Difference between revisions of "Linear fuction"

From TORI
Jump to navigation Jump to search
Line 17: Line 17:
 
==Iterates==
 
==Iterates==
   
[[Iterate]] of the linear function is also linear function, although it can be expressed through
+
[[Iterate]] of the linear function can be expressed through
 
the superfunction and the Abel function in the standard way,
 
the superfunction and the Abel function in the standard way,
   
 
$(4) ~ ~ ~ \displaystyle T^n(z)=F(n+G(z))$
 
$(4) ~ ~ ~ \displaystyle T^n(z)=F(n+G(z))$
  +
  +
Substitution of the Superfunction $F$ by (2) and the Abel function $G$ by (3) into equation (4) gives aslo linear function
  +
  +
$(5) ~ ~ ~ \displaystyle T^n(z)=
  +
\frac{-A+B^n\Big( A+(-1+B) s\Big)}{-1+B}$
  +
  +
with new parameters $A \frac {N^n-1}{B-1}$ instead of $A$ in (1) and
  +
$B^n$ instead of $B$.
   
 
==References==
 
==References==

Revision as of 13:43, 6 September 2013

Linear function is function that can be represented in form

$(1) ~ ~ ~ T(z)=A+B z$

where $A$ and $B$ are constants.

Abelfunction and Superfunction

Superfunction $F$ for the linear function $T$ by (1) can be written as follows:

$(2) ~ ~ ~ \displaystyle F(z)= A \frac{1-B^z}{1-B}$

The corresponding Abel function can be expressed as follows:

$(3) ~ ~ ~ \displaystyle G(z)= \log_B\Big(1+\frac{B-1}{A}z \big)$

Iterates

Iterate of the linear function can be expressed through the superfunction and the Abel function in the standard way,

$(4) ~ ~ ~ \displaystyle T^n(z)=F(n+G(z))$

Substitution of the Superfunction $F$ by (2) and the Abel function $G$ by (3) into equation (4) gives aslo linear function

$(5) ~ ~ ~ \displaystyle T^n(z)= \frac{-A+B^n\Big( A+(-1+B) s\Big)}{-1+B}$

with new parameters $A \frac {N^n-1}{B-1}$ instead of $A$ in (1) and

$B^n$ instead of $B$.

References


Keywords

Abel function Holomorphic function, Iterate of function Superfunction