Difference between revisions of "File:IterfacPlotT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Explicit plot]] of iteration of [[Factorial]], $y=\mathrm{Factorial}^c(x)$ versus $x$ for various values of number $c$ of iterations. The $c$th iteration of [[Factorial]] is implemented through the [[SuperFactorial]] and the [[AbelFactorial]]: |
||
− | Importing image file |
||
+ | :$\mathrm{Factorial}^c(x)=\mathrm{SuperFactorial}\Big(c+\mathrm{AbelFactorial}(x)\Big)$ |
||
+ | |||
+ | The thick lines correspond to |
||
+ | |||
+ | $y=\mathrm{Factorial}(x)$, for $x\!>\!2$ it is realized at $c\!=\!1~$, and |
||
+ | |||
+ | $y=\mathrm{ArcFactorial}(x)$, for $x\!>\!2$ it is realized at $c\!=\!-1~$. |
||
+ | |||
+ | |||
+ | <b>Warning:</b> |
||
+ | |||
+ | $~y\!=\!\mathrm{Factorial}^c(x)~$ should not be confused with |
||
+ | $~y\!=\!\mathrm{Factorial}(x^c)~$, nor with |
||
+ | $~y\!=\!\mathrm{Factorial}(x)^c~$. |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | // Files [[ado.cin]], [[fac.cin]], [[superfactorial.cin]], [[facp.cin]], [[afacc.cin]], [[abelfac.cin]] should be loaded. |
||
+ | |||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include<stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | #include "fac.cin" |
||
+ | #include "superfactorial.cin" |
||
+ | #include "facp.cin" |
||
+ | #include "afacc.cin" |
||
+ | #include "abelfac.cin" |
||
+ | //#include "doya.cin" |
||
+ | //DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); } |
||
+ | |||
+ | main(){ int m,n; double x,y,t; FILE *o; |
||
+ | o=fopen("IterFacPlot.eps","w"); ado(o,1010,1010); |
||
+ | fprintf(o,"1 1 translate 100 100 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
+ | for(m=0;m<11;m++) {M(m,0)L(m,10)} |
||
+ | for(m=0;m<11;m++) {M(0,m)L(10,m)} |
||
+ | fprintf(o,"2 setlinecap .01 W S\n"); |
||
+ | // for(m=0;m<81;m++){x=-4.+.1*m; y=Shoko(x); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n"); |
||
+ | // for(m=0;m<81;m++){x=-4.+.1*m; y=Re(Tania(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n"); |
||
+ | // for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0 1 RGB S\n"); |
||
+ | for(m=0;m<42;m++){x=0.+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 1 0 RGB S\n"); |
||
+ | for(m=0;m<30;m++){x=0.8856031944+(1./90.)*m*m; y=Re(afacc(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 0 1 RGB S\n"); |
||
+ | for(n=-12;n<13;n++){t=.1*n; M(2,2); DO(m,802){x=2.01+.01*m; y=Re(abelfac(x)); y=Re(superfac(t+y)); L(x,y); if(y>10.1)break;} } |
||
+ | fprintf(o,"1 setlinecap 1 setlinejoin .02 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf IterFacPlot.eps"); |
||
+ | system( "open IterFacPlot.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | |||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | %<nowiki> %<br> |
||
+ | % file IterFacPlot.pdf should be generated with the code above in order to compile the Latex document below. % |
||
+ | % Copyleft 2012 by Dmitrii Kouznetsov <br> % |
||
+ | \documentclass[12pt]{article} % <br> |
||
+ | \usepackage{geometry} % <br> |
||
+ | \usepackage{graphicx} % <br> |
||
+ | \usepackage{rotating} % <br> |
||
+ | \paperwidth 1008pt % <br> |
||
+ | \paperheight 1008pt % <br> |
||
+ | \topmargin -94pt % <br> |
||
+ | \oddsidemargin -81pt % <br> |
||
+ | \textwidth 1100pt % <br> |
||
+ | \textheight 1100pt % <br> |
||
+ | \pagestyle {empty} % <br> |
||
+ | \newcommand \sx {\scalebox} % <br> |
||
+ | \newcommand \rot {\begin{rotate}} % <br> |
||
+ | \newcommand \ero {\end{rotate}} % <br> |
||
+ | \newcommand \ing {\includegraphics} % <br> |
||
+ | \parindent 0pt% <br> |
||
+ | \pagestyle{empty} % <br> |
||
+ | \begin{document} % <br> |
||
+ | \begin{picture}(1002,1002) % <br> |
||
+ | \put(10,10){\ing{IterFacPlot}} % <br> |
||
+ | \put(11,978){\sx{3.4}{$y\!=\!\mathrm{Factorial}^c(x)$}} % <br> |
||
+ | \put(11,898){\sx{4}{$9$}} % <br> |
||
+ | \put(11,798){\sx{4}{$8$}} % <br> |
||
+ | \put(11,698){\sx{4}{$7$}} % <br> |
||
+ | \put(11,598){\sx{4}{$6$}} % <br> |
||
+ | \put(11,498){\sx{4}{$5$}} % <br> |
||
+ | \put(11,398){\sx{4}{$4$}} % <br> |
||
+ | \put(11,298){\sx{4}{$3$}} % <br> |
||
+ | \put(11,198){\sx{4}{$2$}} % <br> |
||
+ | \put(11,098){\sx{4}{$1$}} % <br> |
||
+ | % <br> |
||
+ | \put(100,16){\sx{4}{$1$}} % <br> |
||
+ | \put(200,16){\sx{4}{$2$}} % <br> |
||
+ | \put(301,16){\sx{4}{$3$}} % <br> |
||
+ | \put(401,16){\sx{4}{$4$}} % <br> |
||
+ | \put(502,16){\sx{4}{$5$}} % <br> |
||
+ | \put(602,16){\sx{4}{$6$}} % <br> |
||
+ | \put(703,16){\sx{4}{$7$}} % <br> |
||
+ | \put(803,16){\sx{4}{$8$}} % <br> |
||
+ | \put(903,16){\sx{4}{$9$}} % <br> |
||
+ | \put(990,16){\sx{4}{$x$}} % <br> |
||
+ | % <br> |
||
+ | \put(304,770){\sx{3.3}{\rot{87}$c\!=\!1.2$\ero}} % <br> |
||
+ | \put(355,921){\sx{3.3}{\rot{84}$c\!=\!1$\ero}} % <br> |
||
+ | \put(490,904){\sx{3.3}{\rot{74}$c\!=\!0.5$\ero}} % <br> |
||
+ | \put(536,906){\sx{3.3}{\rot{70}$c\!=\!0.4$\ero}} % <br> |
||
+ | \put(601,909){\sx{3.3}{\rot{66}$c\!=\!0.3$\ero}} % <br> |
||
+ | \put(683,910){\sx{3.3}{\rot{63}$c\!=\!0.2$\ero}} % <br> |
||
+ | \put(795,915){\sx{3.3}{\rot{55}$c\!=\!0.1$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(928,932){\sx{3.4}{\rot{45}$c\!=\!0$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(896,755){\sx{3.3}{\rot{35}$c\!=\!-0.1$\ero}} % <br> |
||
+ | \put(892,646){\sx{3.3}{\rot{26}$c\!=\!-0.2$\ero}} % <br> |
||
+ | \put(888,571){\sx{3.3}{\rot{19}$c\!=\!-0.3$\ero}} % <br> |
||
+ | \put(884,513){\sx{3.3}{\rot{14}$c\!=\!-0.4$\ero}} % <br> |
||
+ | \put(882,468){\sx{3.3}{\rot{11}$c\!=\!-0.5$\ero}} % <br> |
||
+ | \put(882,430){\sx{3.3}{\rot{10}$c\!=\!-0.6$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(890,331){\sx{3.3}{\rot{3}$c\!=\!-1$\ero}} % <br> |
||
+ | \put(876,290){\sx{3.3}{\rot{2}$c\!=\!-1.2$\ero}} % <br> |
||
+ | \end{picture} % <br> |
||
+ | \end{document} % <br> |
||
+ | %</nowiki> |
||
+ | |||
+ | [[Category:Factorial]] |
||
+ | [[Category:Iteration]] |
||
+ | [[Category:SuperFactorial]] |
||
+ | [[Category:AbelFactorial]] |
||
+ | [[Category:SuperFunctions]] |
||
+ | [[Category:AbelFunctions]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 09:43, 21 June 2013
Explicit plot of iteration of Factorial, $y=\mathrm{Factorial}^c(x)$ versus $x$ for various values of number $c$ of iterations. The $c$th iteration of Factorial is implemented through the SuperFactorial and the AbelFactorial:
- $\mathrm{Factorial}^c(x)=\mathrm{SuperFactorial}\Big(c+\mathrm{AbelFactorial}(x)\Big)$
The thick lines correspond to
$y=\mathrm{Factorial}(x)$, for $x\!>\!2$ it is realized at $c\!=\!1~$, and
$y=\mathrm{ArcFactorial}(x)$, for $x\!>\!2$ it is realized at $c\!=\!-1~$.
Warning:
$~y\!=\!\mathrm{Factorial}^c(x)~$ should not be confused with $~y\!=\!\mathrm{Factorial}(x^c)~$, nor with $~y\!=\!\mathrm{Factorial}(x)^c~$.
C++ generator of curves
// Files ado.cin, fac.cin, superfactorial.cin, facp.cin, afacc.cin, abelfac.cin should be loaded.
#include<math.h> #include<stdio.h> #include<stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin" #include "fac.cin" #include "superfactorial.cin" #include "facp.cin" #include "afacc.cin" #include "abelfac.cin" //#include "doya.cin" //DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
main(){ int m,n; double x,y,t; FILE *o; o=fopen("IterFacPlot.eps","w"); ado(o,1010,1010); fprintf(o,"1 1 translate 100 100 scale\n"); #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); for(m=0;m<11;m++) {M(m,0)L(m,10)} for(m=0;m<11;m++) {M(0,m)L(10,m)} fprintf(o,"2 setlinecap .01 W S\n"); // for(m=0;m<81;m++){x=-4.+.1*m; y=Shoko(x); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n"); // for(m=0;m<81;m++){x=-4.+.1*m; y=Re(Tania(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n"); // for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0 1 RGB S\n"); for(m=0;m<42;m++){x=0.+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 1 0 RGB S\n"); for(m=0;m<30;m++){x=0.8856031944+(1./90.)*m*m; y=Re(afacc(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 0 1 RGB S\n"); for(n=-12;n<13;n++){t=.1*n; M(2,2); DO(m,802){x=2.01+.01*m; y=Re(abelfac(x)); y=Re(superfac(t+y)); L(x,y); if(y>10.1)break;} } fprintf(o,"1 setlinecap 1 setlinejoin .02 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf IterFacPlot.eps"); system( "open IterFacPlot.pdf"); getchar(); system("killall Preview");//for mac }
Latex generator of labels
% %<br> % file IterFacPlot.pdf should be generated with the code above in order to compile the Latex document below. % % Copyleft 2012 by Dmitrii Kouznetsov <br> % \documentclass[12pt]{article} % <br> \usepackage{geometry} % <br> \usepackage{graphicx} % <br> \usepackage{rotating} % <br> \paperwidth 1008pt % <br> \paperheight 1008pt % <br> \topmargin -94pt % <br> \oddsidemargin -81pt % <br> \textwidth 1100pt % <br> \textheight 1100pt % <br> \pagestyle {empty} % <br> \newcommand \sx {\scalebox} % <br> \newcommand \rot {\begin{rotate}} % <br> \newcommand \ero {\end{rotate}} % <br> \newcommand \ing {\includegraphics} % <br> \parindent 0pt% <br> \pagestyle{empty} % <br> \begin{document} % <br> \begin{picture}(1002,1002) % <br> \put(10,10){\ing{IterFacPlot}} % <br> \put(11,978){\sx{3.4}{$y\!=\!\mathrm{Factorial}^c(x)$}} % <br> \put(11,898){\sx{4}{$9$}} % <br> \put(11,798){\sx{4}{$8$}} % <br> \put(11,698){\sx{4}{$7$}} % <br> \put(11,598){\sx{4}{$6$}} % <br> \put(11,498){\sx{4}{$5$}} % <br> \put(11,398){\sx{4}{$4$}} % <br> \put(11,298){\sx{4}{$3$}} % <br> \put(11,198){\sx{4}{$2$}} % <br> \put(11,098){\sx{4}{$1$}} % <br> % <br> \put(100,16){\sx{4}{$1$}} % <br> \put(200,16){\sx{4}{$2$}} % <br> \put(301,16){\sx{4}{$3$}} % <br> \put(401,16){\sx{4}{$4$}} % <br> \put(502,16){\sx{4}{$5$}} % <br> \put(602,16){\sx{4}{$6$}} % <br> \put(703,16){\sx{4}{$7$}} % <br> \put(803,16){\sx{4}{$8$}} % <br> \put(903,16){\sx{4}{$9$}} % <br> \put(990,16){\sx{4}{$x$}} % <br> % <br> \put(304,770){\sx{3.3}{\rot{87}$c\!=\!1.2$\ero}} % <br> \put(355,921){\sx{3.3}{\rot{84}$c\!=\!1$\ero}} % <br> \put(490,904){\sx{3.3}{\rot{74}$c\!=\!0.5$\ero}} % <br> \put(536,906){\sx{3.3}{\rot{70}$c\!=\!0.4$\ero}} % <br> \put(601,909){\sx{3.3}{\rot{66}$c\!=\!0.3$\ero}} % <br> \put(683,910){\sx{3.3}{\rot{63}$c\!=\!0.2$\ero}} % <br> \put(795,915){\sx{3.3}{\rot{55}$c\!=\!0.1$\ero}} % <br> % <br> \put(928,932){\sx{3.4}{\rot{45}$c\!=\!0$\ero}} % <br> % <br> \put(896,755){\sx{3.3}{\rot{35}$c\!=\!-0.1$\ero}} % <br> \put(892,646){\sx{3.3}{\rot{26}$c\!=\!-0.2$\ero}} % <br> \put(888,571){\sx{3.3}{\rot{19}$c\!=\!-0.3$\ero}} % <br> \put(884,513){\sx{3.3}{\rot{14}$c\!=\!-0.4$\ero}} % <br> \put(882,468){\sx{3.3}{\rot{11}$c\!=\!-0.5$\ero}} % <br> \put(882,430){\sx{3.3}{\rot{10}$c\!=\!-0.6$\ero}} % <br> % <br> \put(890,331){\sx{3.3}{\rot{3}$c\!=\!-1$\ero}} % <br> \put(876,290){\sx{3.3}{\rot{2}$c\!=\!-1.2$\ero}} % <br> \end{picture} % <br> \end{document} % <br> %
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,093 × 2,093 (551 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.