Difference between revisions of "File:MoriplotFragment.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
− | + | Fragment from image |
|
+ | http://mizugadro.mydns.jp/t/index.php/File:Moriplot300.jpg |
||
+ | |||
+ | The principal Bessel mode |
||
+ | |||
+ | $y\!=\!J_0(x)\theta(x)$ , red line, |
||
+ | |||
+ | and its scaled [[Bessel transform]], expressed through the [[Morinaga function]] |
||
+ | |||
+ | $y\!=\,$[[mori]]$(x)\!=\!$ $\displaystyle \frac{J_0(L_1 x)}{1\!-\!x^2}$ , blue line. |
||
+ | |||
+ | Here, $L_n$ is the $n$th zero of the Bessel function, $L_n\!=\,$[[BesselJZero]]$[0,n]$ |
||
+ | |||
+ | In particular, $L_1\!\approx\! 2.404825557695773$ |
||
+ | |||
+ | The presentation of the Bessel transform of the Bessel mode is expressed as follows: |
||
+ | |||
+ | $\displaystyle |
||
+ | \int_0^\infty \mathrm{mode}(x) \, J_0( p x)\, x\, \mathrm d x =\,$ |
||
+ | $\displaystyle |
||
+ | \int_0^{L_1} J_0(x) \, J_0( p x)\, x\, \mathrm d x =\,$ |
||
+ | $\displaystyle |
||
+ | L_1\, J_1(L_1) \frac{J_0(p)}{1\!-\!p^2} =\,$ |
||
+ | $\displaystyle |
||
+ | J_1(L_1)\, L_1\, \mathrm{mori}(p)$ |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | File [[ado.cin]] should be loaded in order to compile the code below. |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <stdio.h> |
||
+ | #include <math.h> |
||
+ | #include<stdlib.h> |
||
+ | //#include "scft.cin" |
||
+ | #define DB double |
||
+ | #include "ado.cin" |
||
+ | DB L1= 2.404825557695773; |
||
+ | DB L2= 5.5200781102863115; |
||
+ | DB L3= 8.653727912911013; |
||
+ | DB L4=11.791534439014281; |
||
+ | //DB mory(DB x){ return j0(x)/(1.-(1./(L1*L1))*x*x);} // mory also could be principal, but for graphics mori is better. |
||
+ | DB morin(DB x){ return j0(L1*x)/(1-x*x);} // naive representation fails at x=1. |
||
+ | DB mori0(DB x){ int n,m; DB s, xx=x*x; |
||
+ | DB c[16]={ 1., -0.4457964907366961303, 0.07678538241994023453, -0.0071642885058902232688, |
||
+ | 0.00042159522055140947688, -0.000017110542281627483109, 5.0832583976057607495e-7, -1.1537378620148452816e-8, |
||
+ | 2.0662789231930073316e-10, -2.9948657413756059965e-12, 3.5852738451127332173e-14,-3.6050239634659700777e-16, |
||
+ | 3.0877184831292878827e-18, -2.2798156440952688462e-20, 1.4660907878585489441e-22,-8.2852774398657968065e-25}; |
||
+ | // 16th term seems to fail; perhaps, due to the C++ rounding errors. |
||
+ | //with m=15, at |x|<2, the relative error is of order of 10^(-16) |
||
+ | //In this sense, the result is accurate while |x|<2. |
||
+ | m=15; s=c[m]*xx; for(n=m-1;n>0;n--){ s+=c[n]; s*=xx;} |
||
+ | return 1.+s;} |
||
+ | DB mori(DB x){if(fabs(x)<2.) return mori0(x); |
||
+ | return morin(x);} |
||
+ | |||
+ | int main(){ int i; //double a[NP+1],b[NP+1]; double d=sqrt(M_PI/NP); |
||
+ | //double x,y,f,g; FILE *o; o=fopen("08.eps","w"); ado(o,620,820); |
||
+ | double x,y,f,g; FILE *o; o=fopen("moriplo.eps","w"); ado(o,620,120); |
||
+ | #define M(x,y) fprintf(o,"%9.4lf %9.4lf M\n",x+0.,y+0.); |
||
+ | #define L(x,y) fprintf(o,"%9.4lf %9.4lf L\n",x+0.,y+0.); |
||
+ | fprintf(o,"10 10 translate 100 100 scale 2 setlinecap 1 setlinejoin\n"); |
||
+ | for(i=0;i<12;i++){M(.5*i,0)L(.5*i,1)} |
||
+ | for(i=0;i<3;i++){M(0,.5*i)L(5.5,.5*i)} fprintf(o,".006 W S\n"); |
||
+ | M(L2/L1,1)L(L2/L1,-.04) |
||
+ | M(L1,1)L(L1,-.04) |
||
+ | M(L3/L1,1)L(L3/L1,-.04) |
||
+ | M(L4/L1,1)L(L4/L1,-.04) |
||
+ | fprintf(o,".003 W S\n"); |
||
+ | for(i=0;i<101;i++){x=.01*L1*i; y=j0(x); if(i==0)M(x,y) else L(x,y); } L(L1,0)L(618,0) fprintf(o,".009 W 1 0 0 RGB S\n"); |
||
+ | //for(i=0;i<122;i++){x=.05*(i-.1);y=morin(x); if(i==0)M(x,y) else L(x,y);} fprintf(o,".009 W 0 0 1 RGB S\n"); |
||
+ | //for(i=0;i<122;i++){x=.05*(i-.1);y=mori0(x); if(i==0)M(x,y) else L(x,y); if(fabs(y)>1) break;} fprintf(o,".009 W 0 .9 0 RGB S\n"); |
||
+ | for(i=0;i<122;i++){x=.05*i;y=mori(x); if(i==0) M(x,y) else L(x,y); if(fabs(y)>1) break;} fprintf(o,".009 W 0 0 1 RGB S\n"); |
||
+ | /* |
||
+ | for(i=1;i<640;i++){ x=.01*(i-.5); f=mori0(x); g=morin(x); if(f==g){y=9.;} |
||
+ | else { y=-log(fabs(f-g)/(fabs(f)+fabs(g))); y/=log(10.); y/=2.;}; |
||
+ | if(i==1)M(x,y) else L(x,y); printf("%5.2lf %20.14lf %20.14lf %10.4lf\n",x,f,g,y);} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); // this is agreement of functions morin and mori0; important at the testing. |
||
+ | */ |
||
+ | fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o); |
||
+ | system("epstopdf moriplo.eps"); |
||
+ | system( "open moriplo.pdf"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==Referencs== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Bessel function]] |
||
+ | [[Category:Bessel transform]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Fragment]] |
||
+ | [[Category:Makoto Morinaga]] |
||
+ | [[Category:Morinaga function]] |
Latest revision as of 08:43, 1 December 2018
Fragment from image http://mizugadro.mydns.jp/t/index.php/File:Moriplot300.jpg
The principal Bessel mode
$y\!=\!J_0(x)\theta(x)$ , red line,
and its scaled Bessel transform, expressed through the Morinaga function
$y\!=\,$mori$(x)\!=\!$ $\displaystyle \frac{J_0(L_1 x)}{1\!-\!x^2}$ , blue line.
Here, $L_n$ is the $n$th zero of the Bessel function, $L_n\!=\,$BesselJZero$[0,n]$
In particular, $L_1\!\approx\! 2.404825557695773$
The presentation of the Bessel transform of the Bessel mode is expressed as follows:
$\displaystyle \int_0^\infty \mathrm{mode}(x) \, J_0( p x)\, x\, \mathrm d x =\,$ $\displaystyle \int_0^{L_1} J_0(x) \, J_0( p x)\, x\, \mathrm d x =\,$ $\displaystyle L_1\, J_1(L_1) \frac{J_0(p)}{1\!-\!p^2} =\,$ $\displaystyle J_1(L_1)\, L_1\, \mathrm{mori}(p)$
C++ generator of curves
File ado.cin should be loaded in order to compile the code below.
#include <stdio.h>
#include <math.h>
#include<stdlib.h>
//#include "scft.cin"
#define DB double
#include "ado.cin"
DB L1= 2.404825557695773;
DB L2= 5.5200781102863115;
DB L3= 8.653727912911013;
DB L4=11.791534439014281;
//DB mory(DB x){ return j0(x)/(1.-(1./(L1*L1))*x*x);} // mory also could be principal, but for graphics mori is better.
DB morin(DB x){ return j0(L1*x)/(1-x*x);} // naive representation fails at x=1.
DB mori0(DB x){ int n,m; DB s, xx=x*x;
DB c[16]={ 1., -0.4457964907366961303, 0.07678538241994023453, -0.0071642885058902232688,
0.00042159522055140947688, -0.000017110542281627483109, 5.0832583976057607495e-7, -1.1537378620148452816e-8,
2.0662789231930073316e-10, -2.9948657413756059965e-12, 3.5852738451127332173e-14,-3.6050239634659700777e-16,
3.0877184831292878827e-18, -2.2798156440952688462e-20, 1.4660907878585489441e-22,-8.2852774398657968065e-25};
// 16th term seems to fail; perhaps, due to the C++ rounding errors.
//with m=15, at |x|<2, the relative error is of order of 10^(-16)
//In this sense, the result is accurate while |x|<2.
m=15; s=c[m]*xx; for(n=m-1;n>0;n--){ s+=c[n]; s*=xx;}
return 1.+s;}
DB mori(DB x){if(fabs(x)<2.) return mori0(x);
return morin(x);}
int main(){ int i; //double a[NP+1],b[NP+1]; double d=sqrt(M_PI/NP);
//double x,y,f,g; FILE *o; o=fopen("08.eps","w"); ado(o,620,820);
double x,y,f,g; FILE *o; o=fopen("moriplo.eps","w"); ado(o,620,120);
#define M(x,y) fprintf(o,"%9.4lf %9.4lf M\n",x+0.,y+0.);
#define L(x,y) fprintf(o,"%9.4lf %9.4lf L\n",x+0.,y+0.);
fprintf(o,"10 10 translate 100 100 scale 2 setlinecap 1 setlinejoin\n");
for(i=0;i<12;i++){M(.5*i,0)L(.5*i,1)}
for(i=0;i<3;i++){M(0,.5*i)L(5.5,.5*i)} fprintf(o,".006 W S\n");
M(L2/L1,1)L(L2/L1,-.04)
M(L1,1)L(L1,-.04)
M(L3/L1,1)L(L3/L1,-.04)
M(L4/L1,1)L(L4/L1,-.04)
fprintf(o,".003 W S\n");
for(i=0;i<101;i++){x=.01*L1*i; y=j0(x); if(i==0)M(x,y) else L(x,y); } L(L1,0)L(618,0) fprintf(o,".009 W 1 0 0 RGB S\n");
//for(i=0;i<122;i++){x=.05*(i-.1);y=morin(x); if(i==0)M(x,y) else L(x,y);} fprintf(o,".009 W 0 0 1 RGB S\n");
//for(i=0;i<122;i++){x=.05*(i-.1);y=mori0(x); if(i==0)M(x,y) else L(x,y); if(fabs(y)>1) break;} fprintf(o,".009 W 0 .9 0 RGB S\n");
for(i=0;i<122;i++){x=.05*i;y=mori(x); if(i==0) M(x,y) else L(x,y); if(fabs(y)>1) break;} fprintf(o,".009 W 0 0 1 RGB S\n");
/*
for(i=1;i<640;i++){ x=.01*(i-.5); f=mori0(x); g=morin(x); if(f==g){y=9.;}
else { y=-log(fabs(f-g)/(fabs(f)+fabs(g))); y/=log(10.); y/=2.;};
if(i==1)M(x,y) else L(x,y); printf("%5.2lf %20.14lf %20.14lf %10.4lf\n",x,f,g,y);}
fprintf(o,".008 W 0 0 0 RGB S\n"); // this is agreement of functions morin and mori0; important at the testing.
*/
fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf moriplo.eps");
system( "open moriplo.pdf");
}
Latex generator of labels
Referencs
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 1,917 × 514 (133 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: