Difference between revisions of "File:ShokoMapT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of the [[Shoko function]]; |
||
− | Importing image file |
||
+ | |||
+ | $u\!+\! \mathrm i v = \mathrm{Shoko}(x\!+\!\mathrm i y)$ |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | Files [[ado.cin]] and [[conto.cin]] should be loaded in the working directory in order to compile the [[C++]] code below: |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | |||
+ | z_type Shoko(z_type z) { return log(1.+exp(z)*(M_E-1.)); } |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t,r; z_type z,c,d; |
||
+ | r=log(1./(M_E-1.)); printf("r=%16.14f\n",r); |
||
+ | int M=400,M1=M+1; |
||
+ | int N=800,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("shokomap.eps","w");ado(o,162,162); |
||
+ | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]=-8.+.04*(m); |
||
+ | DO(n,N1)Y[n]=-8.+.02*n; |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | // c=Tania(z); p=Re(c);q=Im(c); |
||
+ | c=Shoko(z); p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); |
||
+ | y= M_PI; M(r,y)L(8.1,y) |
||
+ | y=-M_PI; M(r,y)L(8.1,y) |
||
+ | fprintf(o,"0 setlinecap .04 W 1 1 1 RGB S\n"); |
||
+ | y= M_PI; for(m=0;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} |
||
+ | y=-M_PI; for(m=0;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} |
||
+ | fprintf(o,".06 W 1 .5 0 RGB S\n"); |
||
+ | y= M_PI; for(m=2;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} |
||
+ | y=-M_PI; for(m=2;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} |
||
+ | fprintf(o,".06 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf shokomap.eps"); |
||
+ | system( "open shokomap.pdf"); |
||
+ | printf("r=%16.14f %16.14f\n",r,sqrt(M_PI*M_PI+r*r)); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | // Copyleft 2012 by Dmitrii Kouznetsov |
||
+ | |||
+ | ==[[Latex]] generaotr of labels== |
||
+ | %<nowiki> |
||
+ | % Gerenator of TaniaMap.png %<br> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \usepackage{geometry} %<br> |
||
+ | \usepackage{graphicx} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \paperwidth 854pt %<br> |
||
+ | \paperheight 844pt %<br> |
||
+ | \topmargin -96pt %<br> |
||
+ | \oddsidemargin -98pt %<br> |
||
+ | \textwidth 1100pt %<br> |
||
+ | \textheight 1100pt %<br> |
||
+ | \pagestyle {empty} %<br> |
||
+ | \newcommand \sx {\scalebox} %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \newcommand \ing {\includegraphics} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \sx{5}{ \begin{picture}(164,165) %<br> |
||
+ | \put(6,5){\ing{ShokoMap}} %<br> |
||
+ | \put(2,162){\sx{.7}{$y$}} %<br> |
||
+ | \put(2,144){\sx{.6}{$6$}} %<br> |
||
+ | \put(2,124){\sx{.6}{$4$}} %<br> |
||
+ | \put(2,104){\sx{.6}{$2$}} %<br> |
||
+ | \put(3,116){\sx{.6}{$\pi$}} %<br> |
||
+ | \put(18,147){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | \put(18,131.2){\sx{.8}{$u\!=\!0$}} %<br> |
||
+ | \put(18,115.6){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | \put(120,116.7){\sx{.4}{\bf cut}} %<br> |
||
+ | \put(18,100){\sx{.8}{$u\!=\!0$}} %<br> |
||
+ | \put(2, 84){\sx{.6}{$0$}} %<br> |
||
+ | \put(18, 84){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | \put(18,68){\sx{.8}{$u\!=\!0$}} %<br> |
||
+ | \put(-2,64){\sx{.6}{$-2$}} %<br> |
||
+ | \put(-2,53){\sx{.6}{$-\pi$}} %<br> |
||
+ | \put(18,52.4){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | \put(120,53.7){\sx{.4}{\bf cut}} %<br> |
||
+ | \put(18,36.5){\sx{.8}{$u\!=\!0$}} %<br> |
||
+ | \put(18,20.8){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | \put(-2,44){\sx{.6}{$-4$}} %<br> |
||
+ | \put(-2,24){\sx{.6}{$-6$}} %<br> |
||
+ | \put( 22,0){\sx{.6}{$-6$}} %<br> |
||
+ | \put( 42,0){\sx{.6}{$-4$}} %<br> |
||
+ | \put( 62,0){\sx{.6}{$-2$}} %<br> |
||
+ | \put( 86,0){\sx{.6}{$0$}} %<br> |
||
+ | \put(106,0){\sx{.6}{$2$}} %<br> |
||
+ | \put(126,0){\sx{.6}{$4$}} %<br> |
||
+ | \put(146,0){\sx{.6}{$6$}} %<br> |
||
+ | \put(164,0){\sx{.7}{$x$}} %<br> |
||
+ | \put( 89.8, 77){\rot{90}\sx{.7}{$u\!=\!1$}\ero}%<br> |
||
+ | \put(102.4, 77){\rot{90}\sx{.7}{$u\!=\!2$}\ero}%<br> |
||
+ | \put(113.4, 77){\rot{90}\sx{.7}{$u\!=\!3$}\ero}%<br> |
||
+ | \put(133,157.6){\sx{.6}{$v\!=\!1$}}%<br> |
||
+ | \put(133,147.4){\sx{.7}{$v\!=\!0$}}%<br> |
||
+ | \put(133,137.4){\sx{.6}{$v\!=\!-1$}}%<br> |
||
+ | \put(133,127.3){\sx{.6}{$v\!=\!-2$}}%<br> |
||
+ | \put(133,119){\sx{.6}{$v\!=\!-3$}}%<br> |
||
+ | \put(133,113){\sx{.6}{$v\!=\!3$}}%<br> |
||
+ | \put(133,104.6){\sx{.6}{$v\!=\!2$}}%<br> |
||
+ | \put(133, 94.7){\sx{.6}{$v\!=\!1$}} %<br> |
||
+ | \put(133, 84){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | \put(133, 74){\sx{.6}{$v\!=\!-\!1$}} %<br> |
||
+ | \put(133, 64){\sx{.6}{$v\!=\!-\!2$}} %<br> |
||
+ | \put(133, 55){\sx{.6}{$v\!=\!-\!3$}} %<br> |
||
+ | \put(133, 49){\sx{.6}{$v\!=\!3$}} %<br> |
||
+ | \put(133, 41.6){\sx{.6}{$v\!=\!2$}} %<br> |
||
+ | \put(133, 31.6){\sx{.6}{$v\!=\!1$}} %<br> |
||
+ | \put(133, 21.6){\sx{.6}{$v\!=\!0$}} %<br> |
||
+ | \put(133, 11){\sx{.6}{$v\!=\!-1$}} %<br> |
||
+ | \end{picture} %<br> |
||
+ | } %<br> |
||
+ | \end{document} %<br> |
||
+ | %</nowiki> |
||
+ | |||
+ | % copyleft 2012 by Dmitrii Kouznetsov. |
||
+ | |||
+ | [[Category:Shoko function]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 09:43, 21 June 2013
Complex map of the Shoko function;
$u\!+\! \mathrm i v = \mathrm{Shoko}(x\!+\!\mathrm i y)$
C++ generator of curves
Files ado.cin and conto.cin should be loaded in the working directory in order to compile the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin"
z_type Shoko(z_type z) { return log(1.+exp(z)*(M_E-1.)); }
main(){ int j,k,m,n; DB x,y, p,q, t,r; z_type z,c,d; r=log(1./(M_E-1.)); printf("r=%16.14f\n",r); int M=400,M1=M+1; int N=800,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("shokomap.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(m,M1) X[m]=-8.+.04*(m); DO(n,N1)Y[n]=-8.+.02*n; for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=Tania(z); p=Re(c);q=Im(c); c=Shoko(z); p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} }} fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); y= M_PI; M(r,y)L(8.1,y) y=-M_PI; M(r,y)L(8.1,y) fprintf(o,"0 setlinecap .04 W 1 1 1 RGB S\n"); y= M_PI; for(m=0;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} y=-M_PI; for(m=0;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} fprintf(o,".06 W 1 .5 0 RGB S\n"); y= M_PI; for(m=2;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} y=-M_PI; for(m=2;m<85;m+=4) {x=r+.1*m; M(x,y) L(x+.12,y)} fprintf(o,".06 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf shokomap.eps"); system( "open shokomap.pdf"); printf("r=%16.14f %16.14f\n",r,sqrt(M_PI*M_PI+r*r)); getchar(); system("killall Preview"); }
// Copyleft 2012 by Dmitrii Kouznetsov
Latex generaotr of labels
% % Gerenator of TaniaMap.png %<br> \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \paperwidth 854pt %<br> \paperheight 844pt %<br> \topmargin -96pt %<br> \oddsidemargin -98pt %<br> \textwidth 1100pt %<br> \textheight 1100pt %<br> \pagestyle {empty} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \begin{document} %<br> \sx{5}{ \begin{picture}(164,165) %<br> \put(6,5){\ing{ShokoMap}} %<br> \put(2,162){\sx{.7}{$y$}} %<br> \put(2,144){\sx{.6}{$6$}} %<br> \put(2,124){\sx{.6}{$4$}} %<br> \put(2,104){\sx{.6}{$2$}} %<br> \put(3,116){\sx{.6}{$\pi$}} %<br> \put(18,147){\sx{.8}{$v\!=\!0$}} %<br> \put(18,131.2){\sx{.8}{$u\!=\!0$}} %<br> \put(18,115.6){\sx{.8}{$v\!=\!0$}} %<br> \put(120,116.7){\sx{.4}{\bf cut}} %<br> \put(18,100){\sx{.8}{$u\!=\!0$}} %<br> \put(2, 84){\sx{.6}{$0$}} %<br> \put(18, 84){\sx{.8}{$v\!=\!0$}} %<br> \put(18,68){\sx{.8}{$u\!=\!0$}} %<br> \put(-2,64){\sx{.6}{$-2$}} %<br> \put(-2,53){\sx{.6}{$-\pi$}} %<br> \put(18,52.4){\sx{.8}{$v\!=\!0$}} %<br> \put(120,53.7){\sx{.4}{\bf cut}} %<br> \put(18,36.5){\sx{.8}{$u\!=\!0$}} %<br> \put(18,20.8){\sx{.8}{$v\!=\!0$}} %<br> \put(-2,44){\sx{.6}{$-4$}} %<br> \put(-2,24){\sx{.6}{$-6$}} %<br> \put( 22,0){\sx{.6}{$-6$}} %<br> \put( 42,0){\sx{.6}{$-4$}} %<br> \put( 62,0){\sx{.6}{$-2$}} %<br> \put( 86,0){\sx{.6}{$0$}} %<br> \put(106,0){\sx{.6}{$2$}} %<br> \put(126,0){\sx{.6}{$4$}} %<br> \put(146,0){\sx{.6}{$6$}} %<br> \put(164,0){\sx{.7}{$x$}} %<br> \put( 89.8, 77){\rot{90}\sx{.7}{$u\!=\!1$}\ero}%<br> \put(102.4, 77){\rot{90}\sx{.7}{$u\!=\!2$}\ero}%<br> \put(113.4, 77){\rot{90}\sx{.7}{$u\!=\!3$}\ero}%<br> \put(133,157.6){\sx{.6}{$v\!=\!1$}}%<br> \put(133,147.4){\sx{.7}{$v\!=\!0$}}%<br> \put(133,137.4){\sx{.6}{$v\!=\!-1$}}%<br> \put(133,127.3){\sx{.6}{$v\!=\!-2$}}%<br> \put(133,119){\sx{.6}{$v\!=\!-3$}}%<br> \put(133,113){\sx{.6}{$v\!=\!3$}}%<br> \put(133,104.6){\sx{.6}{$v\!=\!2$}}%<br> \put(133, 94.7){\sx{.6}{$v\!=\!1$}} %<br> \put(133, 84){\sx{.8}{$v\!=\!0$}} %<br> \put(133, 74){\sx{.6}{$v\!=\!-\!1$}} %<br> \put(133, 64){\sx{.6}{$v\!=\!-\!2$}} %<br> \put(133, 55){\sx{.6}{$v\!=\!-\!3$}} %<br> \put(133, 49){\sx{.6}{$v\!=\!3$}} %<br> \put(133, 41.6){\sx{.6}{$v\!=\!2$}} %<br> \put(133, 31.6){\sx{.6}{$v\!=\!1$}} %<br> \put(133, 21.6){\sx{.6}{$v\!=\!0$}} %<br> \put(133, 11){\sx{.6}{$v\!=\!-1$}} %<br> \end{picture} %<br> } %<br> \end{document} %<br> %
% copyleft 2012 by Dmitrii Kouznetsov.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 1,773 × 1,752 (964 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: