Difference between revisions of "Корень из факториала"
Line 12: | Line 12: | ||
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1 D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12 |
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1 D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12 |
||
− | http:// |
+ | http://lib.ru/img/g/garik/dubinushka/index.shtml Logo of the Physics Department of the Moscow State University. (In Russian); |
http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf: V.P.Kandidov. About the time and myself. (In Russian) |
http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf: V.P.Kandidov. About the time and myself. (In Russian) |
Revision as of 14:47, 29 June 2013
Корень из факториала square root of factorial – это такая функция $h$, что
- $h(h(z))=z$
для некоторого домена значений $z$.
История
Корень из факториала $\sqrt{\,!\,}$ является эмблемой Физического факультета МГУ с 1950го года и частью эмблемы ТОРИ с 2011 года. Эта функция была исследована лишь в 21 веке; для ее вычисления используотся функции СуперФакториал и АбельФакториал. Алгоритм для эффективного вычисления таких суперфункций разработан в Японии в 2009 году. Генрик Траппманн (Henryk Trappmann) назвал этот алгоритм Метод регулярных итераций ( Regular iteration ) и дал ему математическое обоснование.
Эта статья еще не дописана; пользуйтесь, пожалуйста, английской версией, square root of factorial
Ссылки
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1 D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12
http://lib.ru/img/g/garik/dubinushka/index.shtml Logo of the Physics Department of the Moscow State University. (In Russian);
http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf: V.P.Kandidov. About the time and myself. (In Russian) По итогам студенческого голосования победителями оказались значок с изображением рычага, поднимающего Землю, и нынешний с хорошо известной эмблемой в виде корня из факториала, вписанными в букву Ф. Этот значок, созданный студентом кафедры биофизики А.Сарвазяном, привлекал своей простотой и выразительностью. Тогда эмблема этого значка подверглась жесткой критике со стороны руководства факультета, поскольку она не имеет физического смысла, математически абсурдна и идеологически бессодержательна. ↑ http://nauka.relis.ru/11/0412/11412002.htm 250 anniversary of the Moscow State University. (In Russian) ПЕРВОМУ УНИВЕРСИТЕТУ СТРАНЫ - 250! На значке физфака в букву "Ф" вписано стилизованное изображение корня из факториала (√!) - выражение, математического смысла не имеющее.
http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN002175851 H.Kneser. Reelle analytische Lösungen der Gleichung φ(φ(x))=exp(x). Equationes Mathematicae, Journal fur die reine und angewandte Mathematik {\bf 187} 56–67 (1950)
http://www.springerlink.com/content/u712vtp4122544x4 D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98
http://www.springerlink.com/content/u7327836m2850246/ H.Trappmann, D.Kouznetsov. Uniqueness of Analytic Abel Functions in Absence of a Real Fixed Point. Aequationes Mathematicae, v.81, p.65-76 (2011)
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html D.Kouznetsov. Analytic solution of F(z+1)=exp(F(z)) in complex z-plane. Mathematics of Computation, v.78 (2009), 1647-1670.
http://www.ils.uec.ac.jp/~dima/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.