Difference between revisions of "File:Fafo2test0.png"
Jump to navigation
Jump to search
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Test image, used for the demonstration of the [[Fourier-2 transform]] and the Fourier-filtering of the images. |
||
− | Importing image file |
||
+ | |||
+ | The painting is represented at the 32 x 32 grid; the origin of the coordinates is marked with the red cross. |
||
+ | |||
+ | The step of the grid is $\sqrt{\pi/16}=\sqrt{\pi} /4 \approx 0.443$ |
||
+ | |||
+ | The figure is generated with the [[C++]] code below. |
||
+ | For the compilation, file [[ado.cin]] should be loaded to the working directory. |
||
+ | |||
+ | ==[[C++]] generator== |
||
+ | |||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #include <complex> |
||
+ | using namespace std; |
||
+ | #define z_type complex<double> |
||
+ | #define DB double |
||
+ | |||
+ | //#include "fafo.cin" |
||
+ | #include "ado.cin" |
||
+ | |||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | |||
+ | main(){ int m,M=64, n,N=64; DB x,y, dx,dy, u,v, s,t; |
||
+ | z_type c,z; |
||
+ | FILE *o; |
||
+ | o=fopen("fafo2test0.eps","w"); ado(o, 10*M+2, 10*N+2); |
||
+ | fprintf(o,"1 1 translate\n"); |
||
+ | fprintf(o,"10 10 scale\n"); |
||
+ | // DB *a; a=(DB *)malloc((size_t)((M*N)*sizeof(DB ))); |
||
+ | z_type *A; A=(z_type *)malloc((size_t)((M*N)*sizeof(z_type))); |
||
+ | z_type *b; b=(z_type *)malloc((size_t)((M)*sizeof(z_type))); |
||
+ | // Assuming M >= N |
||
+ | dx=sqrt(2.*M_PI/M); |
||
+ | dy=sqrt(2.*M_PI/N); |
||
+ | DO(m,M){ x=dx*(m-M/2.); |
||
+ | DO(n,N){ y=dy*(n-N/2.); if(.3*x*x+.2*y*y >2.1) A[n*M+m]=0.; else A[n*M+m]=1.; |
||
+ | if(fabs(x)<.8 && fabs(y+1.7)<.3 ) A[n*M+m]-=1.; |
||
+ | if( (fabs(x-1.)<.3 || fabs(x+1.)<.3 ) && fabs(y-.8)<.2 ) A[n*M+m]-=1.; |
||
+ | }} |
||
+ | // Fourier is not performed |
||
+ | // DO(m,M){ DO(n,N) b[n]=A[n*M+m]; fafo(b,N,1); DO(n,N) A[n*M+m]=b[n]; } |
||
+ | // DO(n,N){ DO(m,M) b[m]=A[n*M+m]; fafo(b,M,1); DO(m,M) A[n*M+m]=b[m]; } |
||
+ | |||
+ | fprintf(o,"gsave\n"); |
||
+ | fprintf(o,"%2d %2d scale\n",M,N); |
||
+ | fprintf(o,"%2d %2d 4 [%2d 0 0 %2d 0 %2d]\n<", M,N,M,-N,N); |
||
+ | s=0; DO(m,M) DO(n,N){ t=abs(A[n*M+m]); if(t>s) s=t; } |
||
+ | s=15./s; |
||
+ | for(n=N-1;n>=0;n--) { fprintf(o,"\n"); |
||
+ | DO(m,M){ fprintf(o,"%1x",int(s*abs(A[n*M+m])+.6) ); |
||
+ | }} |
||
+ | fprintf(o,"\n>\n"); |
||
+ | fprintf(o,"image\n"); |
||
+ | free(A); |
||
+ | fprintf(o,"grestore\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
+ | M(M/2.+.5,-1); L(M/2+.5,N+1); |
||
+ | M(-1,N/2.+.5); L(M+1,N/2.+.5); |
||
+ | fprintf(o,"1 0 0 RGB .1 W S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o); |
||
+ | system("epstopdf fafo2test0.eps"); |
||
+ | system( "convert fafo2test0.eps fafo2test0.jpg "); |
||
+ | system( "convert fafo2test0.eps fafo2test0.gif "); |
||
+ | system( "open fafo2test0.gif"); |
||
+ | } |
||
+ | |||
+ | // End of generator. |
||
+ | |||
+ | ==The [[EPS]] version of the image== |
||
+ | |||
+ | %!PS-Adobe-2.0 EPSF-2.0 |
||
+ | %%BoundingBox: 0 0 642 642 |
||
+ | /M {moveto} bind def |
||
+ | /L {lineto} bind def |
||
+ | /S {stroke} bind def |
||
+ | /s {show newpath} bind def |
||
+ | /C {closepath} bind def |
||
+ | /F {fill} bind def |
||
+ | /o {.1 0 360 arc C S} bind def |
||
+ | /times-Roman findfont 20 scalefont setfont |
||
+ | /W {setlinewidth} bind def |
||
+ | /RGB {setrgbcolor} bind def |
||
+ | 1 1 translate |
||
+ | 10 10 scale |
||
+ | gsave |
||
+ | 64 64 scale |
||
+ | 64 64 4 [64 0 0 -64 0 64] |
||
+ | < |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 000000000000000000000000000000fffff00000000000000000000000000000 |
||
+ | 0000000000000000000000000000fffffffff000000000000000000000000000 |
||
+ | 000000000000000000000000000fffffffffff00000000000000000000000000 |
||
+ | 00000000000000000000000000fffffffffffff0000000000000000000000000 |
||
+ | 00000000000000000000000000fffffffffffff0000000000000000000000000 |
||
+ | 0000000000000000000000000fffffffffffffff000000000000000000000000 |
||
+ | 0000000000000000000000000fffffffffffffff000000000000000000000000 |
||
+ | 000000000000000000000000ffff00fffff00ffff00000000000000000000000 |
||
+ | 000000000000000000000000ffff00fffff00ffff00000000000000000000000 |
||
+ | 000000000000000000000000fffffffffffffffff00000000000000000000000 |
||
+ | 000000000000000000000000fffffffffffffffff00000000000000000000000 |
||
+ | 000000000000000000000000fffffffffffffffff00000000000000000000000 |
||
+ | 000000000000000000000000fffffffffffffffff00000000000000000000000 |
||
+ | 000000000000000000000000fffffffffffffffff00000000000000000000000 |
||
+ | 0000000000000000000000000fffffffffffffff000000000000000000000000 |
||
+ | 0000000000000000000000000fffff00000fffff000000000000000000000000 |
||
+ | 00000000000000000000000000ffff00000ffff0000000000000000000000000 |
||
+ | 00000000000000000000000000fffffffffffff0000000000000000000000000 |
||
+ | 000000000000000000000000000fffffffffff00000000000000000000000000 |
||
+ | 0000000000000000000000000000fffffffff000000000000000000000000000 |
||
+ | 000000000000000000000000000000fffff00000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | 0000000000000000000000000000000000000000000000000000000000000000 |
||
+ | > |
||
+ | image |
||
+ | grestore |
||
+ | 32.500 -1.000 M |
||
+ | 32.500 65.000 L |
||
+ | -1.000 32.500 M |
||
+ | 65.000 32.500 L |
||
+ | 1 0 0 RGB .1 W S |
||
+ | showpage |
||
+ | %%Trailer |
||
+ | |||
+ | ==Keywords== |
||
+ | |||
+ | ==References== |
||
+ | </references/> |
||
+ | |||
+ | [[Category:EPS]] |
||
+ | [[Category:Roster graphics]] |
||
+ | [[Category:Examples]] |
||
+ | [[Category:Fourier transform]] |
||
+ | [[Category:Face]] |
Latest revision as of 09:39, 21 June 2013
Test image, used for the demonstration of the Fourier-2 transform and the Fourier-filtering of the images.
The painting is represented at the 32 x 32 grid; the origin of the coordinates is marked with the red cross.
The step of the grid is $\sqrt{\pi/16}=\sqrt{\pi} /4 \approx 0.443$
The figure is generated with the C++ code below. For the compilation, file ado.cin should be loaded to the working directory.
C++ generator
#include<math.h> #include<stdio.h> #include <stdlib.h> #include <complex> using namespace std; #define z_type complex<double> #define DB double
//#include "fafo.cin" #include "ado.cin"
#define DO(x,y) for(x=0;x<y;x++)
main(){ int m,M=64, n,N=64; DB x,y, dx,dy, u,v, s,t; z_type c,z; FILE *o; o=fopen("fafo2test0.eps","w"); ado(o, 10*M+2, 10*N+2); fprintf(o,"1 1 translate\n"); fprintf(o,"10 10 scale\n"); // DB *a; a=(DB *)malloc((size_t)((M*N)*sizeof(DB ))); z_type *A; A=(z_type *)malloc((size_t)((M*N)*sizeof(z_type))); z_type *b; b=(z_type *)malloc((size_t)((M)*sizeof(z_type))); // Assuming M >= N dx=sqrt(2.*M_PI/M); dy=sqrt(2.*M_PI/N); DO(m,M){ x=dx*(m-M/2.); DO(n,N){ y=dy*(n-N/2.); if(.3*x*x+.2*y*y >2.1) A[n*M+m]=0.; else A[n*M+m]=1.; if(fabs(x)<.8 && fabs(y+1.7)<.3 ) A[n*M+m]-=1.; if( (fabs(x-1.)<.3 || fabs(x+1.)<.3 ) && fabs(y-.8)<.2 ) A[n*M+m]-=1.; }} // Fourier is not performed // DO(m,M){ DO(n,N) b[n]=A[n*M+m]; fafo(b,N,1); DO(n,N) A[n*M+m]=b[n]; } // DO(n,N){ DO(m,M) b[m]=A[n*M+m]; fafo(b,M,1); DO(m,M) A[n*M+m]=b[m]; } fprintf(o,"gsave\n"); fprintf(o,"%2d %2d scale\n",M,N); fprintf(o,"%2d %2d 4 [%2d 0 0 %2d 0 %2d]\n<", M,N,M,-N,N); s=0; DO(m,M) DO(n,N){ t=abs(A[n*M+m]); if(t>s) s=t; } s=15./s; for(n=N-1;n>=0;n--) { fprintf(o,"\n"); DO(m,M){ fprintf(o,"%1x",int(s*abs(A[n*M+m])+.6) ); }} fprintf(o,"\n>\n"); fprintf(o,"image\n"); free(A); fprintf(o,"grestore\n"); #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); M(M/2.+.5,-1); L(M/2+.5,N+1); M(-1,N/2.+.5); L(M+1,N/2.+.5); fprintf(o,"1 0 0 RGB .1 W S\n"); fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o); system("epstopdf fafo2test0.eps"); system( "convert fafo2test0.eps fafo2test0.jpg "); system( "convert fafo2test0.eps fafo2test0.gif "); system( "open fafo2test0.gif"); }
// End of generator.
The EPS version of the image
%!PS-Adobe-2.0 EPSF-2.0 %%BoundingBox: 0 0 642 642 /M {moveto} bind def /L {lineto} bind def /S {stroke} bind def /s {show newpath} bind def /C {closepath} bind def /F {fill} bind def /o {.1 0 360 arc C S} bind def /times-Roman findfont 20 scalefont setfont /W {setlinewidth} bind def /RGB {setrgbcolor} bind def 1 1 translate 10 10 scale gsave 64 64 scale 64 64 4 [64 0 0 -64 0 64] < 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000fffff00000000000000000000000000000 0000000000000000000000000000fffffffff000000000000000000000000000 000000000000000000000000000fffffffffff00000000000000000000000000 00000000000000000000000000fffffffffffff0000000000000000000000000 00000000000000000000000000fffffffffffff0000000000000000000000000 0000000000000000000000000fffffffffffffff000000000000000000000000 0000000000000000000000000fffffffffffffff000000000000000000000000 000000000000000000000000ffff00fffff00ffff00000000000000000000000 000000000000000000000000ffff00fffff00ffff00000000000000000000000 000000000000000000000000fffffffffffffffff00000000000000000000000 000000000000000000000000fffffffffffffffff00000000000000000000000 000000000000000000000000fffffffffffffffff00000000000000000000000 000000000000000000000000fffffffffffffffff00000000000000000000000 000000000000000000000000fffffffffffffffff00000000000000000000000 0000000000000000000000000fffffffffffffff000000000000000000000000 0000000000000000000000000fffff00000fffff000000000000000000000000 00000000000000000000000000ffff00000ffff0000000000000000000000000 00000000000000000000000000fffffffffffff0000000000000000000000000 000000000000000000000000000fffffffffff00000000000000000000000000 0000000000000000000000000000fffffffff000000000000000000000000000 000000000000000000000000000000fffff00000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 > image grestore 32.500 -1.000 M 32.500 65.000 L -1.000 32.500 M 65.000 32.500 L 1 0 0 RGB .1 W S showpage
%%Trailer
Keywords
References
</references/>
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 642 × 642 (5 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 4 pages use this file: