Difference between revisions of "File:Shelre60.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Explicit plot of [[tetration to Sheldon base]] for real values of the argument. |
||
− | Importing image file |
||
+ | |||
+ | Sheldob vase |
||
+ | |||
+ | $b= 1.52598338517+0.0178411853321 \,\mathrm i$. |
||
+ | |||
+ | [[Sheldon Levenstein]] has suggested this number, but he did not provide any way of evaluation of this number; so this value can be considered as exact. |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | Files |
||
+ | [[GLxw2048.inc]] , |
||
+ | [[TetSheldonIma.inc]] , |
||
+ | [[ado.cin]] , |
||
+ | [[conto.cin]] , |
||
+ | [[filog.cin]] |
||
+ | should be loaded in order to compile the code below: |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | // using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "filog.cin" |
||
+ | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | DB A=32.; |
||
+ | |||
+ | z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | int K=2048; |
||
+ | //#include "ima6.inc" |
||
+ | #include "TetSheldonIma.inc" |
||
+ | z_type E[2048],G[2048]; |
||
+ | DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} |
||
+ | c=0.; |
||
+ | //z+=z_type( 0.1196573712872846, 0.1299776198056910); |
||
+ | z+=z_type( 0.1196591376539 , 0.1299777213955 ); |
||
+ | DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | return c;} |
||
+ | |||
+ | z_type TETB(z_type z){ int m,n; DB x=Re(z); |
||
+ | if(x>.51) return exp(a*TETB(z-1.)); |
||
+ | if(x<-.51) return log(TETB(z+1.))/a; |
||
+ | return tetb(z); |
||
+ | } |
||
+ | |||
+ | |||
+ | int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | |||
+ | FILE *o; |
||
+ | //o=fopen("sheldonre.eps","w");ado(o,122,122); |
||
+ | // o=fopen("35.eps","w");ado(o,1620,1320); |
||
+ | o=fopen("tetsheldore.eps","w");ado(o,1620,1320); |
||
+ | fprintf(o,"210 610 translate\n 100 100 scale\n"); |
||
+ | |||
+ | for(m=-2;m<15;m++){if(m==0){M(m,-6.2)L(m,7.2)} else{M(m,-6)L(m,7)}} |
||
+ | for(n=-7;n<8;n++){ M( -2,n)L(14,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,2410){x=-1.95+.01*m; z=z_type(x,0.); |
||
+ | |||
+ | // c=tetb(z); |
||
+ | c=TETB(z); |
||
+ | |||
+ | p=Re(c); q=Im(c); |
||
+ | y=p; if(m==0) M(x,y) else {if(y<20)L(x,y)} |
||
+ | // printf("%6.2lf %14.10lf %14.10lf\n",x,p,q); |
||
+ | if(x>14.||y>30.) break; |
||
+ | } |
||
+ | fprintf(o,".04 W 0 0 1 RGB S\n"); |
||
+ | |||
+ | DO(m,2210){x=-1.99+ .01*m; z=z_type(x,0); |
||
+ | // c=tetb(z); |
||
+ | c=TETB(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | y=q; if(m==0) M(x,y) else {if(fabs(y)<20) L(x,y)} |
||
+ | // printf("%6.2lf %14.10lf %14.10lf\n",x,p,q); |
||
+ | if(x>14.|| p>1000.) break; |
||
+ | } |
||
+ | fprintf(o,".04 W 1 0 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | |||
+ | c=TETB(0); |
||
+ | printf("tetb(0)= %16.14lf %16.14lf\n",Re(c),Im(c)); |
||
+ | |||
+ | system("epstopdf tetsheldore.eps"); |
||
+ | system( "open tetsheldore.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 1412pt |
||
+ | \paperheight 1314pt |
||
+ | \textwidth 2000pt |
||
+ | \textheight 2000pt |
||
+ | %\textwidth 700pt |
||
+ | \usepackage{graphics} |
||
+ | % \usepackage{rotate} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \sx \scalebox |
||
+ | \newcommand \ing \includegraphics |
||
+ | \parindent 0pt |
||
+ | \topmargin -92pt |
||
+ | \oddsidemargin -80pt |
||
+ | \begin{document} |
||
+ | \begin{picture}(1302,1304) |
||
+ | %\put(0,0){\ing{04}} |
||
+ | %\put(0,0){\ing{tetshelim}} |
||
+ | \put(0,0){\ing{tetsheldore}} |
||
+ | \put(168,1286){\sx{6.7}{$y$}} |
||
+ | \put(170,1190){\sx{6}{$6$}} |
||
+ | \put(170,1090){\sx{6}{$5$}} |
||
+ | \put(170, 990){\sx{6}{$4$}} |
||
+ | \put(170, 890){\sx{6}{$3$}} |
||
+ | \put(170, 790){\sx{6}{$2$}} |
||
+ | \put(170, 690){\sx{6}{$1$}} |
||
+ | %\put(170, 590){\sx{6}{$0$}} |
||
+ | \put(120, 490){\sx{6}{$-1$}} |
||
+ | \put(120, 390){\sx{6}{$-2$}} |
||
+ | \put(120, 290){\sx{6}{$-3$}} |
||
+ | \put(120, 190){\sx{6}{$-4$}} |
||
+ | \put(120, 90){\sx{6}{$-5$}} |
||
+ | |||
+ | \put(60, 550){\sx{6}{$-1$}} |
||
+ | %\put(190, 550){\sx{6}{$0$}} |
||
+ | \put(294, 550){\sx{6}{$1$}} |
||
+ | \put(394, 550){\sx{6}{$2$}} |
||
+ | \put(494, 550){\sx{6}{$3$}} |
||
+ | \put(594, 550){\sx{6}{$4$}} |
||
+ | \put(694, 550){\sx{6}{$5$}} |
||
+ | \put(794, 550){\sx{6}{$6$}} |
||
+ | \put(894, 550){\sx{6}{$7$}} |
||
+ | \put(994, 550){\sx{6}{$8$}} |
||
+ | \put(1094, 550){\sx{6}{$9$}} |
||
+ | \put(1180, 550){\sx{6}{$10$}} |
||
+ | \put(1280, 550){\sx{6}{$11$}} |
||
+ | \put(1374, 550){\sx{6.7}{$x$}} |
||
+ | |||
+ | \put(330,800){\sx{7}{\rot{20}$y\!=\! \Re\big(\mathrm{tet}_b(x)\big)$\ero}} |
||
+ | \put(320,640){\sx{7}{\rot{6}$y\!=\! \Im\big(\mathrm{tet}_b(x)\big)$\ero}} |
||
+ | %\put(320,550){\sx{7}{\rot{2}$y\!=\! \Im\big(\mathrm{tet}_b(x)\big)$\ero}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Esplicit plot]] |
||
+ | [[Category:Tetration to Sheldon base]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Superfunctions]] |
||
+ | [[Category:Tetration]] |
Latest revision as of 08:51, 1 December 2018
Explicit plot of tetration to Sheldon base for real values of the argument.
Sheldob vase
$b= 1.52598338517+0.0178411853321 \,\mathrm i$.
Sheldon Levenstein has suggested this number, but he did not provide any way of evaluation of this number; so this value can be considered as exact.
C++ generator of curves
Files GLxw2048.inc , TetSheldonIma.inc , ado.cin , conto.cin , filog.cin should be loaded in order to compile the code below:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
//z+=z_type( 0.1196573712872846, 0.1299776198056910);
z+=z_type( 0.1196591376539 , 0.1299777213955 );
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
z_type TETB(z_type z){ int m,n; DB x=Re(z);
if(x>.51) return exp(a*TETB(z-1.));
if(x<-.51) return log(TETB(z+1.))/a;
return tetb(z);
}
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;
//o=fopen("sheldonre.eps","w");ado(o,122,122);
// o=fopen("35.eps","w");ado(o,1620,1320);
o=fopen("tetsheldore.eps","w");ado(o,1620,1320);
fprintf(o,"210 610 translate\n 100 100 scale\n");
for(m=-2;m<15;m++){if(m==0){M(m,-6.2)L(m,7.2)} else{M(m,-6)L(m,7)}}
for(n=-7;n<8;n++){ M( -2,n)L(14,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,2410){x=-1.95+.01*m; z=z_type(x,0.);
// c=tetb(z);
c=TETB(z);
p=Re(c); q=Im(c);
y=p; if(m==0) M(x,y) else {if(y<20)L(x,y)}
// printf("%6.2lf %14.10lf %14.10lf\n",x,p,q);
if(x>14.||y>30.) break;
}
fprintf(o,".04 W 0 0 1 RGB S\n");
DO(m,2210){x=-1.99+ .01*m; z=z_type(x,0);
// c=tetb(z);
c=TETB(z);
p=Re(c); q=Im(c);
y=q; if(m==0) M(x,y) else {if(fabs(y)<20) L(x,y)}
// printf("%6.2lf %14.10lf %14.10lf\n",x,p,q);
if(x>14.|| p>1000.) break;
}
fprintf(o,".04 W 1 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
c=TETB(0);
printf("tetb(0)= %16.14lf %16.14lf\n",Re(c),Im(c));
system("epstopdf tetsheldore.eps");
system( "open tetsheldore.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 1412pt
\paperheight 1314pt
\textwidth 2000pt
\textheight 2000pt
%\textwidth 700pt
\usepackage{graphics}
% \usepackage{rotate}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \sx \scalebox
\newcommand \ing \includegraphics
\parindent 0pt
\topmargin -92pt
\oddsidemargin -80pt
\begin{document}
\begin{picture}(1302,1304)
%\put(0,0){\ing{04}}
%\put(0,0){\ing{tetshelim}}
\put(0,0){\ing{tetsheldore}}
\put(168,1286){\sx{6.7}{$y$}}
\put(170,1190){\sx{6}{$6$}}
\put(170,1090){\sx{6}{$5$}}
\put(170, 990){\sx{6}{$4$}}
\put(170, 890){\sx{6}{$3$}}
\put(170, 790){\sx{6}{$2$}}
\put(170, 690){\sx{6}{$1$}}
%\put(170, 590){\sx{6}{$0$}}
\put(120, 490){\sx{6}{$-1$}}
\put(120, 390){\sx{6}{$-2$}}
\put(120, 290){\sx{6}{$-3$}}
\put(120, 190){\sx{6}{$-4$}}
\put(120, 90){\sx{6}{$-5$}}
\put(60, 550){\sx{6}{$-1$}}
%\put(190, 550){\sx{6}{$0$}}
\put(294, 550){\sx{6}{$1$}}
\put(394, 550){\sx{6}{$2$}}
\put(494, 550){\sx{6}{$3$}}
\put(594, 550){\sx{6}{$4$}}
\put(694, 550){\sx{6}{$5$}}
\put(794, 550){\sx{6}{$6$}}
\put(894, 550){\sx{6}{$7$}}
\put(994, 550){\sx{6}{$8$}}
\put(1094, 550){\sx{6}{$9$}}
\put(1180, 550){\sx{6}{$10$}}
\put(1280, 550){\sx{6}{$11$}}
\put(1374, 550){\sx{6.7}{$x$}}
\put(330,800){\sx{7}{\rot{20}$y\!=\! \Re\big(\mathrm{tet}_b(x)\big)$\ero}}
\put(320,640){\sx{7}{\rot{6}$y\!=\! \Im\big(\mathrm{tet}_b(x)\big)$\ero}}
%\put(320,550){\sx{7}{\rot{2}$y\!=\! \Im\big(\mathrm{tet}_b(x)\big)$\ero}}
\end{picture}
\end{document}
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 1,172 × 1,090 (142 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: