Difference between revisions of "File:LogisticSecK2.jpg"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
[[Logistic Sequence]] of real argument.
Importing image file
 
  +
  +
$y=F(x)=\mathrm{LogisticSequence}_s(x)$ versus $x$ for various values of parameter $s$.
  +
  +
where $F$ is simplest superfunction of the [[Logistic operator]], id est, solution of
  +
the transfer equation
  +
  +
$F(z\!+\!1) = s F(z)(1-F(z))$
  +
  +
for the logistic operator $\mathrm{LogisticOperator}_s(z)=sz(1-z)$
  +
as [[transfer function]].
  +
  +
This solution exponentially approaches zero at minus infinity.
  +
  +
The holomorphic extension of the logistic sequence is described in 2010 in the [[Moscow University Physics Bulletin]]
  +
<ref name="logi">
  +
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf
  +
D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
  +
</ref>.
  +
  +
==References==
  +
<references/>
  +
  +
[[Category:Book]]
  +
[[Category:BookPlot]]
  +
[[Category:Explicit plot]]
  +
[[Category:Logistic operator]]
  +
[[Category:Logistic sequence]]
  +
  +
==[[C++]] generator of curves of the First picture==
  +
  +
<poem><nomathjax><nowiki>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include <complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
//#include "conto.cin"
  +
#include "ado.cin"
  +
#include "efjh.cin"
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  +
FILE *o;o=fopen("logi6.eps","w");ado(o,164,24);
  +
fprintf(o,"62 2 translate\n 20 20 scale\n");
  +
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
  +
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
for(m=-3;m<6;m++){if(m==0){M(m,-.04)L(m,1.06)} else{M(m,0)L(m,1)}}
  +
for(n=0;n<2;n++){ M( -3,n)L(5,n)}
  +
fprintf(o,".008 W 0 0 0 RGB S\n");
  +
  +
maq(3.4);
  +
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
  +
fprintf(o,".01 W 0 .7 0 RGB S\n");
  +
  +
maq(3.);
  +
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
  +
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
  +
  +
fprintf(o,"1 setlinejoin 1 setlinecap\n");
  +
  +
maq(3.8);
  +
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
  +
fprintf(o,".015 W 0 0 1 RGB [.001 .025] 0 setdash S\n");
  +
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
  +
system("epstopdf logi6.eps");
  +
system( "open logi6.pdf");
  +
getchar(); system("killall Preview");
  +
}
  +
</nowiki></nomathjax></poem>
  +
  +
==[[C++]] generator of curves of the Second picture==
  +
  +
<poem><nomathjax><nowiki>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include <complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
//#include "conto.cin"
  +
#include "ado.cin"
  +
#include "efjh.cin"
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  +
FILE *o;o=fopen("logi5.eps","w");ado(o,164,44);
  +
fprintf(o,"62 22 translate\n 20 20 scale\n");
  +
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
  +
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
  +
for(m=-3;m<6;m++){if(m==0){M(m,-1.06)L(m,1.06)} else{M(m,-1)L(m,1)}}
  +
for(n=-1;n<2;n++){ M( -3,n)L(5,n)}
  +
fprintf(o,".008 W 0 0 0 RGB S\n");
  +
  +
maq(4.);
  +
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
  +
fprintf(o,".01 W 0 .7 0 RGB S\n");
  +
  +
maq(3.9);
  +
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
  +
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
  +
  +
fprintf(o,"1 setlinejoin 1 setlinecap\n");
  +
  +
maq(4.1);
  +
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
  +
fprintf(o,".015 W 0 0 1 RGB [.001 .02] 0 setdash S\n");
  +
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
  +
system("epstopdf logi5.eps");
  +
system( "open logi5.pdf");
  +
getchar(); system("killall Preview");
  +
}
  +
  +
</nowiki></nomathjax></poem>
  +
  +
==[[Latex]] generator of labels==
  +
  +
<poem><nomathjax><nowiki>
  +
\documentclass[12pt]{article}
  +
\usepackage{geometry}
  +
\usepackage{graphics}
  +
\usepackage{rotating}
  +
\paperwidth 492pt
  +
\paperheight 220pt
  +
\topmargin -100pt
  +
\oddsidemargin -72pt
  +
\newcommand \sx {\scalebox}
  +
\newcommand \ing \includegraphics
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\parindent 0pt
  +
\pagestyle{empty}
  +
\begin{document}
  +
\sx{3}{\begin{picture}(166,22)
  +
\put( 1,1){\includegraphics{logi6}}
  +
%\put( 64,48){\sx{.6}{$F(x)$}}
  +
\put( 50,16){\sx{.4}{$F(x)$}}
  +
\put( 0,22){\sx{.3}{$1$}}
  +
\put( 0, 3){\sx{.3}{$0$}}
  +
%\put( -1, 3){\sx{.4}{$-1$}}
  +
\put( 20, 0){\sx{.3}{$-2$}}
  +
\put( 40, 0){\sx{.3}{$-1$}}
  +
\put( 62.5, 0){\sx{.3}{$0$}}
  +
\put( 82.5, 0){\sx{.3}{$1$}}
  +
\put(102.5, 0){\sx{.3}{$2$}}
  +
\put(122.5, 0){\sx{.3}{$3$}}
  +
\put(142.5, 0){\sx{.3}{$4$}}
  +
\put(162, 0){\sx{.3}{$x$}}
  +
\put(91,15.5){\sx{.3}{$s\!=\!3$}}
  +
\put(91,11){\sx{.3}{$s\!=\!3.4$}}
  +
\put(93, 5){\sx{.3}{$s\!=\!3.8$}}
  +
\end{picture}}
  +
\vskip 9pt
  +
  +
\sx{3}{\begin{picture}(166,44)
  +
\put( 1,1){\includegraphics{logi5}}
  +
%\put( 64,48){\sx{.6}{$F(x)$}}
  +
\put( 50,36){\sx{.4}{$F(x)$}}
  +
\put( 0,41.5){\sx{.3}{$1$}}
  +
\put( 0,22){\sx{.3}{$0$}}
  +
\put( -1, 2){\sx{.3}{$-\!1$}}
  +
\put( 20, 0){\sx{.3}{$-2$}}
  +
\put( 40, 0){\sx{.3}{$-1$}}
  +
\put( 62.5, 0){\sx{.3}{$0$}}
  +
\put( 82.5, 0){\sx{.3}{$1$}}
  +
\put(102.5, 0){\sx{.3}{$2$}}
  +
\put(122.5, 0){\sx{.3}{$3$}}
  +
\put(142.5, 0){\sx{.3}{$4$}}
  +
\put(162, 0){\sx{.3}{$x$}}
  +
\put(91.3,29){\sx{.3}{$s\!=\!3.9$}}
  +
%\put(91,21){\sx{.3}{$s\!=\!4$}}
  +
\put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}}
  +
\end{picture}}
  +
  +
\end{document}
  +
  +
</nowiki></nomathjax></poem>
  +
  +
The free use is allowed, attribute the source.

Latest revision as of 08:42, 1 December 2018

Logistic Sequence of real argument.

$y=F(x)=\mathrm{LogisticSequence}_s(x)$ versus $x$ for various values of parameter $s$.

where $F$ is simplest superfunction of the Logistic operator, id est, solution of the transfer equation

$F(z\!+\!1) = s F(z)(1-F(z))$

for the logistic operator $\mathrm{LogisticOperator}_s(z)=sz(1-z)$ as transfer function.

This solution exponentially approaches zero at minus infinity.

The holomorphic extension of the logistic sequence is described in 2010 in the Moscow University Physics Bulletin [1].

References

  1. http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)

C++ generator of curves of the First picture


#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi6.eps","w");ado(o,164,24);
fprintf(o,"62 2 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);

fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=-3;m<6;m++){if(m==0){M(m,-.04)L(m,1.06)} else{M(m,0)L(m,1)}}
for(n=0;n<2;n++){ M( -3,n)L(5,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");

maq(3.4);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .7 0 RGB S\n");

maq(3.);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");

fprintf(o,"1 setlinejoin 1 setlinecap\n");

maq(3.8);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
fprintf(o,".015 W 0 0 1 RGB [.001 .025] 0 setdash S\n");

fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf logi6.eps");
        system( "open logi6.pdf");
        getchar(); system("killall Preview");
}

C++ generator of curves of the Second picture


#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi5.eps","w");ado(o,164,44);
fprintf(o,"62 22 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);

fprintf(o,"1 setlinejoin 2 setlinecap\n");

for(m=-3;m<6;m++){if(m==0){M(m,-1.06)L(m,1.06)} else{M(m,-1)L(m,1)}}
for(n=-1;n<2;n++){ M( -3,n)L(5,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");

maq(4.);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .7 0 RGB S\n");

maq(3.9);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");

fprintf(o,"1 setlinejoin 1 setlinecap\n");

maq(4.1);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
fprintf(o,".015 W 0 0 1 RGB [.001 .02] 0 setdash S\n");

fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf logi5.eps");
        system( "open logi5.pdf");
        getchar(); system("killall Preview");
}

Latex generator of labels


\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 492pt
\paperheight 220pt
\topmargin -100pt
\oddsidemargin -72pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\sx{3}{\begin{picture}(166,22)
\put( 1,1){\includegraphics{logi6}}
%\put( 64,48){\sx{.6}{$F(x)$}}
\put( 50,16){\sx{.4}{$F(x)$}}
\put( 0,22){\sx{.3}{$1$}}
\put( 0, 3){\sx{.3}{$0$}}
%\put( -1, 3){\sx{.4}{$-1$}}
\put( 20, 0){\sx{.3}{$-2$}}
\put( 40, 0){\sx{.3}{$-1$}}
\put( 62.5, 0){\sx{.3}{$0$}}
\put( 82.5, 0){\sx{.3}{$1$}}
\put(102.5, 0){\sx{.3}{$2$}}
\put(122.5, 0){\sx{.3}{$3$}}
\put(142.5, 0){\sx{.3}{$4$}}
\put(162, 0){\sx{.3}{$x$}}
\put(91,15.5){\sx{.3}{$s\!=\!3$}}
\put(91,11){\sx{.3}{$s\!=\!3.4$}}
\put(93, 5){\sx{.3}{$s\!=\!3.8$}}
\end{picture}}
\vskip 9pt

\sx{3}{\begin{picture}(166,44)
\put( 1,1){\includegraphics{logi5}}
%\put( 64,48){\sx{.6}{$F(x)$}}
\put( 50,36){\sx{.4}{$F(x)$}}
\put( 0,41.5){\sx{.3}{$1$}}
\put( 0,22){\sx{.3}{$0$}}
\put( -1, 2){\sx{.3}{$-\!1$}}
\put( 20, 0){\sx{.3}{$-2$}}
\put( 40, 0){\sx{.3}{$-1$}}
\put( 62.5, 0){\sx{.3}{$0$}}
\put( 82.5, 0){\sx{.3}{$1$}}
\put(102.5, 0){\sx{.3}{$2$}}
\put(122.5, 0){\sx{.3}{$3$}}
\put(142.5, 0){\sx{.3}{$4$}}
\put(162, 0){\sx{.3}{$x$}}
\put(91.3,29){\sx{.3}{$s\!=\!3.9$}}
%\put(91,21){\sx{.3}{$s\!=\!4$}}
\put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}}
\end{picture}}

\end{document}

The free use is allowed, attribute the source.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:13, 1 December 2018Thumbnail for version as of 06:13, 1 December 20186,807 × 3,044 (996 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata