Difference between revisions of "File:Shelima600.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Explicit plot of real and imaginary part of [[tetration to Sheldon base]] of imaginary argument. |
||
− | Importing image file |
||
+ | |||
+ | $b=1.52598338517 + 0.0178411853321~ \mathrm{i}$. |
||
+ | |||
+ | The blue curve shows $y=\Re\Big( \mathrm{tet}_b(\mathrm i x)\Big)$ |
||
+ | |||
+ | The red curve shows $y=\Im\Big( \mathrm{tet}_b(\mathrm i x)\Big)$ |
||
+ | |||
+ | ==Usage== |
||
+ | The image is prototype of figure 18.5 of the English version of the book [[Superfunctions]] |
||
+ | <ref> |
||
+ | http://mizugadro.mydns.jp/BOOK/437.pdf |
||
+ | D.Kouznetsov. Superfunctions. 2015. |
||
+ | </ref>. |
||
+ | |||
+ | In the first Russian version [[Суперфункции]] of the book, this image is absent. |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | ==Table of values == |
||
+ | <poem> |
||
+ | $~ ~x~ ~$ $~ ~\Re(\mathrm{tet}_b(\mathrm i x))~ ~$ $~ ~\Im(\mathrm{tet}_b(\mathrm i x))$ |
||
+ | -10.00 2.2202212609 -1.3393771522 |
||
+ | -9.90 2.2196731381 -1.3388553660 |
||
+ | -9.80 2.2190910829 -1.3383114251 |
||
+ | -9.70 2.2184731185 -1.3377444826 |
||
+ | -9.60 2.2178171599 -1.3371536640 |
||
+ | -9.50 2.2171210078 -1.3365380660 |
||
+ | -9.40 2.2163823431 -1.3358967563 |
||
+ | -9.30 2.2155987208 -1.3352287720 |
||
+ | -9.20 2.2147675635 -1.3345331194 |
||
+ | -9.10 2.2138861545 -1.3338087726 |
||
+ | -9.00 2.2129516317 -1.3330546724 |
||
+ | -8.90 2.2119609791 -1.3322697257 |
||
+ | -8.80 2.2109110202 -1.3314528034 |
||
+ | -8.70 2.2097984096 -1.3306027402 |
||
+ | -8.60 2.2086196248 -1.3297183321 |
||
+ | -8.50 2.2073709574 -1.3287983354 |
||
+ | -8.40 2.2060485042 -1.3278414651 |
||
+ | -8.30 2.2046481579 -1.3268463926 |
||
+ | -8.20 2.2031655968 -1.3258117437 |
||
+ | -8.10 2.2015962752 -1.3247360964 |
||
+ | -8.00 2.1999354119 -1.3236179782 |
||
+ | -7.90 2.1981779800 -1.3224558632 |
||
+ | -7.80 2.1963186945 -1.3212481688 |
||
+ | -7.70 2.1943520007 -1.3199932521 |
||
+ | -7.60 2.1922720612 -1.3186894058 |
||
+ | -7.50 2.1900727435 -1.3173348536 |
||
+ | -7.40 2.1877476059 -1.3159277450 |
||
+ | -7.30 2.1852898835 -1.3144661496 |
||
+ | -7.20 2.1826924737 -1.3129480506 |
||
+ | -7.10 2.1799479207 -1.3113713370 |
||
+ | -7.00 2.1770484004 -1.3097337961 |
||
+ | -6.90 2.1739857032 -1.3080331037 |
||
+ | -6.80 2.1707512180 -1.3062668134 |
||
+ | -6.70 2.1673359142 -1.3044323456 |
||
+ | -6.60 2.1637303238 -1.3025269736 |
||
+ | -6.50 2.1599245231 -1.3005478090 |
||
+ | -6.40 2.1559081133 -1.2984917849 |
||
+ | -6.30 2.1516702011 -1.2963556371 |
||
+ | -6.20 2.1471993787 -1.2941358833 |
||
+ | -6.10 2.1424837030 -1.2918287992 |
||
+ | -6.00 2.1375106749 -1.2894303921 |
||
+ | -5.90 2.1322672181 -1.2869363712 |
||
+ | -5.80 2.1267396576 -1.2843421145 |
||
+ | -5.70 2.1209136985 -1.2816426317 |
||
+ | -5.60 2.1147744042 -1.2788325222 |
||
+ | -5.50 2.1083061753 -1.2759059295 |
||
+ | -5.40 2.1014927291 -1.2728564888 |
||
+ | -5.30 2.0943170796 -1.2696772695 |
||
+ | -5.20 2.0867615183 -1.2663607109 |
||
+ | -5.10 2.0788075973 -1.2628985502 |
||
+ | -5.00 2.0704361133 -1.2592817434 |
||
+ | -4.90 2.0616270956 -1.2555003763 |
||
+ | -4.80 2.0523597956 -1.2515435664 |
||
+ | -4.70 2.0426126821 -1.2473993541 |
||
+ | -4.60 2.0323634408 -1.2430545817 |
||
+ | -4.50 2.0215889804 -1.2384947601 |
||
+ | -4.40 2.0102654464 -1.2337039220 |
||
+ | -4.30 1.9983682448 -1.2286644588 |
||
+ | -4.20 1.9858720768 -1.2233569428 |
||
+ | -4.10 1.9727509879 -1.2177599308 |
||
+ | -4.00 1.9589784331 -1.2118497494 |
||
+ | -3.90 1.9445273631 -1.2056002612 |
||
+ | -3.80 1.9293703334 -1.1989826096 |
||
+ | -3.70 1.9134796423 -1.1919649425 |
||
+ | -3.60 1.8968275023 -1.1845121140 |
||
+ | -3.50 1.8793862518 -1.1765853645 |
||
+ | -3.40 1.8611286122 -1.1681419794 |
||
+ | -3.30 1.8420280011 -1.1591349277 |
||
+ | -3.20 1.8220589080 -1.1495124836 |
||
+ | -3.10 1.8011973445 -1.1392178346 |
||
+ | -3.00 1.7794213797 -1.1281886816 |
||
+ | -2.90 1.7567117731 -1.1163568397 |
||
+ | -2.80 1.7330527191 -1.1036478499 |
||
+ | -2.70 1.7084327173 -1.0899806167 |
||
+ | -2.60 1.6828455826 -1.0752670901 |
||
+ | -2.50 1.6562916111 -1.0594120161 |
||
+ | -2.40 1.6287789134 -1.0423127871 |
||
+ | -2.30 1.6003249281 -1.0238594279 |
||
+ | -2.20 1.5709581198 -1.0039347646 |
||
+ | -2.10 1.5407198646 -0.9824148312 |
||
+ | -2.00 1.5096665094 -0.9591695767 |
||
+ | -1.90 1.4778715856 -0.9340639471 |
||
+ | -1.80 1.4454281312 -0.9069594235 |
||
+ | -1.70 1.4124510594 -0.8777161012 |
||
+ | -1.60 1.3790794751 -0.8461953971 |
||
+ | -1.50 1.3454788118 -0.8122634650 |
||
+ | -1.40 1.3118426170 -0.7757953788 |
||
+ | -1.30 1.2783937743 -0.7366801138 |
||
+ | -1.20 1.2453849119 -0.6948263040 |
||
+ | -1.10 1.2130977120 -0.6501686844 |
||
+ | -1.00 1.1818408268 -0.6026750337 |
||
+ | -0.90 1.1519461162 -0.5523533237 |
||
+ | -0.80 1.1237629810 -0.4992586603 |
||
+ | -0.70 1.0976506656 -0.4434994833 |
||
+ | -0.60 1.0739685645 -0.3852424012 |
||
+ | -0.50 1.0530647752 -0.3247149921 |
||
+ | -0.40 1.0352633815 -0.2622059382 |
||
+ | -0.30 1.0208511970 -0.1980619898 |
||
+ | -0.20 1.0100649016 -0.1326814891 |
||
+ | -0.10 1.0030796228 -0.0665045046 |
||
+ | 0.00 1.0000000000 0.0000000000 |
||
+ | 0.10 1.0008546120 0.0663491799 |
||
+ | 0.20 1.0055943462 0.1320624338 |
||
+ | 0.30 1.0140948929 0.1966774148 |
||
+ | 0.40 1.0261631142 0.2597647135 |
||
+ | 0.50 1.0415466506 0.3209401766 |
||
+ | 0.60 1.0599458447 0.3798741265 |
||
+ | 0.70 1.0810269204 0.4362971165 |
||
+ | 0.80 1.1044353661 0.4900022286 |
||
+ | 0.90 1.1298086052 0.5408442355 |
||
+ | 1.00 1.1567872534 0.5887361692 |
||
+ | 1.10 1.1850245145 0.6336439551 |
||
+ | 1.20 1.2141935082 0.6755797922 |
||
+ | 1.30 1.2439925335 0.7145949050 |
||
+ | 1.40 1.2741484179 0.7507721909 |
||
+ | 1.50 1.3044182070 0.7842191660 |
||
+ | 1.60 1.3345894889 0.8150614867 |
||
+ | 1.70 1.3644796637 0.8434372142 |
||
+ | 1.80 1.3939344425 0.8694918991 |
||
+ | 1.90 1.4228258303 0.8933744915 |
||
+ | 2.00 1.4510498021 0.9152340382 |
||
+ | 2.10 1.4785238390 0.9352170954 |
||
+ | 2.20 1.5051844494 0.9534657700 |
||
+ | 2.30 1.5309847655 0.9701163005 |
||
+ | 2.40 1.5558922770 0.9852980850 |
||
+ | 2.50 1.5798867375 0.9991330757 |
||
+ | 2.60 1.6029582648 1.0117354642 |
||
+ | 2.70 1.6251056396 1.0232115932 |
||
+ | 2.80 1.6463348018 1.0336600413 |
||
+ | 2.90 1.6666575325 1.0431718336 |
||
+ | 3.00 1.6860903115 1.0518307431 |
||
+ | 3.10 1.7046533328 1.0597136520 |
||
+ | 3.20 1.7223696637 1.0668909512 |
||
+ | 3.30 1.7392645315 1.0734269577 |
||
+ | 3.40 1.7553647215 1.0793803392 |
||
+ | 3.50 1.7706980741 1.0848045336 |
||
+ | 3.60 1.7852930661 1.0897481563 |
||
+ | 3.70 1.7991784654 1.0942553916 |
||
+ | 3.80 1.8123830487 1.0983663636 |
||
+ | 3.90 1.8249353724 1.1021174851 |
||
+ | 4.00 1.8368635897 1.1055417832 |
||
+ | 4.10 1.8481953050 1.1086692018 |
||
+ | 4.20 1.8589574618 1.1115268814 |
||
+ | 4.30 1.8691762567 1.1141394158 |
||
+ | 4.40 1.8788770769 1.1165290889 |
||
+ | 4.50 1.8880844555 1.1187160898 |
||
+ | 4.60 1.8968220432 1.1207187105 |
||
+ | 4.70 1.9051125920 1.1225535247 |
||
+ | 4.80 1.9129779496 1.1242355514 |
||
+ | 4.90 1.9204390625 1.1257784031 |
||
+ | 5.00 1.9275159849 1.1271944198 |
||
+ | 5.10 1.9342278938 1.1284947908 |
||
+ | 5.20 1.9405931079 1.1296896652 |
||
+ | 5.30 1.9466291099 1.1307882509 |
||
+ | 5.40 1.9523525708 1.1317989054 |
||
+ | 5.50 1.9577793759 1.1327292168 |
||
+ | 5.60 1.9629246530 1.1335860773 |
||
+ | 5.70 1.9678027996 1.1343757500 |
||
+ | 5.80 1.9724275118 1.1351039284 |
||
+ | 5.90 1.9768118128 1.1357757907 |
||
+ | 6.00 1.9809680809 1.1363960488 |
||
+ | 6.10 1.9849080779 1.1369689923 |
||
+ | 6.20 1.9886429758 1.1374985283 |
||
+ | 6.30 1.9921833839 1.1379882174 |
||
+ | 6.40 1.9955393749 1.1384413061 |
||
+ | 6.50 1.9987205098 1.1388607560 |
||
+ | 6.60 2.0017358620 1.1392492708 |
||
+ | 6.70 2.0045940414 1.1396093194 |
||
+ | 6.80 2.0073032162 1.1399431581 |
||
+ | 6.90 2.0098711350 1.1402528501 |
||
+ | 7.00 2.0123051475 1.1405402826 |
||
+ | 7.10 2.0146122241 1.1408071836 |
||
+ | 7.20 2.0167989751 1.1410551358 |
||
+ | 7.30 2.0188716688 1.1412855895 |
||
+ | 7.40 2.0208362487 1.1414998751 |
||
+ | 7.50 2.0226983501 1.1416992133 |
||
+ | 7.60 2.0244633157 1.1418847248 |
||
+ | 7.70 2.0261362105 1.1420574393 |
||
+ | 7.80 2.0277218365 1.1422183034 |
||
+ | 7.90 2.0292247454 1.1423681880 |
||
+ | 8.00 2.0306492523 1.1425078945 |
||
+ | 8.10 2.0319994475 1.1426381610 |
||
+ | 8.20 2.0332792080 1.1427596676 |
||
+ | 8.30 2.0344922089 1.1428730416 |
||
+ | 8.40 2.0356419337 1.1429788616 |
||
+ | 8.50 2.0367316841 1.1430776619 |
||
+ | 8.60 2.0377645897 1.1431699357 |
||
+ | 8.70 2.0387436168 1.1432561392 |
||
+ | 8.80 2.0396715769 1.1433366941 |
||
+ | 8.90 2.0405511348 1.1434119905 |
||
+ | 9.00 2.0413848162 1.1434823898 |
||
+ | 9.10 2.0421750149 1.1435482264 |
||
+ | 9.20 2.0429239999 1.1436098105 |
||
+ | 9.30 2.0436339216 1.1436674297 |
||
+ | 9.40 2.0443068184 1.1437213507 |
||
+ | 9.50 2.0449446220 1.1437718210 |
||
+ | 9.60 2.0455491634 1.1438190707 |
||
+ | 9.70 2.0461221781 1.1438633134 |
||
+ | 9.80 2.0466653107 1.1439047477 |
||
+ | 9.90 2.0471801203 1.1439435581 |
||
+ | 10.00 2.0476680845 1.1439799167 |
||
+ | </poem> |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | Files |
||
+ | [[GLxw2048.inc]] , |
||
+ | [[TetSheldonIma.inc]] , |
||
+ | [[ado.cin]] , |
||
+ | [[conto.cin]] , |
||
+ | [[filog.cin]] |
||
+ | should be loaded in order to compile the code below: |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | // using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "filog.cin" |
||
+ | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | DB A=32.; |
||
+ | z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | int K=2048; |
||
+ | //#include "ima6.inc" |
||
+ | #include "TetSheldonIma.inc" |
||
+ | z_type E[2048],G[2048]; |
||
+ | DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} |
||
+ | c=0.; |
||
+ | // z+=z_type(0.1196573712872846, 0.1299776198056910); |
||
+ | z+=z_type( 0.1196591376539 , 0.1299777213955 ); |
||
+ | DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | return c;} |
||
+ | |||
+ | int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | |||
+ | // FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202); |
||
+ | FILE *o; |
||
+ | o=fopen("04.eps","w");ado(o,202,62); |
||
+ | fprintf(o,"101 31 translate\n 10 10 scale\n"); |
||
+ | |||
+ | for(m=-10;m<11;m++){if(m==0){M(m,-3.2)L(m,3.2)} else{M(m,-3)L(m,3)}} |
||
+ | for(n=-3;n<4;n++){ M( -10,n)L(10,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,201){x=.1*(m-100); z=z_type(0,x); c=tetb(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | y=p; if(m==0) M(x,y) else L(x,y) |
||
+ | printf("%6.2lf %14.10lf %14.10lf\n",x,p,q); |
||
+ | } |
||
+ | fprintf(o,".04 W 0 0 1 RGB S\n"); |
||
+ | |||
+ | DO(m,201){x=.1*(m-100); z=z_type(0,x); c=tetb(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | y=q; if(m==0) M(x,y) else L(x,y) } |
||
+ | fprintf(o,".04 W 1 0 0 RGB S\n"); |
||
+ | |||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf 04.eps"); |
||
+ | system( "open 04.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 204pt |
||
+ | \paperheight 64pt |
||
+ | %\textwidth 700pt |
||
+ | \usepackage{graphics} |
||
+ | \newcommand \sx \scalebox |
||
+ | \newcommand \ing \includegraphics |
||
+ | \parindent 0pt |
||
+ | \topmargin -108pt |
||
+ | \oddsidemargin -72pt |
||
+ | \begin{document} |
||
+ | \begin{picture}(602,62) |
||
+ | \put(0,0){\ing{04}} |
||
+ | \put(97,59){\sx{.6}{$y$}} |
||
+ | \put(97,49){\sx{.6}{$2$}} |
||
+ | \put(97,39){\sx{.6}{$1$}} |
||
+ | \put(97,29){\sx{.6}{$0$}} |
||
+ | \put(92,19){\sx{.6}{$-1$}} |
||
+ | \put(92, 9){\sx{.6}{$-2$}} |
||
+ | |||
+ | \put(15,25){\sx{.6}{$-8$}} |
||
+ | \put(35,25){\sx{.6}{$-6$}} |
||
+ | \put(55,25){\sx{.6}{$-4$}} |
||
+ | \put(75,25){\sx{.6}{$-2$}} |
||
+ | \put(100,25){\sx{.6}{$0$}} |
||
+ | \put(120,25){\sx{.6}{$2$}} |
||
+ | \put(140,25){\sx{.6}{$4$}} |
||
+ | \put(160,25){\sx{.6}{$6$}} |
||
+ | \put(180,25){\sx{.6}{$8$}} |
||
+ | \put(199,25){\sx{.6}{$x$}} |
||
+ | |||
+ | \put(10,56){\sx{.7}{$y\!=\! \Re\big(\mathrm{tet}_b(\mathrm i x)\big)$}} |
||
+ | \put(10,11){\sx{.7}{$y\!=\! \Im\big(\mathrm{tet}_b(\mathrm i x)\big)$}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:Tetration to Sheldon base]] |
||
+ | [[Category:Sheldon base]] |
Latest revision as of 08:51, 1 December 2018
Explicit plot of real and imaginary part of tetration to Sheldon base of imaginary argument.
$b=1.52598338517 + 0.0178411853321~ \mathrm{i}$.
The blue curve shows $y=\Re\Big( \mathrm{tet}_b(\mathrm i x)\Big)$
The red curve shows $y=\Im\Big( \mathrm{tet}_b(\mathrm i x)\Big)$
Usage
The image is prototype of figure 18.5 of the English version of the book Superfunctions [1].
In the first Russian version Суперфункции of the book, this image is absent.
References
- ↑ http://mizugadro.mydns.jp/BOOK/437.pdf D.Kouznetsov. Superfunctions. 2015.
Table of values
$~ ~x~ ~$ $~ ~\Re(\mathrm{tet}_b(\mathrm i x))~ ~$ $~ ~\Im(\mathrm{tet}_b(\mathrm i x))$
-10.00 2.2202212609 -1.3393771522
-9.90 2.2196731381 -1.3388553660
-9.80 2.2190910829 -1.3383114251
-9.70 2.2184731185 -1.3377444826
-9.60 2.2178171599 -1.3371536640
-9.50 2.2171210078 -1.3365380660
-9.40 2.2163823431 -1.3358967563
-9.30 2.2155987208 -1.3352287720
-9.20 2.2147675635 -1.3345331194
-9.10 2.2138861545 -1.3338087726
-9.00 2.2129516317 -1.3330546724
-8.90 2.2119609791 -1.3322697257
-8.80 2.2109110202 -1.3314528034
-8.70 2.2097984096 -1.3306027402
-8.60 2.2086196248 -1.3297183321
-8.50 2.2073709574 -1.3287983354
-8.40 2.2060485042 -1.3278414651
-8.30 2.2046481579 -1.3268463926
-8.20 2.2031655968 -1.3258117437
-8.10 2.2015962752 -1.3247360964
-8.00 2.1999354119 -1.3236179782
-7.90 2.1981779800 -1.3224558632
-7.80 2.1963186945 -1.3212481688
-7.70 2.1943520007 -1.3199932521
-7.60 2.1922720612 -1.3186894058
-7.50 2.1900727435 -1.3173348536
-7.40 2.1877476059 -1.3159277450
-7.30 2.1852898835 -1.3144661496
-7.20 2.1826924737 -1.3129480506
-7.10 2.1799479207 -1.3113713370
-7.00 2.1770484004 -1.3097337961
-6.90 2.1739857032 -1.3080331037
-6.80 2.1707512180 -1.3062668134
-6.70 2.1673359142 -1.3044323456
-6.60 2.1637303238 -1.3025269736
-6.50 2.1599245231 -1.3005478090
-6.40 2.1559081133 -1.2984917849
-6.30 2.1516702011 -1.2963556371
-6.20 2.1471993787 -1.2941358833
-6.10 2.1424837030 -1.2918287992
-6.00 2.1375106749 -1.2894303921
-5.90 2.1322672181 -1.2869363712
-5.80 2.1267396576 -1.2843421145
-5.70 2.1209136985 -1.2816426317
-5.60 2.1147744042 -1.2788325222
-5.50 2.1083061753 -1.2759059295
-5.40 2.1014927291 -1.2728564888
-5.30 2.0943170796 -1.2696772695
-5.20 2.0867615183 -1.2663607109
-5.10 2.0788075973 -1.2628985502
-5.00 2.0704361133 -1.2592817434
-4.90 2.0616270956 -1.2555003763
-4.80 2.0523597956 -1.2515435664
-4.70 2.0426126821 -1.2473993541
-4.60 2.0323634408 -1.2430545817
-4.50 2.0215889804 -1.2384947601
-4.40 2.0102654464 -1.2337039220
-4.30 1.9983682448 -1.2286644588
-4.20 1.9858720768 -1.2233569428
-4.10 1.9727509879 -1.2177599308
-4.00 1.9589784331 -1.2118497494
-3.90 1.9445273631 -1.2056002612
-3.80 1.9293703334 -1.1989826096
-3.70 1.9134796423 -1.1919649425
-3.60 1.8968275023 -1.1845121140
-3.50 1.8793862518 -1.1765853645
-3.40 1.8611286122 -1.1681419794
-3.30 1.8420280011 -1.1591349277
-3.20 1.8220589080 -1.1495124836
-3.10 1.8011973445 -1.1392178346
-3.00 1.7794213797 -1.1281886816
-2.90 1.7567117731 -1.1163568397
-2.80 1.7330527191 -1.1036478499
-2.70 1.7084327173 -1.0899806167
-2.60 1.6828455826 -1.0752670901
-2.50 1.6562916111 -1.0594120161
-2.40 1.6287789134 -1.0423127871
-2.30 1.6003249281 -1.0238594279
-2.20 1.5709581198 -1.0039347646
-2.10 1.5407198646 -0.9824148312
-2.00 1.5096665094 -0.9591695767
-1.90 1.4778715856 -0.9340639471
-1.80 1.4454281312 -0.9069594235
-1.70 1.4124510594 -0.8777161012
-1.60 1.3790794751 -0.8461953971
-1.50 1.3454788118 -0.8122634650
-1.40 1.3118426170 -0.7757953788
-1.30 1.2783937743 -0.7366801138
-1.20 1.2453849119 -0.6948263040
-1.10 1.2130977120 -0.6501686844
-1.00 1.1818408268 -0.6026750337
-0.90 1.1519461162 -0.5523533237
-0.80 1.1237629810 -0.4992586603
-0.70 1.0976506656 -0.4434994833
-0.60 1.0739685645 -0.3852424012
-0.50 1.0530647752 -0.3247149921
-0.40 1.0352633815 -0.2622059382
-0.30 1.0208511970 -0.1980619898
-0.20 1.0100649016 -0.1326814891
-0.10 1.0030796228 -0.0665045046
0.00 1.0000000000 0.0000000000
0.10 1.0008546120 0.0663491799
0.20 1.0055943462 0.1320624338
0.30 1.0140948929 0.1966774148
0.40 1.0261631142 0.2597647135
0.50 1.0415466506 0.3209401766
0.60 1.0599458447 0.3798741265
0.70 1.0810269204 0.4362971165
0.80 1.1044353661 0.4900022286
0.90 1.1298086052 0.5408442355
1.00 1.1567872534 0.5887361692
1.10 1.1850245145 0.6336439551
1.20 1.2141935082 0.6755797922
1.30 1.2439925335 0.7145949050
1.40 1.2741484179 0.7507721909
1.50 1.3044182070 0.7842191660
1.60 1.3345894889 0.8150614867
1.70 1.3644796637 0.8434372142
1.80 1.3939344425 0.8694918991
1.90 1.4228258303 0.8933744915
2.00 1.4510498021 0.9152340382
2.10 1.4785238390 0.9352170954
2.20 1.5051844494 0.9534657700
2.30 1.5309847655 0.9701163005
2.40 1.5558922770 0.9852980850
2.50 1.5798867375 0.9991330757
2.60 1.6029582648 1.0117354642
2.70 1.6251056396 1.0232115932
2.80 1.6463348018 1.0336600413
2.90 1.6666575325 1.0431718336
3.00 1.6860903115 1.0518307431
3.10 1.7046533328 1.0597136520
3.20 1.7223696637 1.0668909512
3.30 1.7392645315 1.0734269577
3.40 1.7553647215 1.0793803392
3.50 1.7706980741 1.0848045336
3.60 1.7852930661 1.0897481563
3.70 1.7991784654 1.0942553916
3.80 1.8123830487 1.0983663636
3.90 1.8249353724 1.1021174851
4.00 1.8368635897 1.1055417832
4.10 1.8481953050 1.1086692018
4.20 1.8589574618 1.1115268814
4.30 1.8691762567 1.1141394158
4.40 1.8788770769 1.1165290889
4.50 1.8880844555 1.1187160898
4.60 1.8968220432 1.1207187105
4.70 1.9051125920 1.1225535247
4.80 1.9129779496 1.1242355514
4.90 1.9204390625 1.1257784031
5.00 1.9275159849 1.1271944198
5.10 1.9342278938 1.1284947908
5.20 1.9405931079 1.1296896652
5.30 1.9466291099 1.1307882509
5.40 1.9523525708 1.1317989054
5.50 1.9577793759 1.1327292168
5.60 1.9629246530 1.1335860773
5.70 1.9678027996 1.1343757500
5.80 1.9724275118 1.1351039284
5.90 1.9768118128 1.1357757907
6.00 1.9809680809 1.1363960488
6.10 1.9849080779 1.1369689923
6.20 1.9886429758 1.1374985283
6.30 1.9921833839 1.1379882174
6.40 1.9955393749 1.1384413061
6.50 1.9987205098 1.1388607560
6.60 2.0017358620 1.1392492708
6.70 2.0045940414 1.1396093194
6.80 2.0073032162 1.1399431581
6.90 2.0098711350 1.1402528501
7.00 2.0123051475 1.1405402826
7.10 2.0146122241 1.1408071836
7.20 2.0167989751 1.1410551358
7.30 2.0188716688 1.1412855895
7.40 2.0208362487 1.1414998751
7.50 2.0226983501 1.1416992133
7.60 2.0244633157 1.1418847248
7.70 2.0261362105 1.1420574393
7.80 2.0277218365 1.1422183034
7.90 2.0292247454 1.1423681880
8.00 2.0306492523 1.1425078945
8.10 2.0319994475 1.1426381610
8.20 2.0332792080 1.1427596676
8.30 2.0344922089 1.1428730416
8.40 2.0356419337 1.1429788616
8.50 2.0367316841 1.1430776619
8.60 2.0377645897 1.1431699357
8.70 2.0387436168 1.1432561392
8.80 2.0396715769 1.1433366941
8.90 2.0405511348 1.1434119905
9.00 2.0413848162 1.1434823898
9.10 2.0421750149 1.1435482264
9.20 2.0429239999 1.1436098105
9.30 2.0436339216 1.1436674297
9.40 2.0443068184 1.1437213507
9.50 2.0449446220 1.1437718210
9.60 2.0455491634 1.1438190707
9.70 2.0461221781 1.1438633134
9.80 2.0466653107 1.1439047477
9.90 2.0471801203 1.1439435581
10.00 2.0476680845 1.1439799167
C++ generator of curves
Files GLxw2048.inc , TetSheldonIma.inc , ado.cin , conto.cin , filog.cin should be loaded in order to compile the code below:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
// z+=z_type(0.1196573712872846, 0.1299776198056910);
z+=z_type( 0.1196591376539 , 0.1299777213955 );
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
// FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202);
FILE *o;
o=fopen("04.eps","w");ado(o,202,62);
fprintf(o,"101 31 translate\n 10 10 scale\n");
for(m=-10;m<11;m++){if(m==0){M(m,-3.2)L(m,3.2)} else{M(m,-3)L(m,3)}}
for(n=-3;n<4;n++){ M( -10,n)L(10,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,201){x=.1*(m-100); z=z_type(0,x); c=tetb(z);
p=Re(c); q=Im(c);
y=p; if(m==0) M(x,y) else L(x,y)
printf("%6.2lf %14.10lf %14.10lf\n",x,p,q);
}
fprintf(o,".04 W 0 0 1 RGB S\n");
DO(m,201){x=.1*(m-100); z=z_type(0,x); c=tetb(z);
p=Re(c); q=Im(c);
y=q; if(m==0) M(x,y) else L(x,y) }
fprintf(o,".04 W 1 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf 04.eps");
system( "open 04.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 204pt
\paperheight 64pt
%\textwidth 700pt
\usepackage{graphics}
\newcommand \sx \scalebox
\newcommand \ing \includegraphics
\parindent 0pt
\topmargin -108pt
\oddsidemargin -72pt
\begin{document}
\begin{picture}(602,62)
\put(0,0){\ing{04}}
\put(97,59){\sx{.6}{$y$}}
\put(97,49){\sx{.6}{$2$}}
\put(97,39){\sx{.6}{$1$}}
\put(97,29){\sx{.6}{$0$}}
\put(92,19){\sx{.6}{$-1$}}
\put(92, 9){\sx{.6}{$-2$}}
\put(15,25){\sx{.6}{$-8$}}
\put(35,25){\sx{.6}{$-6$}}
\put(55,25){\sx{.6}{$-4$}}
\put(75,25){\sx{.6}{$-2$}}
\put(100,25){\sx{.6}{$0$}}
\put(120,25){\sx{.6}{$2$}}
\put(140,25){\sx{.6}{$4$}}
\put(160,25){\sx{.6}{$6$}}
\put(180,25){\sx{.6}{$8$}}
\put(199,25){\sx{.6}{$x$}}
\put(10,56){\sx{.7}{$y\!=\! \Re\big(\mathrm{tet}_b(\mathrm i x)\big)$}}
\put(10,11){\sx{.7}{$y\!=\! \Im\big(\mathrm{tet}_b(\mathrm i x)\big)$}}
\end{picture}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 1,693 × 531 (83 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: