Difference between revisions of "Kuznetsova theorem"

From TORI
Jump to navigation Jump to search
 
Line 15: Line 15:
 
== Notations==
 
== Notations==
   
Here symbol tet veters to [[tetraton]]. The base is indicated as subscript.
+
Here symbol tet veters to [[tetration]]. The base is indicated as subscript.
   
 
Character % refers to residual of division of the number at left (treated as numerator) by number at right (intepreted as denominator).
 
Character % refers to residual of division of the number at left (treated as numerator) by number at right (intepreted as denominator).

Latest revision as of 20:23, 23 January 2020

Kuznetsova theorem refers to residual of division of tetration to integer base by any integer number.

Kuznetsova theorem

Let \( b>1 \) and \( q>1 \) be integers.

Then, there exist positive integer \( Q \) and integer \(r\) such that for any integer \( n > Q \) the equation holds:

\( \mathrm{tet}_b(n)\%q = r \)

Notations

Here symbol tet veters to tetration. The base is indicated as subscript.

Character % refers to residual of division of the number at left (treated as numerator) by number at right (intepreted as denominator).

For example,
\(3 \%2=1\)
\( 14\%2=0 \)
\( 14\%10=4 \)

References

Keywords

Integer number, Tartaria, Tartaria.Math, Tetration, Yulya Kuznetsova