Difference between revisions of "File:LogisticSecK2.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Logistic Sequence]] of real argument. |
||
− | Importing image file |
||
+ | |||
+ | $y=F(x)=\mathrm{LogisticSequence}_s(x)$ versus $x$ for various values of parameter $s$. |
||
+ | |||
+ | where $F$ is simplest superfunction of the [[Logistic operator]], id est, solution of |
||
+ | the transfer equation |
||
+ | |||
+ | $F(z\!+\!1) = s F(z)(1-F(z))$ |
||
+ | |||
+ | for the logistic operator $\mathrm{LogisticOperator}_s(z)=sz(1-z)$ |
||
+ | as [[transfer function]]. |
||
+ | |||
+ | This solution exponentially approaches zero at minus infinity. |
||
+ | |||
+ | The holomorphic extension of the logistic sequence is described in 2010 in the [[Moscow University Physics Bulletin]] |
||
+ | <ref name="logi"> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf |
||
+ | D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31) |
||
+ | </ref>. |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Logistic operator]] |
||
+ | [[Category:Logistic sequence]] |
||
+ | |||
+ | ==[[C++]] generator of curves of the First picture== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | //#include "conto.cin" |
||
+ | #include "ado.cin" |
||
+ | #include "efjh.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | FILE *o;o=fopen("logi6.eps","w");ado(o,164,24); |
||
+ | fprintf(o,"62 2 translate\n 20 20 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | for(m=-3;m<6;m++){if(m==0){M(m,-.04)L(m,1.06)} else{M(m,0)L(m,1)}} |
||
+ | for(n=0;n<2;n++){ M( -3,n)L(5,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | maq(3.4); |
||
+ | DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);} |
||
+ | fprintf(o,".01 W 0 .7 0 RGB S\n"); |
||
+ | |||
+ | maq(3.); |
||
+ | DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);} |
||
+ | fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n"); |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); |
||
+ | |||
+ | maq(3.8); |
||
+ | DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} } |
||
+ | fprintf(o,".015 W 0 0 1 RGB [.001 .025] 0 setdash S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf logi6.eps"); |
||
+ | system( "open logi6.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[C++]] generator of curves of the Second picture== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | //#include "conto.cin" |
||
+ | #include "ado.cin" |
||
+ | #include "efjh.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | FILE *o;o=fopen("logi5.eps","w");ado(o,164,44); |
||
+ | fprintf(o,"62 22 translate\n 20 20 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | |||
+ | for(m=-3;m<6;m++){if(m==0){M(m,-1.06)L(m,1.06)} else{M(m,-1)L(m,1)}} |
||
+ | for(n=-1;n<2;n++){ M( -3,n)L(5,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | maq(4.); |
||
+ | DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);} |
||
+ | fprintf(o,".01 W 0 .7 0 RGB S\n"); |
||
+ | |||
+ | maq(3.9); |
||
+ | DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);} |
||
+ | fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n"); |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); |
||
+ | |||
+ | maq(4.1); |
||
+ | DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} } |
||
+ | fprintf(o,".015 W 0 0 1 RGB [.001 .02] 0 setdash S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf logi5.eps"); |
||
+ | system( "open logi5.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 492pt |
||
+ | \paperheight 220pt |
||
+ | \topmargin -100pt |
||
+ | \oddsidemargin -72pt |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \ing \includegraphics |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \parindent 0pt |
||
+ | \pagestyle{empty} |
||
+ | \begin{document} |
||
+ | \sx{3}{\begin{picture}(166,22) |
||
+ | \put( 1,1){\includegraphics{logi6}} |
||
+ | %\put( 64,48){\sx{.6}{$F(x)$}} |
||
+ | \put( 50,16){\sx{.4}{$F(x)$}} |
||
+ | \put( 0,22){\sx{.3}{$1$}} |
||
+ | \put( 0, 3){\sx{.3}{$0$}} |
||
+ | %\put( -1, 3){\sx{.4}{$-1$}} |
||
+ | \put( 20, 0){\sx{.3}{$-2$}} |
||
+ | \put( 40, 0){\sx{.3}{$-1$}} |
||
+ | \put( 62.5, 0){\sx{.3}{$0$}} |
||
+ | \put( 82.5, 0){\sx{.3}{$1$}} |
||
+ | \put(102.5, 0){\sx{.3}{$2$}} |
||
+ | \put(122.5, 0){\sx{.3}{$3$}} |
||
+ | \put(142.5, 0){\sx{.3}{$4$}} |
||
+ | \put(162, 0){\sx{.3}{$x$}} |
||
+ | \put(91,15.5){\sx{.3}{$s\!=\!3$}} |
||
+ | \put(91,11){\sx{.3}{$s\!=\!3.4$}} |
||
+ | \put(93, 5){\sx{.3}{$s\!=\!3.8$}} |
||
+ | \end{picture}} |
||
+ | \vskip 9pt |
||
+ | |||
+ | \sx{3}{\begin{picture}(166,44) |
||
+ | \put( 1,1){\includegraphics{logi5}} |
||
+ | %\put( 64,48){\sx{.6}{$F(x)$}} |
||
+ | \put( 50,36){\sx{.4}{$F(x)$}} |
||
+ | \put( 0,41.5){\sx{.3}{$1$}} |
||
+ | \put( 0,22){\sx{.3}{$0$}} |
||
+ | \put( -1, 2){\sx{.3}{$-\!1$}} |
||
+ | \put( 20, 0){\sx{.3}{$-2$}} |
||
+ | \put( 40, 0){\sx{.3}{$-1$}} |
||
+ | \put( 62.5, 0){\sx{.3}{$0$}} |
||
+ | \put( 82.5, 0){\sx{.3}{$1$}} |
||
+ | \put(102.5, 0){\sx{.3}{$2$}} |
||
+ | \put(122.5, 0){\sx{.3}{$3$}} |
||
+ | \put(142.5, 0){\sx{.3}{$4$}} |
||
+ | \put(162, 0){\sx{.3}{$x$}} |
||
+ | \put(91.3,29){\sx{.3}{$s\!=\!3.9$}} |
||
+ | %\put(91,21){\sx{.3}{$s\!=\!4$}} |
||
+ | \put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}} |
||
+ | \end{picture}} |
||
+ | |||
+ | \end{document} |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | The free use is allowed, attribute the source. |
Latest revision as of 08:42, 1 December 2018
Logistic Sequence of real argument.
$y=F(x)=\mathrm{LogisticSequence}_s(x)$ versus $x$ for various values of parameter $s$.
where $F$ is simplest superfunction of the Logistic operator, id est, solution of the transfer equation
$F(z\!+\!1) = s F(z)(1-F(z))$
for the logistic operator $\mathrm{LogisticOperator}_s(z)=sz(1-z)$ as transfer function.
This solution exponentially approaches zero at minus infinity.
The holomorphic extension of the logistic sequence is described in 2010 in the Moscow University Physics Bulletin [1].
References
- ↑ http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
C++ generator of curves of the First picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi6.eps","w");ado(o,164,24);
fprintf(o,"62 2 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=-3;m<6;m++){if(m==0){M(m,-.04)L(m,1.06)} else{M(m,0)L(m,1)}}
for(n=0;n<2;n++){ M( -3,n)L(5,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(3.4);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .7 0 RGB S\n");
maq(3.);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
fprintf(o,"1 setlinejoin 1 setlinecap\n");
maq(3.8);
DO(m,1004) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
fprintf(o,".015 W 0 0 1 RGB [.001 .025] 0 setdash S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi6.eps");
system( "open logi6.pdf");
getchar(); system("killall Preview");
}
C++ generator of curves of the Second picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "conto.cin"
#include "ado.cin"
#include "efjh.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logi5.eps","w");ado(o,164,44);
fprintf(o,"62 22 translate\n 20 20 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=-3;m<6;m++){if(m==0){M(m,-1.06)L(m,1.06)} else{M(m,-1)L(m,1)}}
for(n=-1;n<2;n++){ M( -3,n)L(5,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
maq(4.);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".01 W 0 .7 0 RGB S\n");
maq(3.9);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(m==0)M(x,y) else L(x,y);}
fprintf(o,".015 W 1 0 0 RGB [.03 .04] 0 setdash S\n");
fprintf(o,"1 setlinejoin 1 setlinecap\n");
maq(4.1);
DO(m,1001) { x=-3.+8.*sqrt(.001*m); y=Re(F(x)); if(y>-2) { if(m==0)M(x,y) else L(x,y);} }
fprintf(o,".015 W 0 0 1 RGB [.001 .02] 0 setdash S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logi5.eps");
system( "open logi5.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 492pt
\paperheight 220pt
\topmargin -100pt
\oddsidemargin -72pt
\newcommand \sx {\scalebox}
\newcommand \ing \includegraphics
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\sx{3}{\begin{picture}(166,22)
\put( 1,1){\includegraphics{logi6}}
%\put( 64,48){\sx{.6}{$F(x)$}}
\put( 50,16){\sx{.4}{$F(x)$}}
\put( 0,22){\sx{.3}{$1$}}
\put( 0, 3){\sx{.3}{$0$}}
%\put( -1, 3){\sx{.4}{$-1$}}
\put( 20, 0){\sx{.3}{$-2$}}
\put( 40, 0){\sx{.3}{$-1$}}
\put( 62.5, 0){\sx{.3}{$0$}}
\put( 82.5, 0){\sx{.3}{$1$}}
\put(102.5, 0){\sx{.3}{$2$}}
\put(122.5, 0){\sx{.3}{$3$}}
\put(142.5, 0){\sx{.3}{$4$}}
\put(162, 0){\sx{.3}{$x$}}
\put(91,15.5){\sx{.3}{$s\!=\!3$}}
\put(91,11){\sx{.3}{$s\!=\!3.4$}}
\put(93, 5){\sx{.3}{$s\!=\!3.8$}}
\end{picture}}
\vskip 9pt
\sx{3}{\begin{picture}(166,44)
\put( 1,1){\includegraphics{logi5}}
%\put( 64,48){\sx{.6}{$F(x)$}}
\put( 50,36){\sx{.4}{$F(x)$}}
\put( 0,41.5){\sx{.3}{$1$}}
\put( 0,22){\sx{.3}{$0$}}
\put( -1, 2){\sx{.3}{$-\!1$}}
\put( 20, 0){\sx{.3}{$-2$}}
\put( 40, 0){\sx{.3}{$-1$}}
\put( 62.5, 0){\sx{.3}{$0$}}
\put( 82.5, 0){\sx{.3}{$1$}}
\put(102.5, 0){\sx{.3}{$2$}}
\put(122.5, 0){\sx{.3}{$3$}}
\put(142.5, 0){\sx{.3}{$4$}}
\put(162, 0){\sx{.3}{$x$}}
\put(91.3,29){\sx{.3}{$s\!=\!3.9$}}
%\put(91,21){\sx{.3}{$s\!=\!4$}}
\put(92.5, 19.5){\sx{.3}{$s\!=\!4.1$}}
\end{picture}}
\end{document}
The free use is allowed, attribute the source.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 6,807 × 3,044 (996 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: