Difference between revisions of "File:TetKK200.png"
Jump to navigation
Jump to search
| Line 1: | Line 1: | ||
| + | Parameters, that determine the asymptotic behavior of [[Tetration]] to real base \(b\), versus logarithm of this base, \( \beta=\ln(b)\). |
||
| + | |||
| + | These parameters are: |
||
| + | |||
| + | [[Fixed point]] \(L=\) [[Filog]]\((\beta)\) |
||
| + | |||
| + | Asymptoitic growing factor \( K= \beta L \) |
||
| + | |||
| + | Asymptotic increment \( k= \ln(K) \) |
||
| + | |||
| + | Values correspond to the upped half of the complex plane; so, \(\Im(L)\ge 0\). Curve for \(L^*\) is not drawn. |
||
| + | ==Requirements== |
||
| + | For generation of the image, the following files should be loaded: |
||
| + | |||
| + | [[ado.cin]] |
||
| + | |||
| + | [[Filog.cin]] |
||
| + | |||
| + | k12.cc and TetKK.tex below. |
||
| + | ==k12.cc== |
||
| + | <pre> |
||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | #include <complex> |
||
| + | #define z_type std::complex<double> |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "Filog.cin" |
||
| + | #include "../ado.cin" |
||
| + | |||
| + | int main(){ z_type b, beta, L,K,k; int M,m,n; DB x,y; |
||
| + | FILE *o=fopen("k12.eps","w"); |
||
| + | #define M(x,y) fprintf(o,"%7.4lf %7.4lf M\n", 0.+x, 0.+y); |
||
| + | #define L(x,y) fprintf(o,"%7.4lf %7.4lf L\n", 0.+x, 0.+y); |
||
| + | ado(o,322,522); |
||
| + | fprintf(o,"10 110 translate 100 100 scale 2 setlinecap 1 setlinejoin\n"); |
||
| + | for(m=0;m<4;m++){M(m,0)L(m,4)} |
||
| + | for(n=0;n<5;n++){M(0,n)L(3,n)} |
||
| + | fprintf(o,".006 W S\n"); |
||
| + | M(exp(-1.),0)L(exp(-1.),4) fprintf(o,".002 W S\n"); |
||
| + | M(log(2.)/2.,0)L(log(2.)/2.,4) fprintf(o,".002 W S\n"); |
||
| + | DB x0=M_PI_2; M(x0,0)L(x0,1) fprintf(o,".002 W S\n"); |
||
| + | //for(n=0;n<31;n++){ beta=.1*n+1.e-15*I; x=Re(beta); y=Re(exp(beta));if(n==0) M(x,y) else L(x,y) } fprintf(o,".004 W S\n"); |
||
| + | DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n"); |
||
| + | DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n"); |
||
| + | DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Im(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .005 W S\n"); |
||
| + | DO(n,610){beta=.004+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 .9 RGB .018 W S\n"); |
||
| + | DO(n,610){beta=.004+.005*n+1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .02 W S\n"); |
||
| + | DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Im(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .02 W S\n"); |
||
| + | DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n"); |
||
| + | DO(n,610){beta=.002+.005*n-1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n"); |
||
| + | DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Im(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 0 RGB .007 W S\n"); |
||
| + | fprintf(o,"\%\%Showpage trailer\n"); |
||
| + | fclose(o); |
||
| + | system("epstopdf k12.eps"); |
||
| + | system(" xpdf k12.pdf"); |
||
| + | } |
||
| + | |||
| + | </pre> |
||
| + | |||
| + | ==TetKK.tex== |
||
| + | <pre> \documentclass[12pt]{article} |
||
| + | \usepackage{geometry} |
||
| + | \paperwidth 324pt |
||
| + | \paperheight 462pt |
||
| + | \usepackage{graphicx} |
||
| + | \newcommand \sx {\scalebox} |
||
| + | \newcommand \ing {\includegraphics} |
||
| + | % \usepackage{rotate} |
||
| + | \usepackage{rotating} |
||
| + | \newcommand \rot {\begin{rotate}} |
||
| + | \newcommand \ero {\end{rotate}} |
||
| + | \topmargin -108pt |
||
| + | \oddsidemargin -72pt |
||
| + | \parindent 0pt |
||
| + | \begin{document} |
||
| + | \begin{picture}(320,530) |
||
| + | %\put(5,10){\ing{k03.pdf}} |
||
| + | \put(5,10){\ing{k12.pdf}} |
||
| + | \put(0,520){\sx{2}{$y$}} |
||
| + | \put(0,413){\sx{2}{$3$}} |
||
| + | \put(0,313){\sx{2}{$2$}} |
||
| + | \put(0,213){\sx{2}{$1$}} |
||
| + | \put(0,113){\sx{2}{$0$}} |
||
| + | \put(10,100){\sx{2}{$0$}} |
||
| + | \put(110,100){\sx{2}{$1$}} |
||
| + | \put(165,101){\sx{2}{$\frac{\pi}{2}$}} |
||
| + | \put(210,100){\sx{2}{$2$}} |
||
| + | % \put(110,300){\sx{2}{$3$}} |
||
| + | \put(308,100){\sx{2.1}{$\beta$}} |
||
| + | \put(56,424){\rot{90}\sx{1.6}{$y\!=\!\Re(L)$}\ero} |
||
| + | \put(27,406){\rot{-85}\sx{1.6}{$y\!=\!\Re(K)$}\ero} |
||
| + | \put(194,292){\rot{9}\sx{1.6}{$y\!=\!\Im(K)$}\ero} |
||
| + | \put(198,270){\rot{8}\sx{1.6}{$y\!=\!\Im(k)$}\ero} |
||
| + | \put(194,206){\rot{-17}\sx{1.6}{$y\!=\!\Im(L)$}\ero} |
||
| + | \put(188,163){\rot{8}\sx{1.6}{$y\!=\!\Re(k)$}\ero} |
||
| + | \put(226,94){\rot{-17}\sx{1.6}{$y\!=\!\Re(K)$}\ero} |
||
| + | \end{picture} |
||
| + | \end{document} |
||
| + | </pre> |
||
| + | |||
| + | ==Generation command== |
||
| + | <pre> |
||
| + | make k11 |
||
| + | ./k11 |
||
| + | Latex TetKK |
||
| + | convert -density 200 TetKK.pdf PNG8:TetKK200.png |
||
| + | </pre> |
||
| + | ==References== |
||
| + | <references/> |
||
| + | [[Category:Ackermann]] |
||
| + | [[Category:Asymptotic expansion]] |
||
| + | [[Category:Book]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Kneser expansion]] |
||
| + | [[Category:Kneser function]] |
||
| + | [[Category:Latex]] |
||
| + | [[Category:Superexponential]] |
||
| + | [[Category:Superfunctions]] |
||
| + | [[Category:Tetration]] |
||
| + | [[Category:Tetration to real base]] |
||
Latest revision as of 12:45, 12 August 2020
Parameters, that determine the asymptotic behavior of Tetration to real base \(b\), versus logarithm of this base, \( \beta=\ln(b)\).
These parameters are:
Fixed point \(L=\) Filog\((\beta)\)
Asymptoitic growing factor \( K= \beta L \)
Asymptotic increment \( k= \ln(K) \)
Values correspond to the upped half of the complex plane; so, \(\Im(L)\ge 0\). Curve for \(L^*\) is not drawn.
Requirements
For generation of the image, the following files should be loaded:
k12.cc and TetKK.tex below.
k12.cc
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
#define z_type std::complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "Filog.cin"
#include "../ado.cin"
int main(){ z_type b, beta, L,K,k; int M,m,n; DB x,y;
FILE *o=fopen("k12.eps","w");
#define M(x,y) fprintf(o,"%7.4lf %7.4lf M\n", 0.+x, 0.+y);
#define L(x,y) fprintf(o,"%7.4lf %7.4lf L\n", 0.+x, 0.+y);
ado(o,322,522);
fprintf(o,"10 110 translate 100 100 scale 2 setlinecap 1 setlinejoin\n");
for(m=0;m<4;m++){M(m,0)L(m,4)}
for(n=0;n<5;n++){M(0,n)L(3,n)}
fprintf(o,".006 W S\n");
M(exp(-1.),0)L(exp(-1.),4) fprintf(o,".002 W S\n");
M(log(2.)/2.,0)L(log(2.)/2.,4) fprintf(o,".002 W S\n");
DB x0=M_PI_2; M(x0,0)L(x0,1) fprintf(o,".002 W S\n");
//for(n=0;n<31;n++){ beta=.1*n+1.e-15*I; x=Re(beta); y=Re(exp(beta));if(n==0) M(x,y) else L(x,y) } fprintf(o,".004 W S\n");
DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n");
DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Re(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .005 W S\n");
DO(n,610){beta=.006+.005*n+1.e-15*I;L=Filog(beta); x=Re(beta); y=Im(L);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .005 W S\n");
DO(n,610){beta=.004+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 .9 RGB .018 W S\n");
DO(n,610){beta=.004+.005*n+1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Re(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 1 RGB .02 W S\n");
DO(n,610){beta=.006+.005*n-1.e-15*I;L=Filog(beta); K=beta*L; x=Re(beta);y=Im(K);if(n==0)M(x,y)else L(x,y)} fprintf(o,"1 0 0 RGB .02 W S\n");
DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n");
DO(n,610){beta=.002+.005*n-1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Re(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,".7 0 .7 RGB .007 W S\n");
DO(n,610){beta=.002+.005*n+1.e-15*I;L=Filog(beta); k=log(beta*L); x=Re(beta);y=Im(k);if(n==0)M(x,y)else L(x,y)} fprintf(o,"0 0 0 RGB .007 W S\n");
fprintf(o,"\%\%Showpage trailer\n");
fclose(o);
system("epstopdf k12.eps");
system(" xpdf k12.pdf");
}
TetKK.tex
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 324pt
\paperheight 462pt
\usepackage{graphicx}
\newcommand \sx {\scalebox}
\newcommand \ing {\includegraphics}
% \usepackage{rotate}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\topmargin -108pt
\oddsidemargin -72pt
\parindent 0pt
\begin{document}
\begin{picture}(320,530)
%\put(5,10){\ing{k03.pdf}}
\put(5,10){\ing{k12.pdf}}
\put(0,520){\sx{2}{$y$}}
\put(0,413){\sx{2}{$3$}}
\put(0,313){\sx{2}{$2$}}
\put(0,213){\sx{2}{$1$}}
\put(0,113){\sx{2}{$0$}}
\put(10,100){\sx{2}{$0$}}
\put(110,100){\sx{2}{$1$}}
\put(165,101){\sx{2}{$\frac{\pi}{2}$}}
\put(210,100){\sx{2}{$2$}}
% \put(110,300){\sx{2}{$3$}}
\put(308,100){\sx{2.1}{$\beta$}}
\put(56,424){\rot{90}\sx{1.6}{$y\!=\!\Re(L)$}\ero}
\put(27,406){\rot{-85}\sx{1.6}{$y\!=\!\Re(K)$}\ero}
\put(194,292){\rot{9}\sx{1.6}{$y\!=\!\Im(K)$}\ero}
\put(198,270){\rot{8}\sx{1.6}{$y\!=\!\Im(k)$}\ero}
\put(194,206){\rot{-17}\sx{1.6}{$y\!=\!\Im(L)$}\ero}
\put(188,163){\rot{8}\sx{1.6}{$y\!=\!\Re(k)$}\ero}
\put(226,94){\rot{-17}\sx{1.6}{$y\!=\!\Re(K)$}\ero}
\end{picture}
\end{document}
Generation command
make k11 ./k11 Latex TetKK convert -density 200 TetKK.pdf PNG8:TetKK200.png
References
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 12:39, 12 August 2020 | 897 × 1,279 (29 KB) | T (talk | contribs) |
You cannot overwrite this file.
File usage
The following page uses this file: