Difference between revisions of "File:IterPowPlotT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Explicit plot]] of $c$th Iteration of the quadratic function, id est, [[power function]] for power 2; $y=\mathrm{Pow}_2^{~c}(z)=T^c(x)~$ for various values of number $c$ of iteration. Here, |
||
− | Importing image file |
||
+ | |||
+ | : $\!\!\!\!\!\!\!\!\!\!\ (1) ~ ~ ~ T(z)=\mathrm{Pow}_2(z)=z^2=\exp\Big(\ln(z)\,2\Big)$ |
||
+ | |||
+ | The iteration of $T$ is implemented in the following way: |
||
+ | |||
+ | :$\!\!\!\!\!\!\!\!\!\!\ (2) ~ ~ ~y=T^c(x)={\mathrm{Pow}_2}^c(z)=F\Big(c+G(x)\Big)$ |
||
+ | |||
+ | where |
||
+ | : $\!\!\!\!\!\!\!\!\!\!\ (3) ~ ~ ~ F(z)=\exp\Big( \exp\big( \ln(2)\, z\big)\Big)$ |
||
+ | is [[superfunction]] for the transfer function $T$ and |
||
+ | :$\!\!\!\!\!\!\!\!\!\!\ (4) ~ ~ ~G(z)=\ln\Big( \ln(z) \Big)/ \ln(2)$ |
||
+ | is the [[Abel Function]]. |
||
+ | |||
+ | The thick lines represent $y=x^2$ and $y=\sqrt{x}$. |
||
+ | FIrst of them overlaps with $y=T^1(x)$ and corresponds to $c\!=\!1$, |
||
+ | and the second overlaps with $y=T^{-1}(x)$ and corresponds to $c\!=\!-1$. |
||
+ | |||
+ | ==Warning== |
||
+ | For |
||
+ | :$\!\!\!\!\!\!\!\!\!\!\ (5) ~ ~ ~T(z)=\mathrm{Pow}_b(z)=z^b$ |
||
+ | the iterate can be expressed in the closed form through the same function. For other functions, such a representation may be not available. |
||
+ | <!-- |
||
+ | :$\!\!\!\!\!\!\!\!\!\!\ (6) ~ ~ ~ T^c(z)=T(z^c)=T(z)^c $ |
||
+ | hold; for the specific value $c\!=\!2$. The attempts to apply relations (6) to other transfer functions $T$ leads to confusions and errors. |
||
+ | !--> |
||
+ | ==[[C++]] Generator of curves== |
||
+ | |||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include<stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | |||
+ | DB B=2.; |
||
+ | DB F(DB z) { return exp( exp( log(B)*z));} |
||
+ | DB G(DB z) { return log( log(z) )/log(B);} |
||
+ | |||
+ | main(){ int m,n; double x,y,t; FILE *o; |
||
+ | o=fopen("IterPowPlot.eps","w"); ado(o,1010,1010); |
||
+ | fprintf(o,"1 1 translate 100 100 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
+ | for(m=0;m<11;m++) {M(m,0)L(m,10)} |
||
+ | for(m=0;m<11;m++) {M(0,m)L(10,m)} |
||
+ | fprintf(o,"2 setlinecap .01 W S\n"); |
||
+ | DO(m,42){x=0.001+.1*m; y=exp(2.*log(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 1 0 RGB S\n"); |
||
+ | DO(m,1002){x=0.001+.01*m; y=exp(.5*log(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 0 1 RGB S\n"); |
||
+ | for(n=-12;n<13;n++){t=.1*n; DO(m,92){x=1+.1*m; y=F(t+G(x)); if(m==0) M(x,y) else L(x,y); if(y>10.1)break;} } |
||
+ | fprintf(o,"1 setlinecap 1 setlinejoin .02 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf IterPowPlot.eps"); |
||
+ | system( "open IterPowPlot.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | ==[[Latex]] Generator of labels== |
||
+ | |||
+ | %<nowiki> %<br> |
||
+ | % file IterPowPlot.pdf should be generated with the code above in order to compile the Latex document below. %<br> |
||
+ | % Copyleft 2012 by Dmitrii Kouznetsov <br> % |
||
+ | \documentclass[12pt]{article} % <br> |
||
+ | \usepackage{geometry} % <br> |
||
+ | \usepackage{graphicx} % <br> |
||
+ | \usepackage{rotating} % <br> |
||
+ | \paperwidth 1008pt % <br> |
||
+ | \paperheight 1008pt % <br> |
||
+ | \topmargin -94pt % <br> |
||
+ | \oddsidemargin -81pt % <br> |
||
+ | \textwidth 1100pt % <br> |
||
+ | \textheight 1100pt % <br> |
||
+ | \pagestyle {empty} % <br> |
||
+ | \newcommand \sx {\scalebox} % <br> |
||
+ | \newcommand \rot {\begin{rotate}} % <br> |
||
+ | \newcommand \ero {\end{rotate}} % <br> |
||
+ | \newcommand \ing {\includegraphics} % <br> |
||
+ | \parindent 0pt% <br> |
||
+ | \pagestyle{empty} % <br> |
||
+ | \begin{document} % <br> |
||
+ | \begin{picture}(1002,1002) % <br> |
||
+ | \put(10,10){\ing{IterPowPlot}} % <br> |
||
+ | \put(11,976){\sx{4}{$y\!=\!\mathrm{pow}_2^c(x)$}} % <br> |
||
+ | \put(11,898){\sx{4}{$9$}} % <br> |
||
+ | \put(11,798){\sx{4}{$8$}} % <br> |
||
+ | \put(11,698){\sx{4}{$7$}} % <br> |
||
+ | \put(11,598){\sx{4}{$6$}} % <br> |
||
+ | \put(11,498){\sx{4}{$5$}} % <br> |
||
+ | \put(11,398){\sx{4}{$4$}} % <br> |
||
+ | \put(11,298){\sx{4}{$3$}} % <br> |
||
+ | \put(11,198){\sx{4}{$2$}} % <br> |
||
+ | \put(11,098){\sx{4}{$1$}} % <br> |
||
+ | % <br> |
||
+ | \put(100,16){\sx{4}{$1$}} % <br> |
||
+ | \put(200,16){\sx{4}{$2$}} % <br> |
||
+ | \put(301,16){\sx{4}{$3$}} % <br> |
||
+ | \put(401,16){\sx{4}{$4$}} % <br> |
||
+ | \put(502,16){\sx{4}{$5$}} % <br> |
||
+ | \put(602,16){\sx{4}{$6$}} % <br> |
||
+ | \put(703,16){\sx{4}{$7$}} % <br> |
||
+ | \put(803,16){\sx{4}{$8$}} % <br> |
||
+ | \put(903,16){\sx{4}{$9$}} % <br> |
||
+ | \put(990,16){\sx{4}{$x$}} % <br> |
||
+ | % <br> |
||
+ | \put(256,790){\sx{3.6}{\rot{84}$c\!=\!1.2$\ero}} % <br> |
||
+ | \put(325,921){\sx{3.6}{\rot{81}$c\!=\!1$\ero}} % <br> |
||
+ | \put(461,893){\sx{3.6}{\rot{70}$c\!=\!0.6$\ero}} % <br> |
||
+ | \put(509,894){\sx{3.6}{\rot{69}$c\!=\!0.5$\ero}} % <br> |
||
+ | \put(564,895){\sx{3.6}{\rot{63}$c\!=\!0.4$\ero}} % <br> |
||
+ | \put(630,897){\sx{3.6}{\rot{59}$c\!=\!0.3$\ero}} % <br> |
||
+ | \put(713,900){\sx{3.6}{\rot{54}$c\!=\!0.2$\ero}} % <br> |
||
+ | \put(826,913){\sx{3.6}{\rot{50}$c\!=\!0.1$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(928,932){\sx{3.6}{\rot{45}$c\!=\!0$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(894,778){\sx{3.6}{\rot{39}$c\!=\!-0.1$\ero}} % <br> |
||
+ | \put(888,676){\sx{3.6}{\rot{33}$c\!=\!-0.2$\ero}} % <br> |
||
+ | \put(887,599){\sx{3.6}{\rot{28}$c\!=\!-0.3$\ero}} % <br> |
||
+ | \put(877,528){\sx{3.6}{\rot{24}$c\!=\!-0.4$\ero}} % <br> |
||
+ | \put(871,477){\sx{3.6}{\rot{19}$c\!=\!-0.5$\ero}} % <br> |
||
+ | \put(870,429){\sx{3.6}{\rot{17}$c\!=\!-0.6$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(890,299){\sx{3.6}{\rot{6}$c\!=\!-1$\ero}} % <br> |
||
+ | \put(866,240){\sx{3.6}{\rot{5}$c\!=\!-1.2$\ero}} % <br> |
||
+ | \end{picture} % <br> |
||
+ | \end{document} % <br> |
||
+ | %</nowiki> |
||
+ | |||
+ | [[Category:Power function]] |
||
+ | [[Category:Iteration]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Abel function]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Revision as of 09:43, 21 June 2013
Explicit plot of $c$th Iteration of the quadratic function, id est, power function for power 2; $y=\mathrm{Pow}_2^{~c}(z)=T^c(x)~$ for various values of number $c$ of iteration. Here,
- $\!\!\!\!\!\!\!\!\!\!\ (1) ~ ~ ~ T(z)=\mathrm{Pow}_2(z)=z^2=\exp\Big(\ln(z)\,2\Big)$
The iteration of $T$ is implemented in the following way:
- $\!\!\!\!\!\!\!\!\!\!\ (2) ~ ~ ~y=T^c(x)={\mathrm{Pow}_2}^c(z)=F\Big(c+G(x)\Big)$
where
- $\!\!\!\!\!\!\!\!\!\!\ (3) ~ ~ ~ F(z)=\exp\Big( \exp\big( \ln(2)\, z\big)\Big)$
is superfunction for the transfer function $T$ and
- $\!\!\!\!\!\!\!\!\!\!\ (4) ~ ~ ~G(z)=\ln\Big( \ln(z) \Big)/ \ln(2)$
is the Abel Function.
The thick lines represent $y=x^2$ and $y=\sqrt{x}$. FIrst of them overlaps with $y=T^1(x)$ and corresponds to $c\!=\!1$, and the second overlaps with $y=T^{-1}(x)$ and corresponds to $c\!=\!-1$.
Warning
For
- $\!\!\!\!\!\!\!\!\!\!\ (5) ~ ~ ~T(z)=\mathrm{Pow}_b(z)=z^b$
the iterate can be expressed in the closed form through the same function. For other functions, such a representation may be not available.
C++ Generator of curves
#include<math.h> #include<stdio.h> #include<stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin"
DB B=2.; DB F(DB z) { return exp( exp( log(B)*z));} DB G(DB z) { return log( log(z) )/log(B);}
main(){ int m,n; double x,y,t; FILE *o; o=fopen("IterPowPlot.eps","w"); ado(o,1010,1010); fprintf(o,"1 1 translate 100 100 scale\n"); #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); for(m=0;m<11;m++) {M(m,0)L(m,10)} for(m=0;m<11;m++) {M(0,m)L(10,m)} fprintf(o,"2 setlinecap .01 W S\n"); DO(m,42){x=0.001+.1*m; y=exp(2.*log(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 1 0 RGB S\n"); DO(m,1002){x=0.001+.01*m; y=exp(.5*log(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 0 1 RGB S\n"); for(n=-12;n<13;n++){t=.1*n; DO(m,92){x=1+.1*m; y=F(t+G(x)); if(m==0) M(x,y) else L(x,y); if(y>10.1)break;} } fprintf(o,"1 setlinecap 1 setlinejoin .02 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf IterPowPlot.eps"); system( "open IterPowPlot.pdf"); getchar(); system("killall Preview"); }
Latex Generator of labels
% %<br> % file IterPowPlot.pdf should be generated with the code above in order to compile the Latex document below. %<br> % Copyleft 2012 by Dmitrii Kouznetsov <br> % \documentclass[12pt]{article} % <br> \usepackage{geometry} % <br> \usepackage{graphicx} % <br> \usepackage{rotating} % <br> \paperwidth 1008pt % <br> \paperheight 1008pt % <br> \topmargin -94pt % <br> \oddsidemargin -81pt % <br> \textwidth 1100pt % <br> \textheight 1100pt % <br> \pagestyle {empty} % <br> \newcommand \sx {\scalebox} % <br> \newcommand \rot {\begin{rotate}} % <br> \newcommand \ero {\end{rotate}} % <br> \newcommand \ing {\includegraphics} % <br> \parindent 0pt% <br> \pagestyle{empty} % <br> \begin{document} % <br> \begin{picture}(1002,1002) % <br> \put(10,10){\ing{IterPowPlot}} % <br> \put(11,976){\sx{4}{$y\!=\!\mathrm{pow}_2^c(x)$}} % <br> \put(11,898){\sx{4}{$9$}} % <br> \put(11,798){\sx{4}{$8$}} % <br> \put(11,698){\sx{4}{$7$}} % <br> \put(11,598){\sx{4}{$6$}} % <br> \put(11,498){\sx{4}{$5$}} % <br> \put(11,398){\sx{4}{$4$}} % <br> \put(11,298){\sx{4}{$3$}} % <br> \put(11,198){\sx{4}{$2$}} % <br> \put(11,098){\sx{4}{$1$}} % <br> % <br> \put(100,16){\sx{4}{$1$}} % <br> \put(200,16){\sx{4}{$2$}} % <br> \put(301,16){\sx{4}{$3$}} % <br> \put(401,16){\sx{4}{$4$}} % <br> \put(502,16){\sx{4}{$5$}} % <br> \put(602,16){\sx{4}{$6$}} % <br> \put(703,16){\sx{4}{$7$}} % <br> \put(803,16){\sx{4}{$8$}} % <br> \put(903,16){\sx{4}{$9$}} % <br> \put(990,16){\sx{4}{$x$}} % <br> % <br> \put(256,790){\sx{3.6}{\rot{84}$c\!=\!1.2$\ero}} % <br> \put(325,921){\sx{3.6}{\rot{81}$c\!=\!1$\ero}} % <br> \put(461,893){\sx{3.6}{\rot{70}$c\!=\!0.6$\ero}} % <br> \put(509,894){\sx{3.6}{\rot{69}$c\!=\!0.5$\ero}} % <br> \put(564,895){\sx{3.6}{\rot{63}$c\!=\!0.4$\ero}} % <br> \put(630,897){\sx{3.6}{\rot{59}$c\!=\!0.3$\ero}} % <br> \put(713,900){\sx{3.6}{\rot{54}$c\!=\!0.2$\ero}} % <br> \put(826,913){\sx{3.6}{\rot{50}$c\!=\!0.1$\ero}} % <br> % <br> \put(928,932){\sx{3.6}{\rot{45}$c\!=\!0$\ero}} % <br> % <br> \put(894,778){\sx{3.6}{\rot{39}$c\!=\!-0.1$\ero}} % <br> \put(888,676){\sx{3.6}{\rot{33}$c\!=\!-0.2$\ero}} % <br> \put(887,599){\sx{3.6}{\rot{28}$c\!=\!-0.3$\ero}} % <br> \put(877,528){\sx{3.6}{\rot{24}$c\!=\!-0.4$\ero}} % <br> \put(871,477){\sx{3.6}{\rot{19}$c\!=\!-0.5$\ero}} % <br> \put(870,429){\sx{3.6}{\rot{17}$c\!=\!-0.6$\ero}} % <br> % <br> \put(890,299){\sx{3.6}{\rot{6}$c\!=\!-1$\ero}} % <br> \put(866,240){\sx{3.6}{\rot{5}$c\!=\!-1.2$\ero}} % <br> \end{picture} % <br> \end{document} % <br> %
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,093 × 2,093 (680 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: