Difference between revisions of "File:Superfactorea500.png"

From TORI
Jump to navigation Jump to search
 
Line 1: Line 1:
  +
{{oq|Superfactorea500.png|Original file ‎(575 × 748 pixels, file size: 50 KB, MIME type: image/png)}}
  +
 
Real-real plot of
 
Real-real plot of
   
$y\!=\!\mathrm{Factorial}(x) ~ $ , blue curve,
+
\(y\!=\!\mathrm{Factorial}(x) ~ \) , blue curve,
   
$y\!=\!\mathrm{SuperFactorial}(x)\!=\!\mathrm{Factorial}^x(3) ~ $ , red curve,
+
\(y\!=\!\mathrm{SuperFactorial}(x)\!=\!\mathrm{Factorial}^x(3) ~ \) , red curve,
   
versus $x$
+
versus \(x\)
   
 
Copyleft 2011 by Dmitrii Kouznetsov.
 
Copyleft 2011 by Dmitrii Kouznetsov.
Line 12: Line 14:
   
 
[[Factorial]] is [[meromorphic function]];
 
[[Factorial]] is [[meromorphic function]];
: $\mathrm{Factorial}(z)=z \times \mathrm{Factorial}(z\!-\!1) ~ \forall z\in \mathbb C \backslash \{ -n, n\in \mathbb N \}$
+
: \(\mathrm{Factorial}(z)=z \times \mathrm{Factorial}(z\!-\!1) ~ \forall z\in \mathbb C \backslash \{ -n, n\in \mathbb N \} \)
: $ \mathrm{Factorial}(z^*)=\mathrm{Factorial}(z)^*$
+
: \( \mathrm{Factorial}(z^*)=\mathrm{Factorial}(z)^* \)
: $ \displaystyle \lim_{x\rightarrow -\infty} \mathrm{Factorial}(x\!+\! \mathrm i y)=0
+
: \( \displaystyle \lim_{x\rightarrow -\infty} \mathrm{Factorial}(x\!+\! \mathrm i y)=0
~ \forall y\in \mathbb R : y\ne 0$
+
~ \forall y\in \mathbb R : y\ne 0\)
   
 
==SuperFactorial==
 
==SuperFactorial==
   
 
[[SuperFactorial]] is [[superfunction]] of Factorial constructed with [[regular iteration]] at its fixed point 2;
 
[[SuperFactorial]] is [[superfunction]] of Factorial constructed with [[regular iteration]] at its fixed point 2;
: $ \mathrm{SuperFactorial}(z^*)=\mathrm{SuperFactorial}(z)^*$
+
: \( \mathrm{SuperFactorial}(z^*)=\mathrm{SuperFactorial}(z)^* \)
: $ \mathrm{SuperFactorial}(z)=\mathrm{Factorial}^x(3)$
+
: \( \mathrm{SuperFactorial}(z)=\mathrm{Factorial}^x(3) \)
: $\displaystyle \lim_{x\rightarrow -\infty} \mathrm{SuperFactorial}(x\!+\! \mathrm i y)=2 ~ \forall y\in \mathbb R$
+
: \( \displaystyle \lim_{x\rightarrow -\infty} \mathrm{SuperFactorial}(x\!+\! \mathrm i y)=2 ~ \forall y\in \mathbb R\)
: $ \mathrm{SuperFactorial}(3)=0$
+
: $ \mathrm{SuperFactorial}(3)=0 \)
   
 
In the first description
 
In the first description
Line 41: Line 43:
 
# [[Superfactorea.tex]] , that add labels, making new PDF
 
# [[Superfactorea.tex]] , that add labels, making new PDF
   
After the generation, the output file [[superfactorea.pdf]] is converted to superfactorea500.png using the resoluton "500".
+
After the generation, the output file [[superfactorea.pdf]] is converted to superfactorea500.png using the resolution "500".
   
 
The generators of the figure are misplaced (or misnamed) and cannot be loaded here.
 
The generators of the figure are misplaced (or misnamed) and cannot be loaded here.
Line 50: Line 52:
   
 
==References==
 
==References==
  +
{{ref}}
<references/>
 
  +
  +
{{fer}}
  +
  +
==Keywords==
  +
[[SuperFactorial]]
   
 
[[Category:Holomorphic functions]]
 
[[Category:Holomorphic functions]]
Line 57: Line 64:
 
[[Category:Factorial]]
 
[[Category:Factorial]]
 
[[Category:SuperFactorial]]
 
[[Category:SuperFactorial]]
  +
[[Category:Supoerfunction]]

Latest revision as of 00:06, 29 February 2024


Real-real plot of

\(y\!=\!\mathrm{Factorial}(x) ~ \) , blue curve,

\(y\!=\!\mathrm{SuperFactorial}(x)\!=\!\mathrm{Factorial}^x(3) ~ \) , red curve,

versus \(x\)

Copyleft 2011 by Dmitrii Kouznetsov.

Factorial

Factorial is meromorphic function;

\(\mathrm{Factorial}(z)=z \times \mathrm{Factorial}(z\!-\!1) ~ \forall z\in \mathbb C \backslash \{ -n, n\in \mathbb N \} \)
\( \mathrm{Factorial}(z^*)=\mathrm{Factorial}(z)^* \)
\( \displaystyle \lim_{x\rightarrow -\infty} \mathrm{Factorial}(x\!+\! \mathrm i y)=0 ~ \forall y\in \mathbb R : y\ne 0\)

SuperFactorial

SuperFactorial is superfunction of Factorial constructed with regular iteration at its fixed point 2;

\( \mathrm{SuperFactorial}(z^*)=\mathrm{SuperFactorial}(z)^* \)
\( \mathrm{SuperFactorial}(z)=\mathrm{Factorial}^x(3) \)
\( \displaystyle \lim_{x\rightarrow -\infty} \mathrm{SuperFactorial}(x\!+\! \mathrm i y)=2 ~ \forall y\in \mathbb R\)
$ \mathrm{SuperFactorial}(3)=0 \)

In the first description [1] of SuperFactorial, its value at zero (last condition above) is not adjusted.

Generators

This image is generated with the following sources:

  1. fac.cin , the complex double implementation of factorial
  2. SuperFactorial.cin , the complex double implementation of superfactorial
  3. ado.cin , that writes the header of the EPS file
  4. Superfactoreal.cc , that plots the curves as superfactoreal.pdf
  5. Superfactorea.tex , that add labels, making new PDF

After the generation, the output file superfactorea.pdf is converted to superfactorea500.png using the resolution "500".

The generators of the figure are misplaced (or misnamed) and cannot be loaded here. Therefore, the similar figure with generators is loaded: http://tori.ils.uec.ac.jp/TORI/index.php/File:SuperFacPlotT.png

I did not prepare the special implementation for the real values of the argument; so, for the real plots, the real part of the output is used.

References

  1. http://www.ils.uec.ac.jp/~dima/PAPERS/2009supefae.pdf D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12.

Keywords

SuperFactorial

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 2013575 × 748 (50 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata