewidth} bind def\n");
       fprintf(O,"/RGB {setrgbcolor} bind def\n");}
// #include "ado.cin"
main(){ z_type *a, *b; int j,N=16; FILE *o; DB x,y,d,xx=x*x;
o=fopen("SelfFourierDCTI.eps","w");  ado(o,55,24);
#define M(x,y) fprintf(o,"%8.4f %8.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%8.4f %8.4f L\n",0.+x,0.+y);
#define o(x,y) fprintf(o,"%8.4f %8.4f o\n",0.+x,0.+y);
fprintf(o,"1 13 translate 10 10 scale\n");
M(0, 1)L(0,-1) M(0,0)L(5,0) fprintf(o,"2 setlinecap .004 W S\n"); 
M(0, 1)L(5, 1) fprintf(o,"2 setlinecap .004 W S\n");
M(0,-1)L(5,-1) fprintf(o,"2 setlinecap .004 W S\n");
for(j=1;j<11;j++){ M(j,-1)L(j,1);} fprintf(o,"2 setlinecap .004 W S\n");
d=sqrt(M_PI/N);
a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
for(j=0;j<N+1;j++){x=d*j; xx=x*x; b[j]=a[j]=exp(-.5*x*x)*xx*(xx-3.) ;}
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 .9 0 RGB .02 W S\n");
cosft(a,N);
//zcosft1(a-1,N); for(j=0;j<N+1;j++) a[j]/=sqrt(.5*N);
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 0 0 RGB .008 W S\n");
DO(j,N) a[j]-=b[j];
for(j=0;j<N+1;j++) printf("%2d %19.16f %19.16f \n",j,a[j].real(),a[j].imag());
fprintf(o,"0 0 0 RGB\n"); DO(j,120){x=.04*j; xx=x*x; y=exp(-.5*xx)*xx*(xx-3.); o(x,y) if(x>9) break;} 
for(j=0;j<N+1;j++){x=d*j; xx=x*x; b[j]=a[j]=exp(-.5*x*x) ;}
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 0 1 RGB .016 W S\n");
cosft(a,N);
//zcosft1(a-1,N); for(j=0;j<N+1;j++) a[j]/=sqrt(.5*N);
DO(j,N){x=j*d; y=Re(a[j]); if(j==0)M(x,y)else L(x,y) if(x>5) break;} fprintf(o,"0 0 0 RGB .005 W S\n");
DO(j,N) a[j]-=b[j];
for(j=0;j<N+1;j++) printf("%2d %19.16f %19.16f \n",j,a[j].real(),a[j].imag());
fprintf(o,"0 0 0 RGB\n"); DO(j,120){x=.04*j; xx=x*x; y=exp(-.5*xx); o(x,y) if(x>9) break;} 
free(a);
free(b);
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
system("epstopdf SelfFourierDCTI.eps");
system(    "open SelfFourierDCTI.pdf");
}

Latex generator of labels

%File SelfCosFT.pdf should be generated in the working directory with the code above in order to compile the Latex document below.

\documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \paperwidth 530pt %<br> \paperheight 230pt %<br> \topmargin -92pt %<br> \oddsidemargin -78pt %<br> \textwidth 800pt %<br> \textheight 300pt %<br> \parindent 0pt %<br> \pagestyle{empty} %<br> \usepackage{graphicx} %<br> \usepackage{epstopdf} %<br> \newcommand \sx \scalebox %<br> \begin{document} %<br> \begin{picture}(520,220) %<br> %\put(16,0){\sx{10}{\includegraphics{SelfCosFT}}} %<br> \put(16,0){\sx{10}{\includegraphics{SelfFourierDCTI}}} %<br> \put(12,223){\sx{1.8}{$1$}} %<br> \put(12,124){\sx{1.8}{$0$}} %<br> \put(2, 24){\sx{1.8}{$-\!1$}} %<br> \put(122, 14){\sx{1.8}{$1$}} %<br> \put(222, 14){\sx{1.8}{$2$}} %<br> \put(322, 14){\sx{1.8}{$3$}} %<br> \put(422, 14){\sx{1.8}{$4$}} %<br> \put(522, 14){\sx{1.9}{$x$}} %<br> \put(99, 212){\sx{2}{$f_0(x)$}} %<br> \put( 58, 102){\sx{2}{$f_1(x)$}} %<br> %\put( 66, 100){\sx{2}{$\exp(-x^2/2)(x^4-3x^2)$}} %<br> \end{picture} %<br> \end{document} %<br> %

References

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20131,467 × 637 (100 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata