Difference between revisions of "File:QexpMapT400.jpg"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
==C++ generator of curves== |
==C++ generator of curves== |
||
+ | |||
+ | // FIles [[superexp.cin]] and [[superlo.cin]] and [[ado.cin]] and [[conto.cin]] should be loaded in the working directory in order to compile the code below. Actually, they evaluate [[tet]] and [[ate]]. |
||
#include <math.h> |
#include <math.h> |
Revision as of 18:12, 11 July 2013
Complex map of function $\sqrt(\exp)= \exp^{1/2}$, Halfiteration of exponential to base $\mathrm e$.
$f=\exp^{1/2}(x+\rm i y$
is shown with lines $u=\Re(f)=\mathrm const$ and lines $v=\Im(f)=\mathrm const$.
C++ generator of curves
// FIles superexp.cin and superlo.cin and ado.cin and conto.cin should be loaded in the working directory in order to compile the code below. Actually, they evaluate tet and ate.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) //#include "fac.cin" //#include "sinc.cin" //#include "facp.cin" //#include "afacc.cin" //#include "superfac.cin" #include "superex.cin" #include "superlo.cin" DB xL=0.31813150520476413; DB yL=1.3372357014306895;
#include "conto.cin"
int main(){ int j,k,m,n,n1; DB x,y, p,q, t; z_type z,c,d; int M=160,M1=M+1; int N=165,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array //FILE *o;o=fopen("fig4b.eps","w");ado(o,402,402); FILE *o;o=fopen("qexpMap.eps","w");ado(o,402,402); fprintf(o,"201 201 translate\n 20 20 scale\n"); DO(m,M1) X[m]=-8.+.1*m; DO(n,N1){ y=-8.+.1*n; if(y< -yL) Y[n]=y; else break;} Y[n]=-yL-.001; n++; Y[n]=-yL+.001; n++; for(j=n;j<N1;j++){y=-8.+.1*(j-2); if(y<-.02) Y[j]=y; else break;} Y[j]= -.02; j++; Y[j]= +.02; j++; for(k=j;k<N1;k++){y=-8.+.1*(k-3); if(y<yL) Y[k]=y; else break;} Y[k]= yL-.001; k++; Y[k]= yL+.001; k++; for(n=k;n<N1;n++){y=-8.+.1*(n-5); Y[n]=y;} for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=afacc(z); // c=fac(c); // c=arcsuperfac(z); // c=superfac(.5+c); c=FSLOG(z); c=FSEXP(.5+c); // d=z; // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; p=Re(c);q=Im(c); if(p>-999 && p<999) g[m*N1+n]=p; if(q>-999 && q<999 && fabs(q)> 1.e-14) f[m*N1+n]=q; }} fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=6.;q=6.; //#include"plofu.cin" //p=2;q=1; for(m=-4;m<4;m++) for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M-20,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); for(m= 0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); for(m= 0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); for(m=-8;m<9;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); fprintf(o,"0 setlinejoin 0 setlinecap\n"); M(xL, yL)L(-8.1, yL) M(xL,-yL)L(-8.1,-yL) fprintf(o," .06 W 1 1 1 RGB S\n"); DO(m,21){M(xL-.4*m, yL)L(xL-.4*(m+.4), yL)} DO(m,21){M(xL-.4*m,-yL)L(xL-.4*(m+.4),-yL)} fprintf(o,".1 W 0 0 0 RGB S\n"); //M(xL, yL)L(-8, yL) //M(xL,-yL)L(-8,-yL) fprintf(o,"[.2 .2]0 setdash .12 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); // system( "open fig4b.eps"); //for macintosh system("epstopdf qexpMap.eps"); system( "open qexpMap.pdf"); //for unix // system( "xpdf fig4b.pdf &"); //for unix // getchar(); system("killall Preview"); //for macintosh }
Latex generator of labels
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:03, 11 July 2013 | 1,881 × 1,881 (1.83 MB) | T (talk | contribs) | Complex map of function $\sqrt(\exp)= \exp^{1/2}$, Halfiteration of exponential to base $\mathrm e$. $f=\exp^{1/2}(x+\rm i y$ is shown with lines $u=\Re(f)=\mathrm const$ and lines $v=\Im(f)=\mathrm const$. ==References== [[Categrory:T... |
You cannot overwrite this file.
File usage
The following page uses this file: